RESUMEN
Genetic studies of blood pressure (BP) traits to date have been performed on conventional measures by brachial cuff sphygmomanometer for systolic BP (SBP) and diastolic BP, integrating several physiologic occurrences. Genetic associations with central SBP (cSBP) have not been well-studied. Genetic discovery studies of BP have been most often performed in European-ancestry samples. Here, we investigated genetic associations with cSBP in a Chinese population and functionally validated the impact of a novel associated coiled-coil domain containing 93 (CCDC93) gene on BP regulation. An exome-wide association study (EWAS) was performed using a mixed linear model of non-invasive cSBP and peripheral BP traits in a Han Chinese population (N = 5,954) from Beijing, China genotyped with a customized Illumina ExomeChip array. We identified four SNP-trait associations with three SNPs, including two novel associations (rs2165468-SBP and rs33975708-cSBP). rs33975708 is a coding variant in the CCDC93 gene, c.535C>T, p.Arg179Cys (MAF = 0.15%), and was associated with increased cSBP (ß = 29.3 mmHg, P = 1.23x10-7). CRISPR/Cas9 genome editing was used to model the effect of Ccdc93 loss in mice. Homozygous Ccdc93 deletion was lethal prior to day 10.5 of embryonic development. Ccdc93+/- heterozygous mice were viable and morphologically normal, with 1.3-fold lower aortic Ccdc93 protein expression (P = 0.0041) and elevated SBP as compared to littermate Ccdc93+/+ controls (110±8 mmHg vs 125±10 mmHg, P = 0.016). Wire myography of Ccdc93+/- aortae showed impaired acetylcholine-induced relaxation and enhanced phenylephrine-induced contraction. RNA-Seq transcriptome analysis of Ccdc93+/- mouse thoracic aortae identified significantly enriched pathways altered in fatty acid metabolism and mitochondrial metabolism. Plasma free fatty acid levels were elevated in Ccdc93+/- mice (96±7mM vs 124±13mM, P = 0.0031) and aortic mitochondrial dysfunction was observed through aberrant Parkin and Nix protein expression. Together, our genetic and functional studies support a novel role of CCDC93 in the regulation of BP through its effects on vascular mitochondrial function and endothelial function.
Asunto(s)
Presión Sanguínea , Mitocondrias , Polimorfismo de Nucleótido Simple , Proteínas de Transporte Vesicular , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Presión Sanguínea/genética , Estudio de Asociación del Genoma Completo , Hipertensión/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Vasodilatación/genética , Pueblos del Este de Asia/genética , Proteínas de Transporte Vesicular/genéticaRESUMEN
The etiology of renal artery stenosis (RAS) and abdominal aortic coarctation (AAC) causing the midaortic syndrome (MAS), often resulting in renovascular hypertension (RVH), remains ill-defined. Neurofibromatosis type 1 (NF-1) is frequently observed in children with RVH. Consecutive pediatric patients (N = 102) presenting with RVH secondary to RAS with and without concurrent AAC were prospectively enrolled in a clinical data base, and blood, saliva and operative tissue, when available, were collected. Among the 102 children, 13 were having a concurrent clinical diagnosis of NF-1 (12.5%). Whole exome sequencing was performed for germline variant detection, and RNA-Seq analysis of NF1, MAPK pathway genes and MCP1 levels were undertaken in five NF-1 stenotic renal arteries, as well as control renal and mesenteric arteries from children with no known vasculopathy or NF-1. In 11 unrelated children with sequencing data, 11 NF1 genetic variants were identified, of which 10 had not been reported in gnomAD. Histologic analysis of NF-1 RAS specimens consistently revealed intimal thickening, disruption of the internal elastic lamina and medial thinning. Analysis of transcript expression in arterial lesions documented an approximately 5-fold reduction in NF1 expression, confirming heterozygosity, MAPK pathway activation and increased MCP1 expression. In summary, NF-1-related RVH in children is rare but often severe and progressive and, as such, important to recognize. It is associated with histologic and molecular features consistent with an aggressive adverse vascular remodeling process. Further research is necessary to define the mechanisms underlying these findings.
Asunto(s)
Coartación Aórtica , Hipertensión Renovascular , Neurofibromatosis 1 , Obstrucción de la Arteria Renal , Coartación Aórtica/complicaciones , Coartación Aórtica/genética , Coartación Aórtica/cirugía , Niño , Femenino , Humanos , Hipertensión Renovascular/diagnóstico , Hipertensión Renovascular/genética , Masculino , Biología Molecular , Neurofibromatosis 1/complicaciones , Neurofibromatosis 1/genética , Obstrucción de la Arteria Renal/complicaciones , Obstrucción de la Arteria Renal/genéticaRESUMEN
Genomic discovery efforts for hematological traits have been successfully conducted through genome-wide association study on samples of predominantly European ancestry. We sought to conduct unbiased genetic discovery for coding variants that influence hematological traits in a Han Chinese population. A total of 5257 Han Chinese subjects from Beijing, China were included in the discovery cohort and analyzed by an Illumina ExomeChip array. Replication analyses were conducted in 3827 independent Chinese subjects. We analyzed 12 hematological traits and identified 22 exome-wide significant single-nucleotide polymorphisms (SNP)-trait associations with 15 independent SNPs. Our study provides replication for two associations previously reported but not replicated. Further, one association was identified and replicated in the current study, of a coding variant in the myeloproliferative leukemia (MPL) gene, c.793C > T, p.Leu265Phe (L265F) with increased platelet count (ß = 20.6 109 cells/l, Pmeta-analysis = 2.6 × 10-13). This variant is observed at ~2% population frequency in East Asians, whereas it has not been reported in gnomAD European or African populations. Functional analysis demonstrated that expression of MPL L265F in Ba/F3 cells resulted in enhanced phosphorylation of Stat3 and ERK1/2 as compared with the reference MPL allele, supporting altered activation of the JAK-STAT signal transduction pathway as the mechanism underlying the novel association between MPL L265F and platelet count.
Asunto(s)
Estudio de Asociación del Genoma Completo , Pueblo Asiatico/genética , Humanos , Recuento de Plaquetas , Polimorfismo de Nucleótido Simple/genética , Receptores de Trombopoyetina/genética , Transducción de Señal/genéticaRESUMEN
OBJECTIVES: Some adults with rheumatic and musculoskeletal diseases (RMDs) are at increased risk of COVID-19-related death. Excluding post-COVID-19 multisystem inflammatory syndrome of children, children and young people (CYP) are overall less prone to severe COVID-19 and most experience a mild or asymptomatic course. However, it is unknown if CYP with RMDs are more likely to have more severe COVID-19. This analysis aims to describe outcomes among CYP with underlying RMDs with COVID-19. METHODS: Using the European Alliance of Associations for Rheumatology COVID-19 Registry, the Childhood Arthritis and Rheumatology Research Alliance (CARRA) Registry, and the CARRA-sponsored COVID-19 Global Paediatric Rheumatology Database, we obtained data on CYP with RMDs who reported SARS-CoV-2 infection (presumptive or confirmed). Patient characteristics and illness severity were described, and factors associated with COVID-19 hospitalisation were investigated. RESULTS: 607 CYP with RMDs <19 years old from 25 different countries with SARS-CoV-2 infection were included, the majority with juvenile idiopathic arthritis (JIA; n=378; 62%). Forty-three (7%) patients were hospitalised; three of these patients died. Compared with JIA, diagnosis of systemic lupus erythematosus, mixed connective tissue disease, vasculitis, or other RMD (OR 4.3; 95% CI 1.7 to 11) or autoinflammatory syndrome (OR 3.0; 95% CI 1.1 to 8.6) was associated with hospitalisation, as was obesity (OR 4.0; 95% CI 1.3 to 12). CONCLUSIONS: This is the most significant investigation to date of COVID-19 in CYP with RMDs. It is important to note that the majority of CYP were not hospitalised, although those with severe systemic RMDs and obesity were more likely to be hospitalised.
Asunto(s)
Artritis Juvenil , COVID-19 , Enfermedades Musculoesqueléticas , Enfermedades Reumáticas , Adolescente , Artritis Juvenil/complicaciones , Artritis Juvenil/epidemiología , COVID-19/complicaciones , COVID-19/epidemiología , Niño , Humanos , Enfermedades Musculoesqueléticas/epidemiología , Obesidad/complicaciones , Enfermedades Reumáticas/complicaciones , Enfermedades Reumáticas/epidemiología , SARS-CoV-2 , Adulto JovenRESUMEN
Spontaneous coronary artery dissection (SCAD) is a potential precipitant of myocardial infarction and sudden death for which the etiology is poorly understood. Mendelian vascular and connective tissue disorders underlying thoracic aortic disease (TAD), have been reported in ~5% of individuals with SCAD. We therefore hypothesized that patients with TAD are at elevated risk for SCAD. We queried registries enrolling patients with TAD to define the incidence of SCAD. Of 7568 individuals enrolled, 11 (0.15%) were found to have SCAD. Of the sequenced cases (9/11), pathogenic variants were identified (N = 9), including COL3A1 (N = 3), FBN1 (N = 2), TGFBR2 (N = 2), TGFBR1 (N = 1), and PRKG1 (N = 1). Individuals with SCAD had an increased frequency of iliac artery dissection (25.0% vs. 5.1%, p = 0.047). The prevalence of SCAD among individuals with TAD is low. The identification of pathogenic variants in genes previously described in individuals with SCAD, particularly those underlying vascular Ehlers-Danlos, Marfan syndrome, and Loeys-Dietz syndrome, is consistent with prior reports from clinical SCAD series. Further research is needed to identify specific genetic influences on SCAD risk.
Asunto(s)
Anomalías de los Vasos Coronarios , Síndrome de Ehlers-Danlos , Síndrome de Loeys-Dietz , Enfermedades Vasculares , Anomalías de los Vasos Coronarios/epidemiología , Anomalías de los Vasos Coronarios/genética , Síndrome de Ehlers-Danlos/genética , Predisposición Genética a la Enfermedad , Humanos , Síndrome de Loeys-Dietz/complicaciones , Síndrome de Loeys-Dietz/epidemiología , Síndrome de Loeys-Dietz/genética , Factores de Riesgo , Enfermedades Vasculares/congénito , Enfermedades Vasculares/epidemiología , Enfermedades Vasculares/genéticaRESUMEN
This study attempted to discover tetralone-derived potent ROS inhibitors by synthesizing sixty-six hydroxylated and halogenated 2-benzylidene-3,4-dihydronaphthalen-1(2H)-ones via Claisen-Schmidt condensation reaction. The majority of the synthesized and investigated compounds significantly inhibited ROS in LPS-stimulated RAW 264.7 macrophages. When compared to malvidin (IC50 = 9.00 µM), compound 28 (IC50 = 0.18 µM) possessing 6hydroxyl and 2trifluoromethylphenyl moiety showed the most potent ROS inhibition. In addition, the compounds 20, 31, 39, 45, 47-48, 52, 55-56, 58-60, and 62 also displayed ten folds greater ROS inhibitory activity relative to the reference compound. Based on the structure-activity relationship study, incorporating hydroxyl groups at the 6- and 7-positions of tetralone scaffold along with different halogen functionalities in phenyl ring B is crucial for potent ROS suppression. This study contributes to a better understanding of the effect of halogen and phenolic groups in ROS suppression, and further investigations on 2-benzylidene-3,4-dihydronaphthalen-1(2H)-ones will potentially lead to the discovery of effective anti-inflammatory agents.
Asunto(s)
Lipopolisacáridos , Tetralonas , Animales , Halógenos/farmacología , Lipopolisacáridos/farmacología , Macrófagos , Ratones , Óxido Nítrico/farmacología , Células RAW 264.7 , Especies Reactivas de Oxígeno , Relación Estructura-Actividad , Tetralonas/farmacologíaRESUMEN
Surface-enhanced Raman scattering (SERS)-based assays have been recently developed to overcome the low detection sensitivity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SERS-based assays using magnetic beads in microtubes slightly improved the limit of detection (LoD) for SARS-CoV-2. However, the sensitivity and reproducibility of the method are still insufficient for reliable SARS-CoV-2 detection. In this study, we developed a SERS-based microdroplet sensor to dramatically improve the LoD and reproducibility of SARS-CoV-2 detection. Raman signals were measured for SERS nanotags in 140 droplets passing through a laser focal volume fixed at the center of the channel for 15 s. A comparison of the Raman signals of SERS nanotags measured in a microtube with those measured for multiple droplets in the microfluidic channel revealed that the LoD and coefficient of variation significantly improved from 36 to 0.22 PFU/mL and 21.2% to 1.79%, respectively. This improvement resulted from the ensemble average effects because the signals were measured for SERS nanotags in multiple droplets. Moreover, the total assay time decreased from 30 to 10 min. A clinical test was performed on patient samples to evaluate the clinical efficacy of the SERS-based microdroplet sensor. The assay results agreed well with those measured by the reverse transcription-polymerase chain reaction (RT-PCR) method. The proposed SERS-based microdroplet sensor is expected to be used as a new point-of-care diagnostic platform for quick and accurate detection of SARS-CoV-2 in the field.
RESUMEN
OBJECTIVE: While rare variants in the COL5A1 gene have been associated with classical Ehlers-Danlos syndrome and rarely with arterial dissections, recurrent variants in COL5A1 underlying a systemic arteriopathy have not been described. Monogenic forms of multifocal fibromuscular dysplasia (mFMD) have not been previously defined. Approach and Results: We studied 4 independent probands with the COL5A1 pathogenic variant c.1540G>A, p.(Gly514Ser) who presented with arterial aneurysms, dissections, tortuosity, and mFMD affecting multiple arteries. Arterial medial fibroplasia and smooth muscle cell disorganization were confirmed histologically. The COL5A1 c.1540G>A variant is predicted to be pathogenic in silico and absent in gnomAD. The c.1540G>A variant is on a shared 160.1 kb haplotype with 0.4% frequency in Europeans. Furthermore, exome sequencing data from a cohort of 264 individuals with mFMD were examined for COL5A1 variants. In this mFMD cohort, COL5A1 c.1540G>A and 6 additional relatively rare COL5A1 variants predicted to be deleterious in silico were identified and were associated with arterial dissections (P=0.005). CONCLUSIONS: COL5A1 c.1540G>A is the first recurring variant recognized to be associated with arterial dissections and mFMD. This variant presents with a phenotype reminiscent of vascular Ehlers-Danlos syndrome. A shared haplotype among probands supports the existence of a common founder. Relatively rare COL5A1 genetic variants predicted to be deleterious by in silico analysis were identified in ≈2.7% of mFMD cases, and as they were enriched in patients with arterial dissections, may act as disease modifiers. Molecular testing for COL5A1 should be considered in patients with a phenotype overlapping with vascular Ehlers-Danlos syndrome and mFMD.
Asunto(s)
Disección Aórtica/genética , Arterias/patología , Colágeno Tipo V/genética , Síndrome de Ehlers-Danlos/genética , Displasia Fibromuscular/genética , Polimorfismo de Nucleótido Simple , Adulto , Disección Aórtica/diagnóstico por imagen , Disección Aórtica/patología , Arterias/diagnóstico por imagen , Síndrome de Ehlers-Danlos/diagnóstico por imagen , Síndrome de Ehlers-Danlos/patología , Femenino , Displasia Fibromuscular/diagnóstico por imagen , Displasia Fibromuscular/patología , Predisposición Genética a la Enfermedad , Haplotipos , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Adulto JovenRESUMEN
Fibromuscular dysplasia (FMD) is a heterogeneous group of non-atherosclerotic and non-inflammatory arterial diseases that primarily involves the renal and cerebrovascular arteries. Grange syndrome is an autosomal-recessive condition characterized by severe and early-onset vascular disease similar to FMD and variable penetrance of brachydactyly, syndactyly, bone fragility, and learning disabilities. Exome-sequencing analysis of DNA from three affected siblings with Grange syndrome identified compound heterozygous nonsense variants in YY1AP1, and homozygous nonsense or frameshift YY1AP1 variants were subsequently identified in additional unrelated probands with Grange syndrome. YY1AP1 encodes yin yang 1 (YY1)-associated protein 1 and is an activator of the YY1 transcription factor. We determined that YY1AP1 localizes to the nucleus and is a component of the INO80 chromatin remodeling complex, which is responsible for transcriptional regulation, DNA repair, and replication. Molecular studies revealed that loss of YY1AP1 in vascular smooth muscle cells leads to cell cycle arrest with decreased proliferation and increased levels of the cell cycle regulator p21/WAF/CDKN1A and disrupts TGF-ß-driven differentiation of smooth muscle cells. Identification of YY1AP1 mutations as a cause of FMD indicates that this condition can result from underlying genetic variants that significantly alter the phenotype of vascular smooth muscle cells.
Asunto(s)
Displasia Fibromuscular/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Mutación , Proteínas Nucleares/genética , Factores de Transcripción/genética , Adolescente , Adulto , Huesos/patología , Braquidactilia/genética , Puntos de Control del Ciclo Celular/genética , Proteínas de Ciclo Celular , Exoma/genética , Femenino , Genes Recesivos , Heterocigoto , Homocigoto , Humanos , Discapacidades para el Aprendizaje/genética , Masculino , Persona de Mediana Edad , Linaje , Sindactilia/genética , SíndromeRESUMEN
Genome-wide association studies (GWASs) have identified loci for erythrocyte traits in primarily European ancestry populations. We conducted GWAS meta-analyses of six erythrocyte traits in 71,638 individuals from European, East Asian, and African ancestries using a Bayesian approach to account for heterogeneity in allelic effects and variation in the structure of linkage disequilibrium between ethnicities. We identified seven loci for erythrocyte traits including a locus (RBPMS/GTF2E2) associated with mean corpuscular hemoglobin and mean corpuscular volume. Statistical fine-mapping at this locus pointed to RBPMS at this locus and excluded nearby GTF2E2. Using zebrafish morpholino to evaluate loss of function, we observed a strong in vivo erythropoietic effect for RBPMS but not for GTF2E2, supporting the statistical fine-mapping at this locus and demonstrating that RBPMS is a regulator of erythropoiesis. Our findings show the utility of trans-ethnic GWASs for discovery and characterization of genetic loci influencing hematologic traits.
Asunto(s)
Eritrocitos/metabolismo , Eritropoyesis/genética , Proteínas de Unión al ARN/genética , Grupos Raciales/genética , África/etnología , Alelos , Animales , Teorema de Bayes , Etnicidad/genética , Europa (Continente)/etnología , Asia Oriental/etnología , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Desequilibrio de Ligamiento , Masculino , Pez Cebra/genéticaRESUMEN
Objectives: As the numbers of adolescents with asthma are increasing, appropriate recognition of the importance of body weight is necessary. This study explored body weight misconceptions and related factors in adolescent asthma patients. Methods: Web-based self-reported data from the Korean Youth Risk Behavior Web-Based Survey of 60,974 physician-diagnosed adolescents with asthma were used in this study. Self-reported questionnaires were employed to assess socioeconomic status, health behavior, and psychological factors. Multiple logistic regression after adjustment for confounding factors was used to explore body weight misconception. Results: A total of 28,771 (47.2%) respondents incorrectly classified their weight status, with 13,684 (22.5%) under-assessing and 15,087 (24.7%) over-assessing their weight. Body weight misconceptions were positively associated with middle school attendance (odds ratio [OR] 1.02, 95% confidence interval [CI] 1.02-1.06), co-educational school attendance (OR 1.07, 95% CI 1.01-1.11), living without parents (OR 1.11, 95% CI 1.03-1.19), self-rated poor health status (OR 1.04, 95% CI 1.00-1.10), self-rated unhappiness (OR 1.15, 95% CI 1.09-1.20), moderate-to-severe stress (OR 1.14, 95% CI 1.11-1.18), depressive mood (OR 1.10, 95% CI 1.06-1.14), suicidal ideation (OR 1.09, 95% CI 1.04-1.13), and suicide attempts (OR 1.12, 95% CI 1.05-1.21); negatively associated with male gender (OR 0.86, 95% CI 0.83-0.89) and higher level academic achievement (OR 0.92, 95% CI 0.88-0.96), respectively. Conclusion: Negative psychological factors and school type were found to be associated with body weight misconceptions in adolescents with asthma. Our study shows that more efforts are needed to improve such misconceptions and to develop healthy behaviors in adolescents with asthma.
Asunto(s)
Conducta del Adolescente/psicología , Asma/psicología , Peso Corporal , Obesidad Infantil/psicología , Autoimagen , Adolescente , Asma/etiología , Niño , Estudios Transversales , Femenino , Humanos , Masculino , Obesidad Infantil/complicaciones , Obesidad Infantil/prevención & control , República de Corea , Autoinforme , Factores SocioeconómicosRESUMEN
Age-related macular degeneration (AMD) is the major cause of blindness in developed nations. AMD is characterized by retinal pigmented epithelial (RPE) cell dysfunction and loss of photoreceptor cells. Epidemiologic studies indicate important contributions of dietary patterns to the risk for AMD, but the mechanisms relating diet to disease remain unclear. Here we investigate the effect on AMD of isocaloric diets that differ only in the type of dietary carbohydrate in a wild-type aged-mouse model. The consumption of a high-glycemia (HG) diet resulted in many AMD features (AMDf), including RPE hypopigmentation and atrophy, lipofuscin accumulation, and photoreceptor degeneration, whereas consumption of the lower-glycemia (LG) diet did not. Critically, switching from the HG to the LG diet late in life arrested or reversed AMDf. LG diets limited the accumulation of advanced glycation end products, long-chain polyunsaturated lipids, and their peroxidation end-products and increased C3-carnitine in retina, plasma, or urine. Untargeted metabolomics revealed microbial cometabolites, particularly serotonin, as protective against AMDf. Gut microbiota were responsive to diet, and we identified microbiota in the Clostridiales order as being associated with AMDf and the HG diet, whereas protection from AMDf was associated with the Bacteroidales order and the LG diet. Network analysis revealed a nexus of metabolites and microbiota that appear to act within a gut-retina axis to protect against diet- and age-induced AMDf. The findings indicate a functional interaction between dietary carbohydrates, the metabolome, including microbial cometabolites, and AMDf. Our studies suggest a simple dietary intervention that may be useful in patients to arrest AMD.
Asunto(s)
Glucemia/metabolismo , Microbioma Gastrointestinal/fisiología , Índice Glucémico/fisiología , Degeneración Macular/metabolismo , Retina/metabolismo , Animales , Productos Finales de Glicación Avanzada/metabolismo , Metaboloma/fisiología , Metabolómica , RatonesRESUMEN
Fibromuscular dysplasia (FMD) is a nonatherosclerotic vascular disease leading to stenosis, dissection and aneurysm affecting mainly the renal and cerebrovascular arteries. FMD is often an underdiagnosed cause of hypertension and stroke, has higher prevalence in females (~80%) but its pathophysiology is unclear. We analyzed ~26K common variants (MAF>0.05) generated by exome-chip arrays in 249 FMD patients and 689 controls. We replicated 13 loci (P<10-4) in 402 cases and 2,537 controls and confirmed an association between FMD and a variant in the phosphatase and actin regulator 1 gene (PHACTR1). Three additional case control cohorts including 512 cases and 669 replicated this result and overall reached the genomic level of significance (OR = 1.39, P = 7.4×10-10, 1,154 cases and 3,895 controls). The top variant, rs9349379, is intronic to PHACTR1, a risk locus for coronary artery disease, migraine, and cervical artery dissection. The analyses of geometrical parameters of carotids from ~2,500 healthy volunteers indicate higher intima media thickness (P = 1.97×10-4) and wall to lumen ratio (P = 0.002) in rs9349379-A carriers, suggesting indices of carotid hypertrophy previously described in carotids of FMD patients. Immunohistochemistry detected PHACTR1 in endothelium and smooth muscle cells of FMD and normal human carotids. The expression of PHACTR1 by genotypes in primary human fibroblasts showed higher expression in rs9349379-A carriers (N = 86, P = 0.003). Phactr1 knockdown in zebrafish resulted in dilated vessels indicating subtle impaired vascular development. We report the first susceptibility locus for FMD and provide evidence for a complex genetic pattern of inheritance and indices of shared pathophysiology between FMD and other cardiovascular and neurovascular diseases.
Asunto(s)
Displasia Fibromuscular/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Proteínas de Microfilamentos/genética , Animales , Arterias/metabolismo , Arterias/patología , Arterias Carótidas/metabolismo , Arterias Carótidas/patología , Grosor Intima-Media Carotídeo , Modelos Animales de Enfermedad , Exoma/genética , Femenino , Displasia Fibromuscular/patología , Regulación de la Expresión Génica , Genotipo , Humanos , Hipertensión/genética , Hipertensión/patología , Masculino , Proteínas de Microfilamentos/biosíntesis , Miocitos del Músculo Liso , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/patología , Pez Cebra/genéticaRESUMEN
BACKGROUND: Cutaneous adverse events are common with programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) inhibitors. However, the nature of the specific cutaneous adverse event of dermatitis has not been investigated across various PD-1/PD-L1 inhibitors. Oncologic outcomes potentially associated with dermatitis are not well characterized. OBJECTIVE: To assess the nature of dermatitis after exposure to a PD-1/PD-L1 inhibitor and oncologic outcomes associated with dermatitis. METHODS: Retrospective, matched, case-control study conducted at a single academic center. RESULTS: The most common histologic patterns were lichenoid dermatitis (50%) and spongiotic dermatitis (40%). The overall tumor response rate was 65.0% for the case patients and 17.0% for the controls (P = .0007) (odds ratio, 7.3; 95% confidence interval, 2.3-23.1). The progression-free survival and overall survival times were significantly longer for the case patients than for the controls by Kaplan-Meier analysis (P < .0001 and .0203, respectively). LIMITATIONS: The retrospective design and relatively small sample size precluded matching for all cancer types. CONCLUSIONS: Lichenoid and spongiotic dermatitis associated with PD-1/PD-L1 inhibitors could be a sign of robust immune response and improved oncologic outcomes. The value of PD-1/PD-L1-related dermatitis in predicting cancer outcomes awaits investigation through prospective multicenter studies for specific cancer types.
Asunto(s)
Anticuerpos Monoclonales Humanizados/efectos adversos , Anticuerpos Monoclonales/efectos adversos , Antineoplásicos Inmunológicos/efectos adversos , Antígeno B7-H1/antagonistas & inhibidores , Erupciones por Medicamentos/etiología , Proteínas de Neoplasias/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Nivolumab/efectos adversos , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Adulto , Anciano , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales Humanizados/uso terapéutico , Antineoplásicos Inmunológicos/uso terapéutico , Estudios de Casos y Controles , Supervivencia sin Enfermedad , Femenino , Humanos , Estimación de Kaplan-Meier , Erupciones Liquenoides/inducido químicamente , Masculino , Persona de Mediana Edad , Neoplasias/mortalidad , Nivolumab/uso terapéutico , Estudios Retrospectivos , Resultado del TratamientoRESUMEN
Although the ocular lens shares many features with other tissues, it is unique in that it retains its cells throughout life, making it ideal for studies of differentiation/development. Precipitation of proteins results in lens opacification, or cataract, the major blinding disease. Lysines on ubiquitin (Ub) determine fates of Ub-protein substrates. Information regarding ubiquitin proteasome systems (UPSs), specifically of K6 in ubiquitin, is undeveloped. We expressed in the lens a mutant Ub containing a K6W substitution (K6W-Ub). Protein profiles of lenses that express wild-type ubiquitin (WT-Ub) or K6W-Ub differ by only â¼2%. Despite these quantitatively minor differences, in K6W-Ub lenses and multiple model systems we observed a fourfold Ca(2+) elevation and hyperactivation of calpain in the core of the lens, as well as calpain-associated fragmentation of critical lens proteins including Filensin, Fodrin, Vimentin, ß-Crystallin, Caprin family member 2, and tudor domain containing 7. Truncations can be cataractogenic. Additionally, we observed accumulation of gap junction Connexin43, and diminished Connexin46 levels in vivo and in vitro. These findings suggest that mutation of Ub K6 alters UPS function, perturbs gap junction function, resulting in Ca(2+) elevation, hyperactivation of calpain, and associated cleavage of substrates, culminating in developmental defects and a cataractous lens. The data show previously unidentified connections between UPS and calpain-based degradative systems and advance our understanding of roles for Ub K6 in eye development. They also inform about new approaches to delay cataract and other protein precipitation diseases.
Asunto(s)
Calcio/metabolismo , Calpaína , Catarata , Proteínas del Ojo , Cristalino , Ubiquitina , Sustitución de Aminoácidos , Animales , Calpaína/genética , Calpaína/metabolismo , Catarata/genética , Catarata/metabolismo , Catarata/patología , Activación Enzimática , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Uniones Comunicantes/metabolismo , Células HeLa , Humanos , Cristalino/metabolismo , Cristalino/patología , Ratones , Ratones Transgénicos , Mutación Missense , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Ubiquitina/genética , Ubiquitina/metabolismoRESUMEN
Blood pressure (BP) is a heritable, quantitative trait with intraindividual variability and susceptibility to measurement error. Genetic studies of BP generally use single-visit measurements and thus cannot remove variability occurring over months or years. We leveraged the idea that averaging BP measured across time would improve phenotypic accuracy and thereby increase statistical power to detect genetic associations. We studied systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP), and pulse pressure (PP) averaged over multiple years in 46,629 individuals of European ancestry. We identified 39 trait-variant associations across 19 independent loci (p < 5 × 10(-8)); five associations (in four loci) uniquely identified by our LTA analyses included those of SBP and MAP at 2p23 (rs1275988, near KCNK3), DBP at 2q11.2 (rs7599598, in FER1L5), and PP at 6p21 (rs10948071, near CRIP3) and 7p13 (rs2949837, near IGFBP3). Replication analyses conducted in cohorts with single-visit BP data showed positive replication of associations and a nominal association (p < 0.05). We estimated a 20% gain in statistical power with long-term average (LTA) as compared to single-visit BP association studies. Using LTA analysis, we identified genetic loci influencing BP. LTA might be one way of increasing the power of genetic associations for continuous traits in extant samples for other phenotypes that are measured serially over time.
Asunto(s)
Presión Sanguínea/genética , Sitios de Carácter Cuantitativo , Estudio de Asociación del Genoma Completo , Humanos , Estudios Longitudinales , Fenotipo , Polimorfismo de Nucleótido SimpleRESUMEN
Lens epithelial cells and early lens fiber cells contain the typical complement of intracellular organelles. However, as lens fiber cells mature they must destroy their organelles, including nuclei, in a process that has remained enigmatic for over a century, but which is crucial for the formation of the organelle-free zone in the center of the lens that assures clarity and function to transmit light. Nuclear degradation in lens fiber cells requires the nuclease DNase IIß (DLAD) but the mechanism by which DLAD gains access to nuclear DNA remains unknown. In eukaryotic cells, cyclin-dependent kinase 1 (CDK1), in combination with either activator cyclins A or B, stimulates mitotic entry, in part, by phosphorylating the nuclear lamin proteins leading to the disassembly of the nuclear lamina and subsequent nuclear envelope breakdown. Although most post-mitotic cells lack CDK1 and cyclins, lens fiber cells maintain these proteins. Here, we show that loss of CDK1 from the lens inhibited the phosphorylation of nuclear lamins A and C, prevented the entry of DLAD into the nucleus, and resulted in abnormal retention of nuclei. In the presence of CDK1, a single focus of the phosphonuclear mitotic apparatus is observed, but it is not focused in CDK1-deficient lenses. CDK1 deficiency inhibited mitosis, but did not prevent DNA replication, resulting in an overall reduction of lens epithelial cells, with the remaining cells possessing an abnormally large nucleus. These observations suggest that CDK1-dependent phosphorylations required for the initiation of nuclear membrane disassembly during mitosis are adapted for removal of nuclei during fiber cell differentiation.
Asunto(s)
Proteína Quinasa CDC2/metabolismo , Diferenciación Celular , Núcleo Celular/metabolismo , Cristalino/citología , Cristalino/enzimología , Mitosis , Animales , Proteína Quinasa CDC2/deficiencia , Proteínas de Ciclo Celular , ADN/biosíntesis , Embrión de Mamíferos/citología , Embrión de Mamíferos/enzimología , Endodesoxirribonucleasas/metabolismo , Retículo Endoplásmico/metabolismo , Endorreduplicación , Células Epiteliales/citología , Células Epiteliales/enzimología , Femenino , Integrasas/metabolismo , Laminas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/metabolismo , Proteínas Nucleares/metabolismo , FosforilaciónRESUMEN
The eye lens is unique among tissues: it is transparent, does not form tumors, and the majority of its cells degrade their organelles, including their cell nuclei. A mystery for over a century, there has been considerable recent progress in elucidating mechanisms of lens fiber cell denucleation (LFCD). In contrast to the disassembly and reassembly of the cell nucleus during mitosis, LFCD is a unidirectional process that culminates in destruction of the fiber cell nucleus. Whereas p27Kip1, the cyclin-dependent kinase inhibitor, is upregulated during formation of LFC in the outermost cortex, in the inner cortex, in the nascent organelle free zone, p27Kip1 is degraded, markedly activating cyclin-dependent kinase 1 (Cdk1). This process results in phosphorylation of nuclear Lamins, dissociation of the nuclear membrane, and entry of lysosomes that liberate DNaseIIß (DLAD) to cleave chromatin. Multiple cellular pathways, including the ubiquitin proteasome system and the unfolded protein response, converge on post-translational regulation of p27Kip1. Mutations that impair these pathways are associated with congenital cataracts and loss of LFCD. These findings highlight new regulatory nodes in the lens and suggest that we are close to understanding this fascinating terminal differentiation process. Such knowledge may offer a new means to confront proliferative diseases including cancer.
Asunto(s)
Núcleo Celular/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Cristalino/fisiología , Respuesta de Proteína Desplegada/fisiología , Animales , Proteína Quinasa CDC2/metabolismo , Catarata/congénito , Catarata/enzimología , Catarata/patología , Humanos , Laminas/metabolismo , Cristalino/citología , Cristalino/enzimología , Mitosis , FosforilaciónRESUMEN
Failure of lens fiber cell denucleation (LFCD) is associated with congenital cataracts, but the pathobiology awaits elucidation. Recent work has suggested that mechanisms that direct the unidirectional process of LFCD are analogous to the cyclic processes associated with mitosis. We found that lens-specific mutations that elicit an unfolded-protein response (UPR) in vivo accumulate p27(Cdkn1b), show cyclin-dependent kinase (Cdk)-1 inhibition, retain their LFC nuclei, and are cataractous. Although a UPR was not detected in lenses expressing K6W-Ub, they also accumulated p27 and showed failed LFCD. Induction of a UPR in human lens epithelial cells (HLECs) also induced accumulation of p27 associated with decreased levels of S-phase kinase-associated protein (Skp)-2, a ubiquitin ligase that regulates mitosis. These cells also showed decreased lamin A/C phosphorylation and metaphase arrest. The suppression of lamin A/C phosphorylation and metaphase transition induced by the UPR was rescued by knockdown of p27. Taken together, these data indicate that accumulation of p27, whether related to the UPR or not, prevents the phosphorylation of lamin A/C and LFCD in maturing LFCs in vivo, as well as in dividing HLECs. The former leads to cataract and the latter to metaphase arrest. These results suggest that accumulation of p27 is a common mechanism underlying retention of LFC nuclei.
Asunto(s)
Catarata/metabolismo , Catarata/patología , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Cristalino/metabolismo , Respuesta de Proteína Desplegada/fisiología , Animales , Línea Celular , Núcleo Celular/metabolismo , Células Epiteliales/metabolismo , Femenino , Humanos , Lamina Tipo A/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitosis/fisiología , Fosforilación/fisiología , Proteínas Quinasas Asociadas a Fase-S/metabolismoRESUMEN
Biological ligands such as aptamer, antibody, glucose, and peptide have been widely used to bind specific surface molecules or receptors in tumor cells or subcellular structures to improve tumor-targeting efficiency of nanoparticles. However, this active-targeting strategy has limitations for tumor targeting due to inter- and intraheterogeneity of tumors. In this study, we demonstrated an alternative active-targeting strategy using metabolic engineering and bioorthogonal click reaction to improve tumor-targeting efficiency of nanoparticles. We observed that azide-containing chemical reporters were successfully generated onto surface glycans of various tumor cells such as lung cancer (A549), brain cancer (U87), and breast cancer (BT-474, MDA-MB231, MCF-7) via metabolic engineering in vitro. In addition, we compared tumor targeting of artificial azide reporter with bicyclononyne (BCN)-conjugated glycol chitosan nanoparticles (BCN-CNPs) and integrin αvß3 with cyclic RGD-conjugated CNPs (cRGD-CNPs) in vitro and in vivo. Fluorescence intensity of azide-reporter-targeted BCN-CNPs in tumor tissues was 1.6-fold higher and with a more uniform distribution compared to that of cRGD-CNPs. Moreover, even in the isolated heterogeneous U87 cells, BCN-CNPs could bind artificial azide reporters on tumor cells more uniformly (â¼92.9%) compared to cRGD-CNPs. Therefore, the artificial azide-reporter-targeting strategy can be utilized for targeting heterogeneous tumor cells via bioorthogonal click reaction and may provide an alternative method of tumor targeting for further investigation in cancer therapy.