RESUMEN
Nanostructured materials represent promising substrates for biocatalyst immobilization and activation. Cellulose nanocrystals (CNCs), accessible from waste and/or renewable sources, are sustainable and biodegradable, show high specific surface area for anchoring a high number of enzymatic units, and high thermal and mechanical stability. In this work, we present a holistic enzyme-based approach to functional antibacterial materials by bioconjugation between the lysozyme from chicken egg white and enzymatic cellulose nanocrystals. The neutral CNCs were prepared by endoglucanase hydrolysis from Avicel. We explore the covalent immobilization of lysozyme on enzymatic CNCs and on their TEMPO oxidized derivatives (TO-CNCs), comparing immobilization yields, material properties, and enzymatic activities. The materials were characterized by X-ray diffractometry (XRD), attenuated total reflectance Fourier Transform infrared spectroscopy (ATR-FTIR), bicinchoninic acid (BCA) assay, field-emission scanning electron microscopy (FE-SEM) and dynamic light scattering (DLS). We demonstrate the higher overall efficiency of the immobilization process carried out on TO-CNCs, based on the success of covalent bonding and on the stability of the isolated bioconjugates.
Asunto(s)
Celulosa , Enzimas Inmovilizadas , Muramidasa , Nanopartículas , Celulosa/química , Muramidasa/química , Muramidasa/metabolismo , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Nanopartículas/química , Pollos , Espectroscopía Infrarroja por Transformada de Fourier , Animales , Difracción de Rayos X , Hidrólisis , Óxidos N-Cíclicos/química , Antibacterianos/químicaRESUMEN
Oxidized albumin is considered a short-term biomarker of oxidative stress and its measurement in blood contributes to evaluate the impact of diseases, drugs, dialytic treatments, physical activity, environmental contaminants etc. on the red-ox balance of humans as well as of other mammalians. Nevertheless, the most common methods for quantifying the oxidized and reduced albumins are costly and time-consuming. Furthermore, there is a dearth of information regarding the proper ways to store human serum or plasma samples in order to prevent inaccurate quantification of these various albumin forms. This paper explores these aspects and proposes a few spectrophotometric assay procedures which make the quantitation of oxidized and reduced albumin very fast, precise and un-expensive in various mammals.
Asunto(s)
Oxidación-Reducción , Albúmina Sérica , Animales , Humanos , Biomarcadores/sangre , Mamíferos/sangre , Estrés Oxidativo , Albúmina Sérica/análisis , EspectrofotometríaRESUMEN
Growing evidence suggests that opioid analgesics modulate angiogenesis during pathophysiological processes. Vascular endothelial growth factor-A (VEGF-A) was recently proposed to be involved in pain development. To date, no anti-angiogenic drug is used for pain management. When administered in a bioavailable formulation, (i.e., ultramicronized) N-palmitoylethanolamine (PEA) delays the onset of morphine tolerance, improves morphine analgesic activity and reduces angiogenesis in in vivo models. This study aimed at investigating whether VEGF-A is involved in PEA-induced delay of morphine tolerance. The anti-VEGF-A monoclonal antibody bevacizumab was used as a reference drug. Preemptive and concomitant treatment with ultramicronized PEA delayed morphine tolerance and potentiated the analgesic effect of morphine, while counteracting morphine-induced increase of VEGF-A in the nervous system. Similar results were obtained when bevacizumab was administered together with morphine. Of note, bevacizumab showed an analgesic effect per se. In equianalgesic treatment regimens (obtained through increasing morphine doses and associating PEA), PEA resulted in lower expression of VEGF-A in dorsal root ganglia (DRG) and spinal cord compared to morphine alone. Similar results were observed for plasma levels of the soluble VEGF receptor 1 (sFLT-1). Moreover, in morphine-treated animals, two pain-related genes (i.e., Serpina3n and Eaat2) showed a more than 3-fold increase in their expression at spinal cord and DRG level, with the increase being significantly counteracted by PEA treatment. This study supports the hypothesis that the effects of PEA on morphine analgesia and tolerance may be mediated by the down-modulation of VEGF-A and sFLT-1 in the nervous system and plasma, respectively.
RESUMEN
Psoriasis is a chronic immune-mediated inflammatory cutaneous disease characterized by elevated levels of inflammatory cytokines and adipokine Lipocalin-2 (LCN-2). Recently, natural plant-based products have been studied as new antipsoriatic compounds. We investigate the ability of a leaf extract of the marine plant Posidonia oceanica (POE) to inhibit psoriatic dermatitis in C57BL/6 mice treated with Imiquimod (IMQ). One group of mice was topically treated with IMQ (IMQ mice) for 5 days, and a second group received POE orally before each topical IMQ treatment (IMQ-POE mice). Psoriasis Area Severity Index (PASI) score, thickness, and temperature of the skin area treated with IMQ were measured in both groups. Upon sacrifice, the organs were weighed, and skin biopsies and blood samples were collected. Plasma and lesional skin protein expression of IL-17, IL-23, IFN-γ, IL-2, and TNF-α and plasma LCN-2 concentration were evaluated by ELISA. PASI score, thickness, and temperature of lesional skin were reduced in IMQ-POE mice, as were histological features of psoriatic dermatitis and expression of inflammatory cytokines and LCN-2 levels. This preliminary study aims to propose P. oceanica as a promising naturopathic anti-inflammatory treatment that could be introduced in Complementary Medicine for psoriasis.
Asunto(s)
Alismatales , Citocinas , Imiquimod , Ratones Endogámicos C57BL , Extractos Vegetales , Psoriasis , Animales , Psoriasis/tratamiento farmacológico , Psoriasis/inducido químicamente , Ratones , Extractos Vegetales/farmacología , Citocinas/metabolismo , Alismatales/química , Piel/efectos de los fármacos , Piel/patología , Piel/metabolismo , Modelos Animales de Enfermedad , Hojas de la Planta/química , Lipocalina 2 , Femenino , Organismos AcuáticosRESUMEN
Neuron generation persists throughout life in the hippocampus but is altered in animal models of neurological and neuropsychiatric diseases, suggesting that disease-associated decline in cognitive and emotional hippocampal-dependent behaviours might be functionally linked with dysregulation of postnatal neurogenesis. Depletion of the adult neural stem/progenitor cell (NSPCs) pool and neurogenic decline have been recently described in mice expressing synaptic susceptibility genes associated with autism spectrum disorder (ASDs). To gain further insight into mechanisms regulating neurogenesis in mice carrying mutations in synaptic genes related to monogenic ASDs, we used the R451C Neuroligin3 knock-in (Nlgn3 KI) mouse, which is characterized by structural brain abnormalities, deficits in synaptic functions and reduced sociability. We show that the number of adult-born neurons, but not the size of the NSPC pool, was reduced in the ventral dentate gyrus in knock-in mice. Notably, this neurogenic decline was rescued by daily injecting mice with 10 mg/Kg of the antidepressant fluoxetine for 20 consecutive days. Sustained treatment also improved KI mice's sociability and increased the number of c-Fos active adult-born neurons, compared with vehicle-injected KI mice. Our study uncovers neurogenesis-mediated alterations in the brain of R451C KI mouse, showing that the R451C Nlgn3 mutation leads to lasting, albeit pharmacologically reversible, changes in the brain, affecting neuron formation in the adult hippocampus. Our results suggest that fluoxetine can ameliorate social behaviour in KI mice, at least in part, by rescuing adult hippocampal neurogenesis, which may be relevant for the pharmacological treatment of ASDs.
Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Ratones , Animales , Fluoxetina/farmacología , Fluoxetina/uso terapéutico , Trastorno Autístico/genética , Antidepresivos/farmacología , Hipocampo , Neurogénesis/fisiología , Modelos Animales de Enfermedad , Conducta SocialRESUMEN
Diabetic neuropathy (DN) is a painful, chronic ailment that affects a large segment of diabetic population worldwide. Current medications such as pregabalin or duloxetine treat only the pain symptom associated with DN, but not the underlying nerve damage. DDD-028 (1) is a small molecule that displays potent pain-relieving activity in streptozotocin (STZ)-induced rodent model of DN. Combined with other studies indicating that DDD-028 suppresses astrogliosis and nerve damage induced by the anti-cancer drug, paclitaxel, the present study suggests that DDD-028 would be useful as a disease modifying therapeutic in the treatment of DN. The 3-dimensional structure of DDD-028 was confirmed by single crystal X-ray crystallography.
RESUMEN
BACKGROUND: The primary objective of this study was to characterize the pharmacological and behavioral activity of 2 novel compounds, DM497 [(E)-3-(thiophen-2-yl)- N -(p-tolyl)acrylamide] and DM490 [(E)-3-(furan-2-yl)- N -methyl- N -(p-tolyl)acrylamide], structural derivatives of PAM-2, a positive allosteric modulator of the α7 nicotinic acetylcholine receptor (nAChR). METHODS: A mouse model of oxaliplatin-induced neuropathic pain (2.4 mg/kg, 10 injections) was used to test the pain-relieving properties of DM497 and DM490. To assess possible mechanisms of action, the activity of these compounds was determined at heterologously expressed α7 and α9α10 nAChRs, and voltage-gated N-type calcium channel (Ca V 2.2) using electrophysiological techniques. RESULTS: Cold plate tests indicated that 10 mg/kg DM497 was able to decrease neuropathic pain in mice induced by the chemotherapeutic agent oxaliplatin. In contrast, DM490 induced neither pro- nor antinociceptive activity but inhibited DM497's effect at equivalent dose (30 mg/kg). These effects are not a product of changes in motor coordination or locomotor activity. At α7 nAChRs, DM497 potentiated whereas DM490 inhibited its activity. In addition, DM490 antagonized the α9α10 nAChR with >8-fold higher potency than that for DM497. In contrast, DM497 and DM490 had minimal inhibitory activity at the Ca V 2.2 channel. Considering that DM497 did not increase the mouse exploratory activity, an indirect anxiolytic mechanism was not responsible for the observed antineuropathic effect. CONCLUSIONS: The antinociceptive activity of DM497 and the concomitant inhibitory effect of DM490 are mediated by opposing modulatory mechanisms on the α7 nAChR, whereas the involvement of other possible nociception targets such as the α9α10 nAChR and Ca V 2.2 channel can be ruled out.
Asunto(s)
Neuralgia , Receptor Nicotínico de Acetilcolina alfa 7 , Ratones , Animales , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Acrilamida , Oxaliplatino , Regulación Alostérica , Analgésicos/farmacología , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Neuralgia/prevención & control , Furanos/farmacología , Furanos/uso terapéuticoRESUMEN
Osteoarthritis (OA) is a complex joint disease characterized by persistent pain. Unfortunately, current pharmacological therapies are unsatisfactory and characterized by side effects, reason why new strategies are needed. We tested the efficacy of different classes of compounds, ellagitannins and olean-type triterpenoids, contained in Anogeissus leiocarpus extract (Combretaceae family) in comparison to ellagitannins of Castanea sativa extract in a rat model of osteoarthritis induced by the intra-articular injection of sodium monoiodoacetate (MIA). The decoction of stem bark of A. leiocarpus AL-DEC-TOT (300 mg/kg; 4.8% triterpenoids; 11.0% tannins), the butanol extract AL-BuOH-EXT (120 mg/kg; triterpenoids 20.9%; tannins 6.4%) and its correlated aqueous residue AL-Res-H2 O (300 mg/kg; triterpenoids 0.7%; tannins 8.7%) and the decoction of C. sativa, CS-DEC-TOT, (240 mg/kg; triterpenoids 0.65%; tannins 10.8%) were orally administered for two weeks starting from the day of the damage. Behavioural tests highlighted that all stem bark extracts of A. leiocarpus counteracted hypersensitivity development, reduced spontaneous pain, and improved motor skills. Histologically, AL-DEC-TOT, AL-BuOH-EXT and AL-Res-H2 O were effective in preventing joint alterations. In conclusion, all the extracts were effective demonstrating that both olean-type triterpenoid and ellagitannin fractions have anti-hypersensitivity and restorative properties running the stem bark extracts of A. leiocarpus as a candidate in the treatment of OA.
Asunto(s)
Osteoartritis , Triterpenos , Ratas , Animales , Extractos Vegetales/química , Taninos Hidrolizables/farmacología , Triterpenos/farmacología , Corteza de la Planta/química , Taninos/análisis , Osteoartritis/inducido químicamente , Osteoartritis/tratamiento farmacológicoRESUMEN
Chemotherapy-induced neuropathy represents the main dose-limiting toxicity of several anticancer drugs, such as oxaliplatin, leading to chronic pain and an impairment of the quality of life. Echinacea purpurea n-hexane extract (EP4 -RE ; rich in alkamides) and butanolic extract (EP4 -RBU ; rich in polyphenols) have been characterized and tested in an in vivo model of oxaliplatin-induced neuropathic pain, addressing the endocannabinoid system with alkamides and counteracting the redox imbalance with polyphenols. Thermal hypersensitivity was evaluated by the Cold Plate test. EP4 -RE showed a dose-dependent anti-hyperalgesic profile. The extract was more effective than its main constituent, dodeca-2 E,4 E,8Z,10 E/Z-tetraenoic acid isobutylamide (18 mg kg-1 , twofold to equimolar EP4 -RE 30 mg kg-1 ), suggesting a synergy with other extract constituents. Administration of cannabinoid type 2 (CB2) receptor-selective antagonist completely blocked the anti-allodynic effect of EP4 -RE , differently from the antagonism of CB1 receptors. EP4 -RBU (30 mg kg-1 ) exhibited anti-neuropathic properties too. The effect was mainly exerted by chicoric acid, which administered alone (123 µg kg-1 , equimolar to EP4 -RBU 30 mg kg-1 ) completely reverted oxaliplatin-induced allodynia. A synergy between different polyphenols in the extract had not been highlighted. Echinacea extracts have therapeutic potential in the treatment of neuropathic pain, through both alkamides CB2-selective activity and polyphenols protective properties.
Asunto(s)
Antineoplásicos , Echinacea , Neuralgia , Oxaliplatino , Calidad de Vida , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Neuralgia/tratamiento farmacológico , Alcamidas Poliinsaturadas/farmacología , Alcamidas Poliinsaturadas/uso terapéuticoRESUMEN
The management of abdominal pain in patients affected by inflammatory bowel diseases (IBDs) still represents a problem because of the lack of effective treatments. Acetyl L-carnitine (ALCAR) has proved useful in the treatment of different types of chronic pain with excellent tolerability. The present work aimed at evaluating the anti-hyperalgesic efficacy of ALCAR in a model of persistent visceral pain associated with colitis induced by 2,4-dinitrobenzene sulfonic acid (DNBS) injection. Two different protocols were applied. In the preventive protocol, ALCAR was administered daily starting 14 days to 24 h before the delivery of DNBS. In the interventive protocol, ALCAR was daily administered starting the same day of DNBS injection, and the treatment was continued for 14 days. In both cases, ALCAR significantly reduced the establishment of visceral hyperalgesia in DNBS-treated animals, though the interventive protocol showed a greater efficacy than the preventive one. The interventive protocol partially reduced colon damage in rats, counteracting enteric glia and spinal astrocyte activation resulting from colitis, as analyzed by immunofluorescence. On the other hand, the preventive protocol effectively protected enteric neurons from the inflammatory insult. These findings suggest the putative usefulness of ALCAR as a food supplement for patients suffering from IBDs.
Asunto(s)
Colitis , Dolor Visceral , Humanos , Ratas , Animales , Acetilcarnitina/farmacología , Acetilcarnitina/uso terapéutico , Dolor Visceral/tratamiento farmacológico , Dolor Visceral/etiología , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/etiología , Colitis/inducido químicamente , Colitis/complicaciones , Colitis/tratamiento farmacológico , Neuroglía , Sistema Nervioso CentralRESUMEN
Furosemide (FUR), an active pharmaceutical ingredient (API) belonging to a group of drugs known as loop diuretics, has widespread use, but, is characterized by a strong instability to light, which causes chemical transformations that could give a yellowing phenomenon and have a significant impact from a health and marketing point of view. Many studies have tried to explain this phenomenon under different experimental conditions, but no detailed explanation of the yellowing phenomenon has been provided. This work, unlike the others, provides an overall view and explanation of the behavior of FUR in relation to the yellowing phenomenon, both in the solution and in solid state, considering several aspects, such as light exposure, presence of oxygen, and moisture effects.
Asunto(s)
Diuréticos , Furosemida , Furosemida/química , Diuréticos/farmacología , Diuréticos/química , Antihipertensivos/farmacología , OxígenoRESUMEN
The distinction between glial painful and protective pathways is unclear and the possibility to finely modulate the system is lacking. Focusing on painful neuropathies, we studied the role of interleukin 1α (IL-1α), an alarmin belonging to the larger family of damage-associated molecular patterns endogenously secreted to restore homeostasis. The treatment of rat primary neurons with increasing doses of the neurotoxic anticancer drug oxaliplatin (0.3-100µM, 48 h) induced the release of IL-1α. The knockdown of the alarmin in neurons leads to their higher mortality when co-cultured with astrocytes. This toxicity was related to increased extracellular ATP and decreased release of transforming growth factor ß1, mostly produced by astrocytes. In a rat model of neuropathy induced by oxaliplatin, the intrathecal treatment with IL-1α was able to reduce mechanical and thermal hypersensitivity both after acute injection (100 ng and 300 ng) and continuous infusion (100 and 300 ng/die-1). Ex vivo analysis on spinal purified astrocyte processes (gliosomes) and nerve terminals (synaptosomes) revealed the property of IL-1α to reduce the endogenous glutamate release induced by oxaliplatin. This protective effect paralleled with an increased number of GFAP-positive cells in the spinal cord, suggesting the ability of IL-1α to evoke a positive, conservative astrocyte phenotype. Endogenous IL-1α induced protective signals in the cross-talk between neurons and astrocytes. Exogenously administered in rats, IL-1α prevented neuropathic pain in the presence of spinal glutamate decrease and astrocyte activation.
Asunto(s)
Antineoplásicos , Neuralgia , Alarminas/efectos adversos , Alarminas/metabolismo , Animales , Antineoplásicos/efectos adversos , Astrocitos/metabolismo , Ácido Glutámico/metabolismo , Hiperalgesia/metabolismo , Interleucina-1alfa/efectos adversos , Interleucina-1alfa/metabolismo , Neuralgia/metabolismo , Neuronas/metabolismo , Oxaliplatino/toxicidad , Ratas , Ratas Sprague-Dawley , Médula Espinal/metabolismoRESUMEN
Conus regius is a marine venomous mollusk of the Conus genus that captures its prey by injecting a rich cocktail of bioactive disulfide bond rich peptides called conotoxins. These peptides selectively target a broad range of ion channels, membrane receptors, transporters, and enzymes, making them valuable pharmacological tools and potential drug leads. C. regius-derived conotoxins are particularly attractive due to their marked potency and selectivity against specific nicotinic acetylcholine receptor subtypes, whose signalling is involved in pain, cognitive disorders, drug addiction, and cancer. However, the species-specific differences in sensitivity and the low stability and bioavailability of these conotoxins limit their clinical development as novel therapeutic agents for these disorders. Here, we give an overview of the main pharmacological features of the C. regius-derived conotoxins described so far, focusing on the molecular mechanisms underlying their potential therapeutic effects. Additionally, we describe adoptable chemical engineering solutions to improve their pharmacological properties for future potential clinical translation.
Asunto(s)
Conotoxinas , Caracol Conus , Receptores Nicotínicos , Animales , Conotoxinas/farmacología , Conotoxinas/química , Organismos Acuáticos , Caracol Conus/química , Péptidos/farmacología , Antagonistas Nicotínicos/farmacologíaRESUMEN
This paper proposes a deep leaning technique for accurate detection and reliable classification of organic pollutants in water. The pollutants are detected by means of cyclic voltammetry characterizations made by using low-cost disposable screen-printed electrodes. The paper demonstrates the possibility of strongly improving the detection of such platforms by modifying them with nanomaterials. The classification is addressed by using a deep learning approach with convolutional neural networks. To this end, the results of the voltammetry analysis are transformed into equivalent RGB images by means of Gramian angular field transformations. The proposed technique is applied to the detection and classification of hydroquinone and benzoquinone, which are particularly challenging since these two pollutants have a similar electroactivity and thus the voltammetry curves exhibit overlapping peaks. The modification of electrodes by carbon nanotubes improves the sensitivity of a factor of about ×25, whereas the convolution neural network after Gramian transformation correctly classifies 100% of the experiments.
Asunto(s)
Aprendizaje Profundo , Contaminantes Ambientales , Nanotubos de Carbono , Hidroquinonas/análisis , Contaminantes Ambientales/análisis , Agua , BenzoquinonasRESUMEN
Neuroinflammation is a key pathological event shared by different diseases affecting the nervous system. Since the underlying mechanism of neuroinflammation is a complex and multifaceted process, current pharmacological treatments are unsatisfactory-a reason why new therapeutic approaches are mandatory. In this context, the endocannabinoid system has proven to possess neuroprotective and immunomodulatory actions under neuroinflammatory status, and its modulation could represent a valuable approach to address different inflammatory processes. To this aim, we evaluated the efficacy of a repeated treatment with NSD1819, a potent ß-lactam-based monoacylglycerol lipase inhibitor in a mouse model of neuroinflammation induced by lipopolysaccharide (LPS) injection. Mice were intraperitoneally injected with LPS 1 mg/kg for five consecutive days to induce systemic inflammation. Concurrently, NSD1819 (3 mg/kg) was daily per os administered from day 1 until the end of the experiment (day 11). Starting from day 8, behavioral measurements were performed to evaluate the effect of the treatment on cognitive impairments, allodynia, motor alterations, anhedonia, and depressive-like behaviors evoked by LPS. Histologically, glial analysis of the spinal cord was also performed. The administration of NSD1819 was able to completely counteract thermal and mechanical allodynia as highlighted by the Cold plate and von Frey tests, respectively, and to reduce motor impairments as demonstrated by the Rota rod test. Moreover, the compound was capable of neutralizing the memory loss in the Passive avoidance test, and reducing depressive-like behavior in the Porsolt test. Finally, LPS stimulation caused a significant glial cells activation in the dorsal horn of the lumbar spinal cord that was significantly recovered by NSD1819 repeated treatment. In conclusion, NSD1819 was able to thwart the plethora of symptoms evoked by LPS, thus representing a promising candidate for future applications in the context of neuroinflammation and related diseases.
Asunto(s)
Endocannabinoides , Monoacilglicerol Lipasas , Animales , Endocannabinoides/farmacología , Hiperalgesia/tratamiento farmacológico , Lipopolisacáridos/toxicidad , Ratones , Enfermedades Neuroinflamatorias , Médula EspinalRESUMEN
Sarcopenia is a gradual and generalized skeletal muscle (SKM) syndrome, characterized by the impairment of muscle components and functionality. Hydrogen sulfide (H2S), endogenously formed within the body from the activity of cystathionine-γ-lyase (CSE), cystathionine- ß-synthase (CBS), and mercaptopyruvate sulfurtransferase, is involved in SKM function. Here, in an in vitro model of sarcopenia based on damage induced by dexamethasone (DEX, 1 µM, 48 h treatment) in C2C12-derived myotubes, we investigated the protective potential of exogenous and endogenous sources of H2S, i.e., glucoraphanin (30 µM), L-cysteine (150 µM), and 3-mercaptopyruvate (150 µM). DEX impaired the H2S signalling in terms of a reduction in CBS and CSE expression and H2S biosynthesis. Glucoraphanin and 3-mercaptopyruvate but not L-cysteine prevented the apoptotic process induced by DEX. In parallel, the H2S-releasing molecules reduced the oxidative unbalance evoked by DEX, reducing catalase activity, O2- levels, and protein carbonylation. Glucoraphanin, 3-mercaptopyruvate, and L-cysteine avoided the changes in myotubes morphology and morphometrics after DEX treatment. In conclusion, in an in vitro model of sarcopenia, an impairment in CBS/CSE/H2S signalling occurs, whereas glucoraphanin, a natural H2S-releasing molecule, appears more effective for preventing the SKM damage. Therefore, glucoraphanin supplementation could be an innovative therapeutic approach in the management of sarcopenia.
Asunto(s)
Sulfuro de Hidrógeno , Sarcopenia , Cistationina , Cistationina betasintasa/metabolismo , Cistationina gamma-Liasa/metabolismo , Cisteína/metabolismo , Glucosinolatos , Humanos , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Oximas , Sarcopenia/tratamiento farmacológico , Sulfóxidos , Sulfurtransferasas/metabolismoRESUMEN
Neuropathy development is a major dose-limiting side effect of anticancer treatments that significantly reduces patient's quality of life. The inadequate pharmacological approaches for neuropathic pain management warrant the identification of novel therapeutic targets. Mitochondrial dysfunctions that lead to reactive oxygen species (ROS) increase, cytosolic Ca2+ imbalance, and lactate acidosis are implicated in neuropathic pain pathogenesis. It has been observed that in these deregulations, a pivotal role is played by the mitochondrial carbonic anhydrases (CA) VA and VB isoforms. Hence, preclinical studies should be conducted to assess the efficacy of two novel selenides bearing benzenesulfonamide moieties, named 5b and 5d, and able to inhibit CA VA and VB against paclitaxel-induced neurotoxicity in mice. Acute treatment with 5b and 5d (30-100 mg/kg, per os - p.o.) determined a dose-dependent and long-lasting anti-hyperalgesic effect in the Cold plate test. Further, repeated daily treatment for 15 days with 100 mg/kg of both compounds (starting the first day of paclitaxel injection) significantly prevented neuropathic pain development without the onset of tolerance to the anti-hyperalgesic effect. In both experiments, acetazolamide (AAZ, 100 mg/kg, p.o.) used as the reference drug was partially active. Moreover, ex vivo analysis demonstrated the efficacy of 5b and 5d repeated treatments in reducing the maladaptive plasticity that occurs to glia cells in the lumbar portion of the spinal cord and in improving mitochondrial functions in the brain and spinal cord that were strongly impaired by paclitaxel-repeated treatment. In this regard, 5b and 5d ameliorated the metabolic activity, as observed by the increase in citrate synthase activity, and preserved an optimal mitochondrial membrane potential (ΔΨ) value, which appeared depolarized in brains from paclitaxel-treated animals. In conclusion, 5b and 5d have therapeutic and protective effects against paclitaxel-induced neuropathy without tolerance development. Moreover, 5b and 5d reduced glial cell activation and mitochondrial dysfunction in the central nervous system, being a promising candidate for the management of neuropathic pain and neurotoxicity evoked by chemotherapeutic drugs.
Asunto(s)
Anhidrasas Carbónicas , Neuralgia , Animales , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/uso terapéutico , Anhidrasas Carbónicas/metabolismo , Humanos , Hiperalgesia , Ratones , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Paclitaxel/efectos adversos , Calidad de VidaRESUMEN
The dentate gyrus of the hippocampus is one of two brain areas generating throughout life new neurons, which contribute to the formation of episodic/associative memories. During aging, the production of new neurons decreases and a cognitive decline occurs. Dietary factors influence neuronal function and synaptic plasticity; among them the phenolic compound hydroxytyrosol (HTyr), present in olive oil, displays neuroprotective effects. As age impacts primarily on the hippocampus-dependent cognitive processes, we wondered whether HTyr could stimulate hippocampal neurogenesis in vivo in adult and aged wild-type mice as well as in the B-cell translocation 1 gene (Btg1) knockout mouse model of accelerated neural aging. We found that treatment with HTyr activates neurogenesis in the dentate gyrus of adult, aged, and Btg1-null mice, by increasing survival of new neurons and decreasing apoptosis. Notably, however, in the aged and Btg1-null dentate gyrus, HTyr treatment also stimulates the proliferation of stem and progenitor cells, whereas in the adult dentate gyrus HTyr lacks any proliferative effect. Moreover, the new neurons generated in aged mice after HTyr treatment are recruited to existing circuits, as shown by the increase of BrdU+ /c-fos+ neurons. Finally, HTyr treatment also reduces the markers of aging lipofuscin and Iba1. Overall, our findings indicate that HTyr treatment counteracts neurogenesis decline during aging.
Asunto(s)
Giro Dentado/citología , Células-Madre Neurales/citología , Células-Madre Neurales/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Alcohol Feniletílico/análogos & derivados , Animales , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Técnicas de Genotipaje , Hipocampo/citología , Inmunohistoquímica , Masculino , Ratones , Ratones Noqueados , Plasticidad Neuronal/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos , Alcohol Feniletílico/farmacología , Proteínas Proto-Oncogénicas c-fos/metabolismoRESUMEN
In this paper we propose an original approach for the real-time detection of industrial organic pollutants in water. It is based on the monitoring of the time evolution of the electrical impedance of low-cost graphitic nanomembranes. The developed approach exploits the high sensitivity of the impedance of 2D graphene-related materials to the adsorbents. We examined sensitivity of the nanomembranes based on pyrolyzed photoresist, pyrolytic carbon (PyC), and multilayer graphene films. In order to realize a prototype of a sensor capable of monitoring the pollutants in water, the membranes were integrated into an ad hoc printed circuit board. We demonstrated the correlation between the sensitivity of the electric impedance to adsorbents and the structure of the nanomembranes, and revealed that the amorphous PyC, being most homogeneous and adhesive to the SiO2substrate, is the most promising in terms of integration into industrial pollutants sensors.
RESUMEN
Posidonia oceanica (L.) Delile is traditionally used for its beneficial properties. Recently, promising antioxidant and anti-inflammatory biological properties emerged through studying the in vitro activity of the ethanolic leaves extract (POE). The present study aims to investigate the anti-inflammatory and analgesic role of POE in mice. Inflammatory pain was modeled in CD-1 mice by the intraplantar injection of carrageenan, interleukin IL-1ß and formalin. Pain threshold was measured by von Frey and paw pressure tests. Nociceptive pain was studied by the hot-plate test. POE (10-100 mg kg-1) was administered per os. The paw soft tissue of carrageenan-treated animals was analyzed to measure anti-inflammatory and antioxidant effects. POE exerted a dose-dependent, acute anti-inflammatory effect able to counteract carrageenan-induced pain and paw oedema. Similar anti-hyperalgesic and anti-allodynic results were obtained when inflammation was induced by IL-1ß. In the formalin test, the pre-treatment with POE significantly reduced the nocifensive behavior. Moreover, POE was able to evoke an analgesic effect in naïve animals. Ex vivo, POE reduced the myeloperoxidase activity as well as TNF-α and IL-1ß levels; further antioxidant properties were highlighted as a reduction in NO concentration. POE is the candidate for a new valid strategy against inflammation and pain.