Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 134(17): 7246-9, 2012 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-22506807

RESUMEN

Enantioselective epoxidation followed by regioselective epoxide opening reaction are the key processes in construction of the polyether skeleton. Recent genetic analysis of ionophore polyether biosynthetic gene clusters suggested that flavin-containing monooxygenases (FMOs) could be involved in the oxidation steps. In vivo and in vitro analyses of Lsd18, an FMO involved in the biosynthesis of polyether lasalocid, using simple olefin or truncated diene of a putative substrate as substrate mimics demonstrated that enantioselective epoxidation affords natural type mono- or bis-epoxide in a stepwise manner. These findings allow us to figure out enzymatic polyether construction in lasalocid biosynthesis.


Asunto(s)
Antibacterianos/metabolismo , Compuestos Epoxi/metabolismo , Lasalocido/metabolismo , Oxigenasas/metabolismo , Rhodococcus/enzimología , Antibacterianos/química , Clonación Molecular , Compuestos Epoxi/química , Éteres/química , Éteres/metabolismo , Lasalocido/química , Oxigenasas/genética , Rhodococcus/genética , Rhodococcus/metabolismo
2.
Biosci Biotechnol Biochem ; 73(1): 169-76, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19129623

RESUMEN

Elucidation of enzymatic polyether formation is a long-standing controversial issue in organic chemistry. To address this intriguing issue, identifying the actual substrate for epoxidation and sequential cyclization is essential. We selected the representative polyether ionophore, lasalocid, which has been proposed to undergo no modification at the late stage of biosynthesis. Cloning and a sequence analysis revealed seven polyketide synthase (PKS) genes, epoxidase and epoxide hydrolase genes for sequential ether formation, and several putative genes for supplying ethylmalonyl-CoA. Based on bioinformatic data, we propose the lasalocid biosynthetic pathway which involves characteristic aromatic ring formation and sequential cyclic ether formation. The finding of a thioesterase domain at the C-terminal of the seventh PKS indicates that intriguing oxidative cascade cyclization would occur after cleavage of the polyketide intermediate from PKS. Based on this observation, we have recently reported the enzymatic transformation of a bisepoxide intermediate to lasalocid with the recombinant epoxide hydrolase, Lsd19.


Asunto(s)
Lasalocido/biosíntesis , Redes y Vías Metabólicas/genética , Familia de Multigenes , Streptomyces/genética , Antibacterianos/biosíntesis , Clonación Molecular , Ciclización , Compuestos Epoxi , Sintasas Poliquetidas/genética
3.
J Am Chem Soc ; 130(37): 12230-1, 2008 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-18710235

RESUMEN

Polyether metabolites are an important class of natural products. Although their biosynthesis, especially construction of polyether skeletons, attracted organic chemists for many years, no experimental data on the enzymatic polyether formation has been obtained. In this study, a putative epoxide hydrolase gene lsd19 found on the biosynthetic gene cluster of an ionophore polyether lasalocid was cloned and successfully overexpressed in Escherichia coli. Using the purified Lsd19, a proposed substrate, bisepoxyprelasalocid, and its synthesized analogue were successfully converted into lasalocid A and its derivative via a 6-endo-tet cyclization mode. On the other hand, treatment of the bisepoxide with trichloroacetic acid gave isolasalocid A via a 5-exo-tet cyclization mode. Therefore, the enzymatic conversion observed in this study unambiguously showed that the bisepoxyprelasalocid is an intermediate of the lasalocid biosynthesis and that Lsd19 catalyzes the sequential cyclic ether formations involving an energetically disfavored 6-endo-tet cyclization. This is the first example of the enzymatic epoxide-opening reactions leading to a polyether natural product.


Asunto(s)
Epóxido Hidrolasas/metabolismo , Lasalocido/biosíntesis , Antibacterianos/biosíntesis , Clonación Molecular , Ciclización , Epóxido Hidrolasas/biosíntesis , Epóxido Hidrolasas/genética , Compuestos Epoxi/síntesis química , Compuestos Epoxi/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Éteres/síntesis química , Éteres/metabolismo , Ionóforos/metabolismo , Polímeros/síntesis química , Streptomyces/enzimología , Streptomyces/genética , Streptomyces/metabolismo
4.
Org Lett ; 13(7): 1638-41, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21375229

RESUMEN

Our recent findings of the first epoxide hydrolase Lsd19, involved in lasalocid A biosynthesis, led us to investigate a long-standing controversial issue on the mechanism of enzymatic epoxide-opening cascades. The site-directed mutagenesis and domain dissection analysis to reveal the mechanism of the reaction catalyzed by Lsd19 is examined, especially in the role of acidic amino acid pair and catalytic domains.


Asunto(s)
Biocatálisis , Epóxido Hidrolasas/metabolismo , Compuestos Epoxi/química , Éteres/química , Ionóforos/química , Compuestos Epoxi/metabolismo , Éteres/metabolismo , Estructura Molecular
5.
Org Lett ; 12(10): 2226-9, 2010 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-20394359

RESUMEN

Recently, we reported that the epoxide hydrolase Lsd19, the first enzyme shown to catalyze epoxide-opening cascades, can catalyze the conversion of a putative bisepoxide intermediate to polyether antibiotic lasalocid, which involves energetically disfavored 6-endo-tet cyclization of the epoxy alcohol. Here, we examined the substrate tolerance of Lsd19. Lsd19 accepts various substrate analogues differing in the left segment of lasalocid and epoxide stereochemistry to afford either THF-THP or THF-THF products with excellent regioselectivity.


Asunto(s)
Antibacterianos/biosíntesis , Epóxido Hidrolasas/metabolismo , Lasalocido/biosíntesis , Antibacterianos/química , Biocatálisis , Ciclización , Epóxido Hidrolasas/química , Lasalocido/química , Conformación Molecular , Estereoisomerismo
6.
Nat Chem Biol ; 2(8): 423-8, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16799553

RESUMEN

Nonribosomal peptides (NRPs) are a class of microbial secondary metabolites that have a wide variety of medicinally important biological activities, such as antibiotic (vancomycin), immunosuppressive (cyclosporin A), antiviral (luzopeptin A) and antitumor (echinomycin and triostin A) activities. However, many microbes are not amenable to cultivation and require time-consuming empirical optimization of incubation conditions for mass production of desired secondary metabolites for clinical and commercial use. Therefore, a fast, simple system for heterologous production of natural products is much desired. Here we show the first example of the de novo total biosynthesis of biologically active forms of heterologous NRPs in Escherichia coli. Our system can serve not only as an effective and flexible platform for large-scale preparation of natural products from simple carbon and nitrogen sources, but also as a general tool for detailed characterizations and rapid engineering of biosynthetic pathways for microbial syntheses of novel compounds and their analogs.


Asunto(s)
Antineoplásicos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Biosíntesis de Péptidos , Péptidos Cíclicos/biosíntesis , Antineoplásicos/química , Biotecnología/métodos , Proteínas de la Matriz Extracelular/biosíntesis , Proteínas de la Matriz Extracelular/genética , Ingeniería Genética/métodos , Datos de Secuencia Molecular , Estructura Molecular , Péptidos Cíclicos/química , Streptomyces/genética , Streptomyces/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA