Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Allergy Clin Immunol ; 140(3): 738-749.e3, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28104354

RESUMEN

BACKGROUND: A key question in the allergy field is to understand how tissue-specific disease is manifested. Eosinophilic esophagitis (EoE) is an emerging tissue-specific allergic disease with an unclear pathogenesis. OBJECTIVE: Herein we tested the hypothesis that a defect in tissue-specific esophageal genes is an integral part of EoE pathogenesis. METHODS: We interrogated the pattern of expression of esophagus-specific signature genes derived from the Human Protein Atlas in the EoE transcriptome and in EPC2 esophageal epithelial cells. Western blotting and immunofluorescence were used for evaluating expression of esophageal proteins in biopsy specimens from control subjects and patients with active EoE. Whole-exome sequencing was performed to identify mutations in esophagus-specific genes. RESULTS: We found that approximately 39% of the esophagus-specific transcripts were altered in patients with EoE, with approximately 90% being downregulated. The majority of transcriptional changes observed in esophagus-specific genes were reproduced in vitro in esophageal epithelial cells differentiated in the presence of IL-13. Functional enrichment analysis revealed keratinization and differentiation as the most affected biological processes and identified IL-1 cytokines and serine peptidase inhibitors as the most dysregulated esophagus-specific protein families in patients with EoE. Accordingly, biopsy specimens from patients with EoE evidenced a profound loss of tissue differentiation, decreased expression of keratin 4 (KRT4) and cornulin (CRNN), and increased expression of KRT5 and KRT14. Whole-exome sequencing of 33 unrelated patients with EoE revealed 39 rare mutations in 18 esophagus-specific differentially expressed genes. CONCLUSIONS: A tissue-centered analysis has revealed a profound loss of esophageal tissue differentiation (identity) as an integral and specific part of the pathophysiology of EoE and implicated protease- and IL-1-related activities as putative central pathways in disease pathogenesis.


Asunto(s)
Esofagitis Eosinofílica/genética , Esófago/metabolismo , Adolescente , Diferenciación Celular/efectos de los fármacos , Niño , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Femenino , Humanos , Interleucina-13/farmacología , Masculino , Mutación , Transcriptoma
3.
Nat Commun ; 9(1): 3244, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30108214

RESUMEN

IL-33 is an epithelium-derived, pro-inflammatory alarmin with enigmatic nuclear localization and chromatin binding. Here we report the functional properties of nuclear IL-33. Overexpression of IL-33 does not alter global gene expression in transduced epithelial cells. Fluorescence recovery after photobleaching data show that the intranuclear mobility of IL-33 is ~10-fold slower than IL-1α, whereas truncated IL-33 lacking chromatin-binding activity is more mobile. WT IL-33 is more resistant to necrosis-induced release than truncated IL-33 and has a relatively slow, linear release over time after membrane dissolution as compared to truncated IL-33 or IL-1α. Lastly, IL-33 and histones are released as a high-molecular weight complex and synergistically activate receptor-mediated signaling. We thus propose that chromatin binding is a post-translational mechanism that regulates the releasability and ST2-mediated bioactivity of IL-33 and provide a paradigm to further understand the enigmatic functions of nuclear cytokines.


Asunto(s)
Cromatina/metabolismo , Citocinas/metabolismo , Espacio Extracelular/metabolismo , Interleucina-33/metabolismo , Línea Celular , Núcleo Celular/metabolismo , Regulación de la Expresión Génica , Heterocromatina/metabolismo , Histonas/metabolismo , Humanos , Proteína 1 Similar al Receptor de Interleucina-1 , Cinética , Modelos Biológicos , Necrosis , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA