RESUMEN
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a leading cause of death with 1.6 million deaths worldwide reported in 2021. Oral pyrazinamide (PZA) is an integral part of anti-TB regimens, but its prolonged use has the potential to drive the development of PZA-resistant Mtb. PZA is converted to the active moiety pyrazinoic acid (POA) by the Mtb pyrazinamidase encoded by pncA, and mutations in pncA are associated with the majority of PZA resistance. Conventional oral and parenteral therapies may result in subtherapeutic exposure in the lung; hence, direct pulmonary administration of POA may provide an approach to rescue PZA efficacy for treating pncA-mutant PZA-resistant Mtb. The objectives of the current study were to (i) develop novel dry powder POA formulations, (ii) assess their feasibility for pulmonary delivery using physicochemical characterization, (iii) evaluate their pharmacokinetics (PK) in the guinea pig model, and (iv) develop a mechanism-based pharmacokinetic model (MBM) using in vivo PK data to select a formulation providing adequate exposure in epithelial lining fluid (ELF) and lung tissue. We developed three POA formulations for pulmonary delivery and characterized their PK in plasma, ELF, and lung tissue following passive inhalation in guinea pigs. Additionally, the PK of POA following oral, intravenous, and intratracheal administration was characterized in guinea pigs. The MBM was used to simultaneously model PK data following administration of POA and its formulations via the different routes. The MBM described POA PK well in plasma, ELF, and lung tissue. Physicochemical analyses and MBM predictions suggested that POA maltodextrin was the best among the three formulations and an excellent candidate for further development as it has: (i) the highest ELF-to-plasma exposure ratio (203) and lung tissue-to-plasma exposure ratio (30.4) compared with POA maltodextrin and leucine (75.7/16.2) and POA leucine salt (64.2/19.3) and (ii) the highest concentration in ELF (CmaxELF: 171 nM) within 15.5 min, correlating with a fast transfer into ELF after pulmonary administration (KPM: 22.6 1/h). The data from the guinea pig allowed scaling, using the MBM to a human dose of POA maltodextrin powder demonstrating the potential feasibility of an inhaled product.
Asunto(s)
Líquidos Corporales , Pirazinamida , Humanos , Animales , Cobayas , Leucina , PolvosRESUMEN
Mycobacterium tuberculosis proteins that are exported out of the bacterial cytoplasm are ideally positioned to be virulence factors; however, the functions of individual exported proteins remain largely unknown. Previous studies identified Rv0199 as an exported membrane protein of unknown function. Here, we characterized the role of Rv0199 in M. tuberculosis virulence using an aerosol model of murine infection. Rv0199 appears to be a member of a Mce-associated membrane (Mam) protein family leading us to rename it OmamA, for orphaned Mam protein A. Consistent with a role in Mce transport, we showed OmamA is required for cholesterol import, which is a Mce4-dependent process. We further demonstrated a function for OmamA in stabilizing protein components of the Mce1 transporter complex. These results indicate a function of OmamA in multiple Mce transporters and one that may be analogous to the role of VirB8 in stabilizing Type IV secretion systems, as structural similarities between Mam proteins and VirB8 proteins are predicted by the Phyre 2 program. In this study, we provide functional information about OmamA and shed light on the function of Mam family proteins in Mce transporters.
Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de la Membrana/metabolismo , Mycobacterium tuberculosis/metabolismo , Animales , Proteínas Bacterianas/genética , Colesterol/metabolismo , Modelos Animales de Enfermedad , Eliminación de Gen , Orden Génico , Proteínas de la Membrana/genética , Ratones , Mutación , Mycobacterium tuberculosis/genética , Fenotipo , Unión Proteica , Transporte de Proteínas , Tuberculosis/microbiología , Tuberculosis/mortalidad , Tuberculosis/patología , Factores de VirulenciaRESUMEN
In Duchenne muscular dystrophy (DMD) patients and the mouse model of DMD, mdx, dystrophin deficiency causes a decrease and mislocalization of muscle-specific neuronal nitric oxide synthase (nNOSµ), leading to functional impairments. Previous studies have shown that nitric oxide (NO) donation associated with anti-inflammatory action has beneficial effects in dystrophic mouse models. In this study, we have systematically investigated the effects of naproxcinod, an NO-donating naproxen derivative, on the skeletal and cardiac disease phenotype in mdx mice. Four-week-old mdx and C57BL/10 mice were treated with four different concentrations (0, 10, 21 and 41 mg/kg) of naproxcinod and 0.9 mg/kg of prednisolone in their food for 9 months. All mice were subjected to twice-weekly treadmill sessions, and functional and behavioral parameters were measured at 3, 6 and 9 months of treatment. In addition, we evaluated in vitro force contraction, optical imaging of inflammation, echocardiography and blood pressure (BP) at the 9-month endpoint prior to sacrifice. We found that naproxcinod treatment at 21 mg/kg resulted in significant improvement in hindlimb grip strength and a 30% decrease in inflammation in the fore- and hindlimbs of mdx mice. Furthermore, we found significant improvement in heart function, as evidenced by improved fraction shortening, ejection fraction and systolic BP. In addition, the long-term detrimental effects of prednisolone typically seen in mdx skeletal and heart function were not observed at the effective dose of naproxcinod. In conclusion, our results indicate that naproxcinod has significant potential as a safe therapeutic option for the treatment of muscular dystrophies.
Asunto(s)
Pruebas de Función Cardíaca/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/fisiopatología , Naproxeno/análogos & derivados , Donantes de Óxido Nítrico/administración & dosificación , Animales , Antiinflamatorios/administración & dosificación , Antiinflamatorios/uso terapéutico , Peso Corporal/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Miembro Posterior/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Músculo Esquelético/fisiopatología , Distrofia Muscular de Duchenne/patología , Naproxeno/administración & dosificación , Naproxeno/uso terapéutico , Donantes de Óxido Nítrico/uso terapéutico , Prednisolona/administración & dosificación , Prednisolona/uso terapéuticoRESUMEN
UNLABELLED: While SecA is the ATPase component of the major bacterial secretory (Sec) system, mycobacteria and some Gram-positive pathogens have a second paralog, SecA2. In bacteria with two SecA paralogs, each SecA is functionally distinct, and they cannot compensate for one another. Compared to SecA1, SecA2 exports a distinct and smaller set of substrates, some of which have roles in virulence. In the mycobacterial system, some SecA2-dependent substrates lack a signal peptide, while others contain a signal peptide but possess features in the mature protein that necessitate a role for SecA2 in their export. It is unclear how SecA2 functions in protein export, and one open question is whether SecA2 works with the canonical SecYEG channel to export proteins. In this study, we report the structure of Mycobacterium tuberculosis SecA2 (MtbSecA2), which is the first structure of any SecA2 protein. A high level of structural similarity is observed between SecA2 and SecA1. The major structural difference is the absence of the helical wing domain, which is likely to play a role in how MtbSecA2 recognizes its unique substrates. Importantly, structural features critical to the interaction between SecA1 and SecYEG are preserved in SecA2. Furthermore, suppressor mutations of a dominant-negative secA2 mutant map to the surface of SecA2 and help identify functional regions of SecA2 that may promote interactions with SecYEG or the translocating polypeptide substrate. These results support a model in which the mycobacterial SecA2 works with SecYEG. IMPORTANCE: SecA2 is a paralog of SecA1, which is the ATPase of the canonical bacterial Sec secretion system. SecA2 has a nonredundant function with SecA1, and SecA2 exports a distinct and smaller set of substrates than SecA1. This work reports the crystal structure of SecA2 of Mycobacterium tuberculosis (the first SecA2 structure reported for any organism). Many of the structural features of SecA1 are conserved in the SecA2 structure, including putative contacts with the SecYEG channel. Several structural differences are also identified that could relate to the unique function and selectivity of SecA2. Suppressor mutations of a secA2 mutant map to the surface of SecA2 and help identify functional regions of SecA2 that may promote interactions with SecYEG.
Asunto(s)
Adenosina Trifosfatasas/química , Proteínas Bacterianas/química , Mycobacterium tuberculosis/enzimología , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética , Señales de Clasificación de Proteína , Proteína SecARESUMEN
The exocyst imparts spatial control during exocytic vesicle tethering through its interactions with proteins and lipids on the vesicle and the plasma membrane. One such interaction is with the vesicle tether Sro7, although the outcome of this interaction is poorly understood. Here, we describe how Sro7 binding to the Exo84 subunit results in activation of the exocyst complex which leads to an increase in avidity for the Rab GTPase Sec4 and an increase in exocyst-mediated vesicle tethering. Gain-of-function (GOF) mutations in Exo84 that mimic Sro7 activation replicate these biochemical changes and result in allosteric changes within the complex. Direct comparison of GOF mutants which mimic Sro7- and Rho/Cdc42-activation of the exocyst reveals distinct mechanisms and outcomes. We propose a model by which these two activation pathways reside within the same tethering complex but remain insulated from one another. Structural modeling suggests a related mechanism for Sro7 activation of the exocyst in yeast and Ral GTPase activation of the exocyst in animal cells.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Exocitosis , Proteínas de Saccharomyces cerevisiae , Proteínas de Unión al GTP rab , Animales , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Regulación Alostérica , Citoplasma/metabolismo , Exocitosis/fisiología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/metabolismoRESUMEN
Tuberculosis (TB), caused by Mycobacterium tuberculosis ( Mtb ), remains a leading cause of death with 1.6 million deaths worldwide reported in 2021. Oral pyrazinamide (PZA) is an integral part of anti-TB regimens, but its prolonged use has the potential to drive development of PZA resistant Mtb . PZA is converted to the active moiety pyrazinoic acid (POA) by the Mtb pyrazinamidase encoded by pncA , and mutations in pncA are associated with the majority of PZA resistance. Conventional oral and parenteral therapies may result in subtherapeutic exposure in the lung, hence direct pulmonary administration of POA may provide an approach to rescue PZA efficacy for treating pncA- mutant PZA-resistant Mtb . The objectives of the current study were to i) develop novel dry powder POA formulations ii) assess their feasibility for pulmonary delivery using physicochemical characterization, iii) evaluate their pharmacokinetics (PK) in the guinea pig model and iv) develop a mechanism based pharmacokinetic model (MBM) using in vivo PK data to select a formulation providing adequate exposure in epithelial lining fluid (ELF) and lung tissue. We developed three POA formulations for pulmonary delivery and characterized their PK in plasma, ELF, and lung tissue following passive inhalation in guinea pigs. Additionally, the PK of POA following oral, intravenous and intratracheal administration was characterized in guinea pigs. The MBM was used to simultaneously model PK data following administration of POA and its formulations via the different routes. The MBM described POA PK well in plasma, ELF and lung tissue. Physicochemical analyses and MBM predictions suggested that POA maltodextrin was the best among the three formulations and an excellent candidate for further development as it has: (i) the highest ELF-to-plasma exposure ratio (203) and lung tissue-to-plasma exposure ratio (30.4) compared with POA maltodextrin and leucine (75.7/16.2) and POA leucine salt (64.2/19.3); (ii) the highest concentration in ELF ( Cmac ELF : 171 nM) within 15.5 minutes, correlating with a fast transfer into ELF after pulmonary administration ( k PM : 22.6 1/h). The data from the guinea pig allowed scaling, using the MBM to a human dose of POA maltodextrin powder demonstrating the potential feasibility of an inhaled product.
RESUMEN
The SecA2 protein export system is critical for the virulence of Mycobacterium tuberculosis. However, the mechanism of this export pathway remains unclear. Through a screen for suppressors of a secA2 mutant, we identified a new player in the mycobacterial SecA2 pathway that we named SatS for SecA2 (two) Suppressor. In M. tuberculosis, SatS is required for the export of a subset of SecA2 substrates and for growth in macrophages. We further identify a role for SatS as a protein export chaperone. SatS exhibits multiple properties of a chaperone, including the ability to bind to and protect substrates from aggregation. Our structural studies of SatS reveal a distinct combination of a new fold and hydrophobic grooves resembling preprotein-binding sites of the SecB chaperone. These results are significant in better defining a molecular pathway for M. tuberculosis pathogenesis and in expanding our appreciation of the diversity among chaperones and protein export systems.
Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Macrófagos/microbiología , Proteínas de Transporte de Membrana/metabolismo , Mycobacterium tuberculosis/metabolismo , Animales , Citoplasma/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Chaperonas Moleculares/metabolismo , Mutación , Mycobacterium smegmatis/metabolismo , Fenotipo , Unión Proteica , Dominios Proteicos , Transporte de Proteínas , VirulenciaRESUMEN
New therapeutic strategies are needed to treat drug resistant tuberculosis (TB) and to improve treatment for drug sensitive TB. Pyrazinamide (PZA) is a critical component of current first-line TB therapy. However, the rise in PZA-resistant TB cases jeopardizes the future utility of PZA. To address this problem, we used the guinea pig model of TB and tested the efficacy of an inhaled dry powder combination, referred to as Pyrazinoic acid/ester Dry Powder (PDP), which is comprised of pyrazinoic acid (POA), the active moiety of PZA, and pyrazinoic acid ester (PAE), which is a PZA analog. Both POA and PAE have the advantage of being able to act on PZA-resistant Mycobacterium tuberculosis. When used in combination with oral rifampicin (R), inhaled PDP had striking effects on tissue pathology. Effects were observed in lungs, the site of delivery, but also in the spleen and liver indicating both local and systemic effects of inhaled PDP. Tissue granulomas that harbor M. tuberculosis in a persistent state are a hallmark of TB and they pose a challenge for therapy. Compared to other treatments, which preferentially cleared non-necrotic granulomas, R+PDP reduced necrotic granulomas more effectively. The increased ability of R+PDP to act on more recalcitrant necrotic granulomas suggests a novel mechanism of action. The results presented in this report reveal the potential for developing therapies involving POA that are optimized to target necrotic as well as non-necrotic granulomas as a means of achieving more complete sterilization of M. tuberculosis bacilli and preventing disease relapse when therapy ends.
Asunto(s)
Antituberculosos/administración & dosificación , Granuloma del Sistema Respiratorio/tratamiento farmacológico , Pirazinamida/análogos & derivados , Tuberculosis Pulmonar/tratamiento farmacológico , Aerosoles , Animales , Antituberculosos/farmacocinética , Carga Bacteriana , Modelos Animales de Enfermedad , Quimioterapia Combinada , Inhaladores de Polvo Seco , Granuloma del Sistema Respiratorio/microbiología , Granuloma del Sistema Respiratorio/patología , Cobayas , Masculino , Mycobacterium tuberculosis/efectos de los fármacos , Necrosis , Pirazinamida/administración & dosificación , Pirazinamida/farmacocinética , Absorción a través del Sistema Respiratorio , Rifampin/administración & dosificación , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/patología , Tuberculosis Pulmonar/microbiología , Tuberculosis Pulmonar/patologíaRESUMEN
All bacteria utilize pathways to export proteins from the cytoplasm to the bacterial cell envelope or extracellular space. Many exported proteins function in essential physiological processes or in virulence. Consequently, the responsible protein export pathways are commonly essential and/or are important for pathogenesis. The general Sec protein export pathway is conserved and essential in all bacteria, and it is responsible for most protein export. The energy for Sec export is provided by the SecA ATPase. Mycobacteria and some Gram-positive bacteria have two SecA paralogs: SecA1 and SecA2. SecA1 is essential and works with the canonical Sec pathway to perform the bulk of protein export. The nonessential SecA2 exports a smaller subset of proteins and is required for the virulence of pathogens such as Mycobacterium tuberculosis. In this article, we review our current understanding of the mechanism of the SecA1 and SecA2 export pathways and discuss some of their better-studied exported substrates. We focus on proteins with established functions in M. tuberculosis pathogenesis and proteins that suggest potential roles for SecA1 and SecA2 in M. tuberculosis dormancy.
Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Mycobacterium tuberculosis/metabolismo , Pared Celular/metabolismo , Lipoproteínas/metabolismo , Redes y Vías Metabólicas , Mycobacterium tuberculosis/enzimología , Transporte de Proteínas , Proteína SecARESUMEN
Absence of dystrophin makes skeletal muscle more susceptible to injury, resulting in breaches of the plasma membrane and chronic inflammation in Duchenne muscular dystrophy (DMD). Current management by glucocorticoids has unclear molecular benefits and harsh side effects. It is uncertain whether therapies that avoid hormonal stunting of growth and development, and/or immunosuppression, would be more or less beneficial. Here, we discover an oral drug with mechanisms that provide efficacy through anti-inflammatory signaling and membrane-stabilizing pathways, independent of hormonal or immunosuppressive effects. We find VBP15 protects and promotes efficient repair of skeletal muscle cells upon laser injury, in opposition to prednisolone. Potent inhibition of NF-κB is mediated through protein interactions of the glucocorticoid receptor, however VBP15 shows significantly reduced hormonal receptor transcriptional activity. The translation of these drug mechanisms into DMD model mice improves muscle strength, live-imaging and pathology through both preventive and post-onset intervention regimens. These data demonstrate successful improvement of dystrophy independent of hormonal, growth, or immunosuppressive effects, indicating VBP15 merits clinical investigation for DMD and would benefit other chronic inflammatory diseases.