Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Rep ; 43(8): 114607, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39126652

RESUMEN

Macrophage metabolic plasticity is central to inflammatory programming, yet mechanisms of coordinating metabolic and inflammatory programs during infection are poorly defined. Here, we show that type I interferon (IFN) temporally guides metabolic control of inflammation during methicillin-resistant Staphylococcus aureus (MRSA) infection. We find that staggered Toll-like receptor and type I IFN signaling in macrophages permit a transient energetic state of combined oxidative phosphorylation (OXPHOS) and aerobic glycolysis followed by inducible nitric oxide synthase (iNOS)-mediated OXPHOS disruption. This disruption promotes type I IFN, suppressing other pro-inflammatory cytokines, notably interleukin-1ß. Upon infection, iNOS expression peaks at 24 h, followed by lactate-driven Nos2 repression via histone lactylation. Type I IFN pre-conditioning prolongs infection-induced iNOS expression, amplifying type I IFN. Cutaneous MRSA infection in mice constitutively expressing epidermal type I IFN results in elevated iNOS levels, impaired wound healing, vasculopathy, and lung infection. Thus, kinetically regulated type I IFN signaling coordinates immunometabolic checkpoints that control infection-induced inflammation.


Asunto(s)
Inflamación , Interferón Tipo I , Macrófagos , Staphylococcus aureus Resistente a Meticilina , Óxido Nítrico Sintasa de Tipo II , Transducción de Señal , Infecciones Estafilocócicas , Animales , Interferón Tipo I/metabolismo , Inflamación/patología , Inflamación/metabolismo , Ratones , Óxido Nítrico Sintasa de Tipo II/metabolismo , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/patología , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos/microbiología , Ratones Endogámicos C57BL , Fosforilación Oxidativa , Glucólisis , Interleucina-1beta/metabolismo
2.
bioRxiv ; 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37873171

RESUMEN

Infection by intracellular pathogens can trigger activation of the IRE1α branch of the unfolded protein response (UPR), which then modulates innate immunity and infection outcomes during bacterial or viral infection. However, the mechanisms by which infection activates IRE1α have not been fully elucidated. While recognition of microbe-associated molecular patterns can activate IRE1α, it is unclear whether this depends on the canonical role of IRE1α in detecting misfolded proteins. Here, we report that Candida albicans infection of macrophages results in IRE1α activation through C-type lectin receptor signaling, reinforcing a role for IRE1α as a central regulator of host responses to infection by a broad range of pathogens. However, IRE1α activation was not preceded by protein misfolding in response to either C. albicans infection or lipopolysaccharide treatment, implicating a non-canonical mode of IRE1α activation after recognition of microbial patterns. Investigation of the phenotypic consequences of IRE1α activation in macrophage antimicrobial responses revealed that IRE1α activity enhances the fungicidal activity of macrophages. Macrophages lacking IRE1α activity displayed inefficient phagolysosomal fusion, enabling C. albicans to evade fungal killing and escape the phagosome. Together, these data provide mechanistic insight for the non-canonical activation of IRE1α during infection, and reveal central roles for IRE1α in macrophage antifungal responses.

3.
Sci Adv ; 9(5): eade8701, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36735777

RESUMEN

Macrophage metabolic plasticity enables repurposing of electron transport from energy generation to inflammation and host defense. Altered respiratory complex II function has been implicated in cancer, diabetes, and inflammation, but regulatory mechanisms are incompletely understood. Here, we show that macrophage inflammatory activation triggers Complex II disassembly and succinate dehydrogenase subunit B loss through sequestration and selective mitophagy. Mitochondrial fission supported lipopolysaccharide-stimulated succinate dehydrogenase subunit B degradation but not sequestration. We hypothesized that this Complex II regulatory mechanism might be coordinated by the mitochondrial phospholipid cardiolipin. Cardiolipin synthase knockdown prevented lipopolysaccharide-induced metabolic remodeling and Complex II disassembly, sequestration, and degradation. Cardiolipin-depleted macrophages were defective in lipopolysaccharide-induced pro-inflammatory cytokine production, a phenotype partially rescued by Complex II inhibition. Thus, cardiolipin acts as a critical organizer of inflammatory metabolic remodeling.


Asunto(s)
Cardiolipinas , Succinato Deshidrogenasa , Humanos , Succinato Deshidrogenasa/metabolismo , Cardiolipinas/metabolismo , Lipopolisacáridos/farmacología , Mitocondrias/metabolismo , Inflamación/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA