Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 556(7699): 126-129, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29512650

RESUMEN

Early co-transcriptional events during eukaryotic ribosome assembly result in the formation of precursors of the small (40S) and large (60S) ribosomal subunits. A multitude of transient assembly factors regulate and chaperone the systematic folding of pre-ribosomal RNA subdomains. However, owing to a lack of structural information, the role of these factors during early nucleolar 60S assembly is not fully understood. Here we report cryo-electron microscopy (cryo-EM) reconstructions of the nucleolar pre-60S ribosomal subunit in different conformational states at resolutions of up to 3.4 Å. These reconstructions reveal how steric hindrance and molecular mimicry are used to prevent both premature folding states and binding of later factors. This is accomplished by the concerted activity of 21 ribosome assembly factors that stabilize and remodel pre-ribosomal RNA and ribosomal proteins. Among these factors, three Brix-domain proteins and their binding partners form a ring-like structure at ribosomal RNA (rRNA) domain boundaries to support the architecture of the maturing particle. The existence of mutually exclusive conformations of these pre-60S particles suggests that the formation of the polypeptide exit tunnel is achieved through different folding pathways during subsequent stages of ribosome assembly. These structures rationalize previous genetic and biochemical data and highlight the mechanisms that drive eukaryotic ribosome assembly in a unidirectional manner.


Asunto(s)
Nucléolo Celular/química , Microscopía por Crioelectrón , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/ultraestructura , Saccharomyces cerevisiae , Reactivos de Enlaces Cruzados/química , Modelos Moleculares , Imitación Molecular , Dominios Proteicos , Estabilidad Proteica , Pliegue del ARN , ARN Ribosómico/química , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , ARN Ribosómico/ultraestructura , Reproducibilidad de los Resultados , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/ultraestructura , Subunidades Ribosómicas Grandes de Eucariotas/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura
2.
Cell Chem Biol ; 31(1): 14-16, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38242092

RESUMEN

CAG-repeat expansions underlie fatal neurodegenerative disorders. In a lodestar study published in a recent issue of Nature, Sun et al.1 identify a writer and eraser of N1-methyladenosine (m1A) modifications of CAG-repeat RNA. They establish that m1A modifications in CAG-repeat expanded RNA promote neurodegeneration and aberrant phase transitions of TDP-43. These findings suggest therapeutic strategies for CAG-repeat expansion disorders.


Asunto(s)
Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/genética , ARN
3.
Science ; 373(6560): eabj5338, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34516797

RESUMEN

The human small subunit processome mediates early maturation of the small ribosomal subunit by coupling RNA folding to subsequent RNA cleavage and processing steps. We report the high-resolution cryo­electron microscopy structures of maturing human small subunit (SSU) processomes at resolutions of 2.7 to 3.9 angstroms. These structures reveal the molecular mechanisms that enable crucial progressions during SSU processome maturation. RNA folding states within these particles are communicated to and coordinated with key enzymes that drive irreversible steps such as targeted exosome-mediated RNA degradation, protein-guided site-specific endonucleolytic RNA cleavage, and tightly controlled RNA unwinding. These conserved mechanisms highlight the SSU processome's impressive structural plasticity, which endows this 4.5-megadalton nucleolar assembly with the distinctive ability to mature the small ribosomal subunit from within.


Asunto(s)
Nucléolo Celular/ultraestructura , Pliegue del ARN , Estabilidad del ARN , ARN Nucleolar Pequeño/química , Nucléolo Celular/metabolismo , Microscopía por Crioelectrón , ARN Helicasas DEAD-box/química , Humanos , División del ARN , Factores de Empalme de ARN/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA