Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 703: 149601, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38364680

RESUMEN

Thaumatin is a sweet-tasting protein that elicits a sweet taste at a threshold of approximately 50 nM. Structure-sweetness relationships in thaumatin suggest that the basicity of two amino acids residues, Arg82 and Lys67, are particularly responsible for sweetness. Using tetragonal crystals, our structural analysis suggested that flexible sidechain conformations of these two residues play an important role in sweetness. However, in tetragonal crystals, Arg82 is adjacent to symmetry-related residues, and its flexibility is relatively restrained by the crystal packing. To reduce and diminish these symmetry-related effects, orthorhombic crystals were prepared, and their structures were successfully determined at a resolution of 0.89 Å. Within the orthorhombic lattice, two alternative conformations were more clearly visible at Lys67 than in a tetragonal system. Interestingly, for the first time, three alternative conformations at Arg82 were only found in an orthorhombic system. These results suggest the importance of flexible conformations in sweetness determinants. Such subtle structural variations might serve to adjust the complementarity of the electrostatic potentials of sweet receptors, thereby eliciting the potent sweet taste of thaumatin.


Asunto(s)
Aditivos Alimentarios , Proteínas de Plantas , Proteínas de Plantas/metabolismo , Conformación Proteica , Edulcorantes , Gusto
2.
J Exp Bot ; 75(6): 1671-1695, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38198655

RESUMEN

Lignin, flavonoids, melatonin, and stilbenes are plant specialized metabolites with diverse physiological and biological functions, supporting plant growth and conferring stress resistance. Their biosynthesis requires O-methylations catalyzed by 5-hydroxyconiferaldehyde O-methyltransferase (CAldOMT; also called caffeic acid O-methyltransferase, COMT). CAldOMT was first known for its roles in syringyl (S) lignin biosynthesis in angiosperm cell walls and later found to be multifunctional. This enzyme also catalyzes O-methylations in flavonoid, melatonin, and stilbene biosynthetic pathways. Phylogenetic analysis indicated the convergent evolution of enzymes with OMT activities towards the monolignol biosynthetic pathway intermediates in some gymnosperm species that lack S-lignin and Selaginella moellendorffii, a lycophyte which produces S-lignin. Furthermore, neofunctionalization of CAldOMTs occurred repeatedly during evolution, generating unique O-methyltransferases (OMTs) with novel catalytic activities and/or accepting novel substrates, including lignans, 1,2,3-trihydroxybenzene, and phenylpropenes. This review summarizes multiple aspects of CAldOMTs and their related proteins in plant metabolism and discusses their evolution, molecular mechanism, and roles in biorefineries, agriculture, and synthetic biology.


Asunto(s)
Melatonina , Estilbenos , Lignina , Filogenia , Metiltransferasas/genética , Metabolismo Secundario , Flavonoides , Proteínas de Plantas/genética
3.
Protein Expr Purif ; 219: 106487, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38657915

RESUMEN

The bacterial Efe system functions as an importer of free Fe2+ into cells independently of iron-chelating compounds such as siderophores and consisted of iron-binding protein EfeO, peroxidase EfeB, and transmembrane permease EfeU. While we and other researchers reported crystal structures of EfeO and EfeB, that of EfeU remains undetermined. In this study, we constructed expression system of EfeU derived from Escherichia coli, selected E. coli Rosetta-gami 2 (DE3) as an expression host, and succeeded in purification of the proteins which were indicated to form an oligomer by blue native PAGE. We obtained preliminary data of the X-ray crystallography, suggesting that expression and purification methods we established in this study enable structural analysis of the bacterial Efe system.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Hierro , Escherichia coli/genética , Escherichia coli/metabolismo , Cristalografía por Rayos X , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/aislamiento & purificación , Hierro/metabolismo , Hierro/química , Expresión Génica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas de Unión a Hierro/química , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/aislamiento & purificación , Proteínas de Unión a Hierro/metabolismo
4.
J Biol Chem ; 298(7): 102100, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35667438

RESUMEN

Rhesus monkeys have evolved MHC-encoded class I allomorphs such as Mamu-B∗098 that are capable of binding N-myristoylated short lipopeptides rather than conventional long peptides; however, it remains unknown whether such antigen-binding molecules exist in other species, including humans. We herein demonstrate that human leukocyte antigen (HLA)-A∗24:02 and HLA-C∗14:02 proteins, which are known to bind conventional long peptides, also have the potential to bind N-myristoylated short lipopeptides. These HLA class I molecules shared a serine at position 9 (Ser9) with Mamu-B∗098, in contrast to most MHC class I molecules that harbor a larger amino acid residue, such as tyrosine, at this position. High resolution X-ray crystallographic analyses of lipopeptide-bound HLA-A∗24:02 and HLA-C∗14:02 complexes indicated that Ser9 was at the bottom of the B pocket with its small hydroxymethyl side chain directed away from the B-pocket cavity, thereby contributing to the formation of a deep hydrophobic cavity suitable for accommodating the long-chain fatty acid moiety of lipopeptide ligands. Upon peptide binding, however, we found the hydrogen-bond network involving Ser9 was reorganized, and the remodeled B pocket was able to capture the second amino acid residue (P2) of peptide ligands. Apart from the B pocket, virtually no marked alterations were observed for the A and F pockets upon peptide and lipopeptide binding. Thus, we concluded that the structural flexibility of the large B pocket of HLA-A∗2402 and HLA-C∗1402 primarily accounted for their previously unrecognized capacity to bind such chemically distinct ligands as conventional peptides and N-myristoylated lipopeptides.


Asunto(s)
Antígeno HLA-A24 , Antígenos HLA-C , Lipopéptidos , Aminoácidos/química , Antígeno HLA-A24/química , Antígenos HLA-C/química , Antígenos de Histocompatibilidad Clase I/química , Humanos , Ligandos , Unión Proteica
5.
J Biol Chem ; 298(8): 102109, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35679897

RESUMEN

Collagenase from the gram-negative bacterium Grimontia hollisae strain 1706B (Ghcol) degrades collagen more efficiently even than clostridial collagenase, the most widely used industrial collagenase. However, the structural determinants facilitating this efficiency are unclear. Here, we report the crystal structures of ligand-free and Gly-Pro-hydroxyproline (Hyp)-complexed Ghcol at 2.2 and 2.4 Å resolution, respectively. These structures revealed that the activator and peptidase domains in Ghcol form a saddle-shaped structure with one zinc ion and four calcium ions. In addition, the activator domain comprises two homologous subdomains, whereas zinc-bound water was observed in the ligand-free Ghcol. In the ligand-complexed Ghcol, we found two Gly-Pro-Hyp molecules, each bind at the active site and at two surfaces on the duplicate subdomains of the activator domain facing the active site, and the nucleophilic water is replaced by the carboxyl oxygen of Hyp at the P1 position. Furthermore, all Gly-Pro-Hyp molecules bound to Ghcol have almost the same conformation as Pro-Pro-Gly motif in model collagen (Pro-Pro-Gly)10, suggesting these three sites contribute to the unwinding of the collagen triple helix. A comparison of activities revealed that Ghcol exhibits broader substrate specificity than clostridial collagenase at the P2 and P2' positions, which may be attributed to the larger space available for substrate binding at the S2 and S2' sites in Ghcol. Analysis of variants of three active-site Tyr residues revealed that mutation of Tyr564 affected catalysis, whereas mutation of Tyr476 or Tyr555 affected substrate recognition. These results provide insights into the substrate specificity and mechanism of G. hollisae collagenase.


Asunto(s)
Proteínas Bacterianas , Colágeno , Colagenasas , Vibrionaceae , Proteínas Bacterianas/química , Colágeno/química , Colagenasas/química , Hidroxiprolina/química , Especificidad por Sustrato , Vibrionaceae/enzimología , Agua/química , Zinc/química
6.
Plant Cell Physiol ; 64(12): 1436-1448, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37948767

RESUMEN

Tetrahydrofuran ring formation from dibenzylbutyrolactone lignans is a key step in the biosynthesis of aryltetralin lignans including deoxypodophyllotoxin and podophyllotoxin. Previously, Fe(II)- and 2-oxoglutarate-dependent dioxygenase (2-ODD) from Podophyllum hexandrum (Himalayan mayapple, Berberidaceae) was found to catalyze the cyclization of a dibenzylbutyrolactone lignan, yatein, to give deoxypodophyllotoxin and designated as deoxypodophyllotoxin synthase (DPS). Recently, we reported that the biosynthesis of deoxypodophyllotoxin and podophyllotoxin evolved in a lineage-specific manner in phylogenetically unrelated plant species such as P. hexandrum and Anthriscus sylvestris (cow parsley, Apiaceae). Therefore, a comprehensive understanding of the characteristics of DPSs that catalyze the cyclization of yatein to deoxypodophyllotoxin in various plant species is important. However, for plant species other than P. hexandrum, the isolation of the DPS enzyme gene and the type of the enzyme, e.g. whether it is 2-ODD or another type of enzyme such as cytochrome P-450, have not been reported. In this study, we report the identification and characterization of A. sylvestris DPS (AsDPS). Phylogenetic analysis showed that AsDPS belonged to the 2-ODD superfamily and shared moderate amino acid sequence identity (40.8%) with P. hexandrum deoxypodophyllotoxin synthase (PhDPS). Recombinant protein assay indicated that AsDPS and PhDPS differ in terms of the selectivity of substrate enantiomers. Protein modeling using AlphaFold2 and site-directed mutagenesis indicated that the Tyr305 residue of AsDPS probably contributes to substrate recognition. This study advances our understanding of the podophyllotoxin biosynthetic pathway in A. sylvestris and provides new insight into 2-ODD involved in plant secondary (specialized) metabolism.


Asunto(s)
Apiaceae , Lignanos , Podofilotoxina/química , Filogenia , Lignanos/metabolismo , Apiaceae/química , Apiaceae/metabolismo
7.
Biochem Biophys Res Commun ; 594: 124-130, 2022 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-35081501

RESUMEN

EfeUOB is a siderophore-independent iron uptake mechanism in bacteria. EfeU, EfeO, and EfeB are a permease, an iron-binding or electron-transfer protein, and a peroxidase, respectively. A Gram-negative bacterium, Sphingomonas sp. strain A1, encodes EfeU, EfeO, EfeB together with alginate-binding protein Algp7, a truncated EfeO-like protein (EfeOII), in the genome. The typical EfeO (EfeOI) consists of N-terminal cupredoxin and C-terminal M75 peptidase domains. Here, we detail the structure and function of bacterial EfeB and EfeO. Crystal structures of strain A1 EfeB and Escherichia coli EfeOI were determined at 2.30 Å and 1.85 Å resolutions, respectively. A molecule of heme involved in oxidase activity was bound to the C-terminal Dyp peroxidase domain of EfeB. Two domains of EfeOI were connected by a short loop, and a zinc ion was bound to four residues, Glu156, Glu159, Asp173, and Glu255, in the C-terminal M75 peptidase domain. These residues formed tetrahedron geometry suitable for metal binding and are well conserved among various EfeO proteins including Algp7 (EfeOII), although the metal-binding site (HxxE) is proposed in the C-terminal M75 peptidase domain. This is the first report on structure of a typical EfeO with two domains, postulating a novel metal-binding motif "ExxE-//-D-//-E" in the EfeO C-terminal M75 peptidase domain.


Asunto(s)
Proteínas de Transporte de Catión/química , Proteínas de Escherichia coli/química , Hemo/química , Hierro/química , Secuencias de Aminoácidos , Azurina/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Transporte Biológico , Cristalografía por Rayos X , Proteínas de Escherichia coli/metabolismo , Metales/química , Conformación Molecular , Oxidorreductasas/química , Unión Proteica , Conformación Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Sphingomonas/metabolismo
8.
J Biol Chem ; 295(20): 6983-6991, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32269076

RESUMEN

Newly synthesized major histocompatibility complex (MHC) class I proteins are stabilized in the endoplasmic reticulum (ER) by binding 8-10-mer-long self-peptide antigens that are provided by transporter associated with antigen processing (TAP). These MHC class I:peptide complexes then exit the ER and reach the plasma membrane, serving to sustain the steady-state MHC class I expression on the cell surface. A novel subset of MHC class I molecules that preferentially bind lipid-containing ligands rather than conventional peptides was recently identified. The primate classical MHC class I allomorphs, Mamu-B*098 and Mamu-B*05104, are capable of binding the N-myristoylated 5-mer (C14-Gly-Gly-Ala-Ile-Ser) or 4-mer (C14-Gly-Gly-Ala-Ile) lipopeptides derived from the N-myristoylated SIV Nef protein, respectively, and of activating lipopeptide antigen-specific cytotoxic T lymphocytes. We herein demonstrate that Mamu-B*098 samples lysophosphatidylethanolamine and lysophosphatidylcholine containing up to a C20 fatty acid in the ER. The X-ray crystal structures of Mamu-B*098 and Mamu-B*05104 complexed with lysophospholipids at high resolution revealed that the B and D pockets in the antigen-binding grooves of these MHC class I molecules accommodate these lipids through a monoacylglycerol moiety. Consistent with the capacity to bind cellular lipid ligands, these two MHC class I molecules did not require TAP function for cell-surface expression. Collectively, these results indicate that peptide- and lipopeptide-presenting MHC class I subsets use distinct sources of endogenous ligands.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/química , Lisofosfolípidos/química , Animales , Sitios de Unión , Cristalografía por Rayos X , Antígenos de Histocompatibilidad Clase I/inmunología , Lipoilación/inmunología , Lisofosfolípidos/inmunología , Macaca mulatta , Péptidos/química , Péptidos/inmunología , Estructura Cuaternaria de Proteína , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/química , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/inmunología
9.
Int Immunol ; 32(12): 805-810, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-32720986

RESUMEN

The covalent conjugation of a 14-carbon fatty acid (myristic acid) to the N-terminal Gly residue, termed N-myristoylation, occurs in some viral proteins to dictate their pathological function. This protein lipidation reaction, however, is monitored by host cytotoxic T lymphocytes that are capable of recognizing N-terminal lipopeptide fragments in the context of major histocompatibility complex (MHC) class I molecules. In a rhesus model of human AIDS, for example, the classical MHC class I allomorph, Mamu-B*05104, was shown to bind SIV Nef-derived 4-mer lipopeptides (myristic acid-Gly-Gly-Ala-Ile; C14nef4) and present them to the CD8+ T-cell line, SN45. These lipopeptides accommodated in MHC class I molecules expose much shorter peptide chains than conventional MHC class I-presented 8-10-mer peptides, and the molecular mechanisms by which αß T-cell receptors (TCRs) recognize lipopeptides currently remain unclear. An X-ray crystallographic analysis of the SN45 TCR α and ß heterodimer in a form that was co-crystallized with the C14nef4-bound Mamu-B*05104 complex indicated that the amide group of the N-myristoylated glycine residue offered a primary T-cell epitope by establishing a sole hydrogen bond between its nitrogen atom and the side chain of Glu at position 101 of CDR3ß. Accordingly, the Glu to Ala mutation at this position resulted in the loss of lipopeptide recognition. On the other hand, TCRs were positioned remotely from the peptide portion of C14nef4, and strong interactions were not observed. Thus, these observations provide novel structural insights into lipopeptide recognition by TCRs, which contrast sharply with the general molecular principle of peptide recognition.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/química , Lipopéptidos/química , Receptores de Antígenos de Linfocitos T/química , Cristalografía por Rayos X , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Lipopéptidos/inmunología , Modelos Moleculares , Conformación Proteica , Receptores de Antígenos de Linfocitos T/inmunología
10.
J Immunol ; 202(12): 3349-3358, 2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-31043477

RESUMEN

Similar to host proteins, N-myristoylation occurs for viral proteins to dictate their pathological function. However, this lipid-modifying reaction creates a novel class of "lipopeptide" Ags targeted by host CTLs. The primate MHC class I-encoded protein, Mamu-B*098, was previously shown to bind N-myristoylated 5-mer peptides. Nevertheless, T cells exist that recognize even shorter lipopeptides, and much remains to be elucidated concerning the molecular mechanisms of lipopeptide presentation. We, in this study, demonstrate that the MHC class I allele, Mamu-B*05104, binds the N-myristoylated 4-mer peptide (C14-Gly-Gly-Ala-Ile) derived from the viral Nef protein for its presentation to CTLs. A phylogenetic tree analysis indicates that these classical MHC class I alleles are not closely associated; however, the high-resolution x-ray crystallographic analyses indicate that both molecules share lipid-binding structures defined by the exceptionally large, hydrophobic B pocket to accommodate the acylated glycine (G1) as an anchor. The C-terminal isoleucine (I4) of C14-Gly-Gly-Ala-Ile anchors at the F pocket, which is distinct from that of Mamu-B*098 and is virtually identical to that of the peptide-presenting MHC class I molecule, HLA-B51. The two central amino acid residues (G2 and A3) are only exposed externally for recognition by T cells, and the methyl side chain on A3 constitutes a major T cell epitope, underscoring that the epitopic diversity is highly limited for lipopeptides as compared with that for MHC class I-presented long peptides. These structural features suggest that lipopeptide-presenting MHC class I alleles comprise a distinct MHC class I subset that mediates an alternative pathway for CTL activation.


Asunto(s)
Autoantígenos/metabolismo , Epítopos de Linfocito T/metabolismo , Productos del Gen nef/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Lipopéptidos/metabolismo , Péptidos/metabolismo , Linfocitos T Citotóxicos/inmunología , Animales , Presentación de Antígeno , Autoantígenos/química , Autoantígenos/inmunología , Cristalografía por Rayos X , Epítopos de Linfocito T/inmunología , Productos del Gen nef/química , Productos del Gen nef/inmunología , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Lipopéptidos/química , Lipopéptidos/inmunología , Activación de Linfocitos , Ácido Mirístico/química , Péptidos/química , Péptidos/inmunología , Filogenia , Primates
11.
Biosci Biotechnol Biochem ; 85(12): 2410-2419, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34610097

RESUMEN

Gram-negative Sphingomonas sp. A1 incorporates acidic polysaccharide alginate into the cytoplasm via a cell-surface alginate-binding protein (AlgQ2)-dependent ATP-binding cassette transporter (AlgM1M2SS). We investigated the function of calcium bound to the EF-hand-like motif in AlgQ2 by introducing mutations at the calcium-binding site. The X-ray crystallography of the AlgQ2 mutant (D179A/E180A) demonstrated the absence of calcium binding and significant disorder of the EF-hand-like motif. Distinct from the wild-type AlgQ2, the mutant was quite unstable at temperature of strain A1 growth, although unsaturated alginate oligosaccharides stabilized the mutant by formation of substrate/protein complex. In the assay of ATPase and alginate transport by AlgM1M2SS reconstructed in the liposome, the wild-type and mutant AlgQ2 induced AlgM1M2SS ATPase activity in the presence of unsaturated alginate tetrasaccharide. These results indicate that the calcium bound to EF-hand-like motif stabilizes the substrate-unbound AlgQ2 but is not required for the complexation of substrate-bound AlgQ2 and AlgM1M2SS.


Asunto(s)
Proteínas Bacterianas
12.
Biosci Biotechnol Biochem ; 85(2): 386-390, 2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33604642

RESUMEN

The mechanism of thermostabilization of GH10 xylanase, XynR, from Bacillus sp. strain TAR-1 by the mutation of S92 to E was investigated. Thermodynamic analysis revealed that thermostabilization was driven by the decrease in entropy change of activation for thermal inactivation. Crystallographic analysis suggested that this mutation suppressed the fluctuation of the amino acid residues at position 92-95.


Asunto(s)
Bacillus/enzimología , Endo-1,4-beta Xilanasas/genética , Endo-1,4-beta Xilanasas/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación , Temperatura , Endo-1,4-beta Xilanasas/química , Estabilidad de Enzimas , Modelos Moleculares , Proteínas Mutantes/química , Conformación Proteica
13.
Arch Biochem Biophys ; 688: 108370, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32380017

RESUMEN

Hemocyanin (Hc) and phenoloxidase (PO) are members of the type 3 copper protein family. Although arthropod Hc and PO exhibit similar three-dimensional structures of the copper-containing active site, Hc functions as an oxygen transport protein, showing minimal or no phenoloxidase activity. Here, we present the crystal structure of the oxy form of Hc from Panulirus japonicus (PjHc) at 1.58 Å resolution. The structure of the di-copper active site of PjHc was found to be almost identical to that of PO. Although conserved amino acids and the water molecule crucial for the enzymatic activity were observed in PjHc at almost the same positions as those in PO, PjHc showed no enzymatic activity under our experimental conditions. One striking difference between PjHc and arthropod PO was the presence of a "blocker residue" near the binuclear copper site of PjHc. This blocker residue comprised a phenylalanine residue tightly stacked with an imidazole ring of a CuA coordinated histidine and hindered substrates from accessing the active site. Our results suggest that the blocker residue is also a determining factor of the catalytic activity of type 3 copper proteins.


Asunto(s)
Hemocianinas/química , Monofenol Monooxigenasa/química , Secuencia de Aminoácidos , Animales , Artrópodos/enzimología , Bacillus megaterium/enzimología , Dominio Catalítico , Cobre/química , Cristalografía por Rayos X , Alineación de Secuencia
15.
Biochem Biophys Res Commun ; 510(1): 177-183, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30683313

RESUMEN

Ceriporiopsis subvermispora (C. subvermispora), one of the white-rot fungi, is known as a selective lignin degrader of the woody biomass. Glutathione S-transferases (GSTs) are multifunctional enzymes that are capable of catalyzing the reactions involved in detoxification and metabolic pathways. In this study, a GST of C. subvermispora, named CsGST63524, was overexpressed in E. coli, and then purified by affinity, anion exchange, and size exclusion column chromatography. The crystal structures of the CsGST63524 in ligand-free and complex with GSH were refined at 2.45 and 2.50 Šresolutions, respectively. The sulfur atom of glutathione forms a hydrogen bond with Ser21 of CsGST63524, indicating it is a serine-type GST. Mutagenesis of Ser21 unexpectedly indicated that this serine residue is not essential for the enzymatic activity of CsGST63524. Comparative sequence and structural analyses, together with functional mutagenesis, newly identified the enzymatically important non-canonical amino acid residues, Asn23 and Tyr45, other than the serine residue.


Asunto(s)
Coriolaceae/enzimología , Glutatión Transferasa/química , Mutagénesis , Aminoácidos/fisiología , Asparagina , Cristalografía por Rayos X , Proteínas Fúngicas/química , Glutatión/química , Glutatión Transferasa/genética , Glutatión Transferasa/aislamiento & purificación , Ligandos , Serina , Tirosina
16.
Biosci Biotechnol Biochem ; 83(10): 1946-1954, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31204616

RESUMEN

Glycosaminoglycans (GAGs) such as hyaluronan and chondroitin in animal extracellular matrices contain disaccharide-repeating units. In a Gram-negative pathogenic Streptobacillus moniliformis, which belongs to Fusobacteria phylum and resides in rodent oral cavities, the solute-binding protein (Smon0123)-dependent ATP-binding cassette transporter imports unsaturated hyaluronan/chondroitin disaccharides into the cytoplasm after GAG lyase-dependent depolymerization. Here we show substrate recognition of unsaturated hyaluronan disaccharide by Smon0123. Moreover, Smon0123 exhibited no affinity for unsaturated chondroitin disaccharides containing three sulfate groups, distinct from non-sulfated, mono-sulfated, and di-sulfated chondroitin disaccharides previously identified as substrates. Crystal structure of Smon0123 with unsaturated hyaluronan disaccharide demonstrates that several residues, including Trp284 and Glu410, are crucial for binding to unsaturated hyaluronan/chondroitin disaccharides, whereas arrangements of water molecules at binding sites are found to be substrate dependent through comparison with substrate-bound structures determined previously. These residues are well conserved in Smon0123-like proteins of fusobacteria, and probably facilitate the fusobacterial residence in hyaluronan-rich oral cavities.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sulfatos de Condroitina/metabolismo , Ácido Hialurónico/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Proteínas Bacterianas/química , Sitios de Unión , Transporte Biológico , Cristalografía por Rayos X , Espacio Extracelular/metabolismo , Conformación Proteica , Especificidad por Sustrato
17.
J Biol Chem ; 292(38): 15681-15690, 2017 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-28768763

RESUMEN

The Gram-negative bacterium Sphingomonas sp. A1 incorporates alginate into cells via the cell-surface pit without prior depolymerization by extracellular enzymes. Alginate import across cytoplasmic membranes thereby depends on the ATP-binding cassette transporter AlgM1M2SS (a heterotetramer of AlgM1, AlgM2, and AlgS), which cooperates with the periplasmic solute-binding protein AlgQ1 or AlgQ2; however, several details of AlgM1M2SS-mediated alginate import are not well-understood. Herein, we analyzed ATPase and transport activities of AlgM1M2SS after reconstitution into liposomes with AlgQ2 and alginate oligosaccharide substrates having different polymerization degrees (PDs). Longer alginate oligosaccharides (PD ≥ 5) stimulated the ATPase activity of AlgM1M2SS but were inert as substrates of AlgM1M2SS-mediated transport, indicating that AlgM1M2SS-mediated ATP hydrolysis can be stimulated independently of substrate transport. Using X-ray crystallography in the presence of AlgQ2 and long alginate oligosaccharides (PD 6-8) and with the humid air and glue-coating method, we determined the crystal structure of AlgM1M2SS in complex with oligosaccharide-bound AlgQ2 at 3.6 Å resolution. The structure of the ATP-binding cassette transporter in complex with non-transport ligand-bound periplasmic solute-binding protein revealed that AlgM1M2SS and AlgQ2 adopt inward-facing and closed conformations, respectively. These in vitro assays and structural analyses indicated that interactions between AlgM1M2SS in the inward-facing conformation and periplasmic ligand-bound AlgQ2 in the closed conformation induce ATP hydrolysis by the ATP-binding protein AlgS. We conclude that substrate-bound AlgQ2 in the closed conformation initially interacts with AlgM1M2SS, the AlgM1M2SS-AlgQ2 complex then forms, and this formation is followed by ATP hydrolysis.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfato/metabolismo , Alginatos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Adenosina Trifosfatasas/metabolismo , Alginatos/química , Transporte Biológico , Ácido Glucurónico/química , Ácido Glucurónico/metabolismo , Ácidos Hexurónicos/química , Ácidos Hexurónicos/metabolismo , Humedad , Hidrólisis , Modelos Moleculares , Oligosacáridos/química , Conformación Proteica
18.
Biochim Biophys Acta Proteins Proteom ; 1866(3): 415-425, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29246508

RESUMEN

Endo-1,3-ß-glucanase from Cellulosimicrobium cellulans is composed of a catalytic domain and a carbohydrate-binding module. We have determined the X-ray crystal structure of the catalytic domain at a high resolution of 1.66Å. The overall fold is a sandwich-like ß-jelly roll architecture like the enzymes in the glycoside hydrolase family 16. The substrate-binding cleft has a length and a width of ~28 and ~15Å, respectively, which is thought to be capable of accommodating at least six glucopyranose units. Laminarihexaose was placed into the substrate-binding cleft, namely at the subsites +2 to -4 from the reducing end, and the complex structure was analyzed using molecular dynamics simulations (MD) and using a rotamer search of the pocket. During the MD simulations, the substrate fluctuated more than the enzyme, where the residues at the subsites toward the non-reducing end fluctuated more than those toward the reducing end. Little conformational change of the protein was observed for the subsites +1 and +2, indicating that the glucose's position could be tightly restricted inside the pocket. Substrate binding experiments using isothermal titration calorimetry showed that the binding affinity of laminaritriose was higher than that of laminaribiose and similar to those of other longer laminarioligosaccharides. Taken together, the substrates mainly bind to the subsites -1 to -3 with the highest affinity, while the part bound to the reducing end would be hydrolyzed.


Asunto(s)
Actinobacteria/enzimología , Proteínas Bacterianas/química , Glucano Endo-1,3-beta-D-Glucosidasa/química , Termodinámica , Proteínas Bacterianas/metabolismo , Sitios de Unión , Unión Competitiva , Dominio Catalítico , Cristalografía por Rayos X , Disacáridos/química , Disacáridos/metabolismo , Glucano Endo-1,3-beta-D-Glucosidasa/metabolismo , Cinética , Simulación de Dinámica Molecular , Oligosacáridos/química , Oligosacáridos/metabolismo , Unión Proteica , Conformación Proteica , Especificidad por Sustrato
19.
Biochem Biophys Res Commun ; 493(2): 1095-1101, 2017 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-28919419

RESUMEN

The tripartite EfeUOB system functions as a low pH iron importer in Gram-negative bacteria. In the alginate-assimilating bacterium Sphingomonas sp. strain A1, an additional EfeO-like protein (Algp7) is encoded downstream of the efeUOB operon. Here we show the metal binding mode of Algp7, which carries a M_75 metallopeptidase motif. The Algp7 protein was purified from recombinant E. coli cells and was subsequently characterized using differential scanning fluorimetry, fluorescence spectrometry, atomic absorption spectroscopy, and X-ray crystallography. The fluorescence of a dye, SYPRO Orange, bound to denatured Algp7 in the absence and presence of metal ions was measured during heat treatment. The fluorescence profile of Algp7 in the presence of metals such as ferric, ferrous, and zinc ions, shifted to a higher temperature, suggesting that Algp7 binds these metal ions and that metal ion-bound Algp7 is more thermally stable than the ligand-free form. Algp7 was directly demonstrated to show an ability to bind copper ion by atomic absorption spectroscopy. Crystal structure of metal ion-bound Algp7 revealed that the metal ion is bound to the cleft surrounded by several acidic residues. Four residues, Glu79, Glu82, Asp96, and Glu178, distinct from the M_75 motif (His115xxGlu118), are coordinated to the metal ion. This is the first report to provide structural insights into metal binding by the bacterial EfeO element.


Asunto(s)
Alginatos/metabolismo , Proteínas Bacterianas/metabolismo , Hierro/metabolismo , Metales/metabolismo , Sphingomonas/metabolismo , Proteínas Bacterianas/química , Sitios de Unión , Transporte Biológico , Cobre/metabolismo , Cristalografía por Rayos X , Ácido Glucurónico/metabolismo , Infecciones por Bacterias Gramnegativas/microbiología , Ácidos Hexurónicos/metabolismo , Modelos Moleculares , Conformación Proteica , Sphingomonas/química , Zinc/metabolismo
20.
J Biol Chem ; 290(10): 6281-92, 2015 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-25605731

RESUMEN

Glycosaminoglycans in mammalian extracellular matrices are degraded to their constituents, unsaturated uronic (glucuronic/iduronic) acids and amino sugars, through successive reactions of bacterial polysaccharide lyase and unsaturated glucuronyl hydrolase. Genes coding for glycosaminoglycan-acting lyase, unsaturated glucuronyl hydrolase, and the phosphotransferase system are assembled into a cluster in the genome of pathogenic bacteria, such as streptococci and clostridia. Here, we studied the streptococcal metabolic pathway of unsaturated uronic acids and the structure/function relationship of its relevant isomerase and dehydrogenase. Two proteins (gbs1892 and gbs1891) of Streptococcus agalactiae strain NEM316 were overexpressed in Escherichia coli, purified, and characterized. 4-Deoxy-l-threo-5-hexosulose-uronate (Dhu) nonenzymatically generated from unsaturated uronic acids was converted to 2-keto-3-deoxy-d-gluconate via 3-deoxy-d-glycero-2,5-hexodiulosonate through successive reactions of gbs1892 isomerase (DhuI) and gbs1891 NADH-dependent reductase/dehydrogenase (DhuD). DhuI and DhuD enzymatically corresponded to 4-deoxy-l-threo-5-hexosulose-uronate ketol-isomerase (KduI) and 2-keto-3-deoxy-d-gluconate dehydrogenase (KduD), respectively, involved in pectin metabolism, although no or low sequence identity was observed between DhuI and KduI or between DhuD and KduD, respectively. Genes for DhuI and DhuD were found to be included in the streptococcal genetic cluster, whereas KduI and KduD are encoded in clostridia. Tertiary and quaternary structures of DhuI and DhuD were determined by x-ray crystallography. Distinct from KduI ß-barrels, DhuI adopts an α/ß/α-barrel structure as a basic scaffold similar to that of ribose 5-phosphate isomerase. The structure of DhuD is unable to accommodate the substrate/cofactor, suggesting that conformational changes are essential to trigger enzyme catalysis. This is the first report on the bacterial metabolism of glycosaminoglycan-derived unsaturated uronic acids by isomerase and dehydrogenase.


Asunto(s)
Glicosaminoglicanos/química , Isomerasas/química , Oxidorreductasas/química , Infecciones Estreptocócicas/enzimología , Streptococcus agalactiae/enzimología , Cristalografía por Rayos X , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Glucuronatos/química , Glucuronatos/metabolismo , Glicosaminoglicanos/metabolismo , Ácido Idurónico/química , Ácido Idurónico/metabolismo , Isomerasas/metabolismo , Oxidorreductasas/metabolismo , Infecciones Estreptocócicas/patología , Streptococcus agalactiae/química , Streptococcus agalactiae/patogenicidad , Especificidad por Sustrato , Ácidos Urónicos/química , Ácidos Urónicos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA