Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nitric Oxide ; 118: 49-58, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34715361

RESUMEN

Redox signaling, wherein reactive and diffusible small molecules are channeled into specific messenger functions, is a critical component of signal transduction. A central principle of redox signaling is that the redox modulators are produced in a highly controlled fashion to specifically modify biotargets. Thiols serve as primary mediators of redox signaling as a function of the rich variety of adducts, which allows initiation of distinct cellular effects. Coupling the inherent reactivity of thiols with highly sensitive and selective chemical analysis protocols can facilitate identification of redox signaling agents, both in solution and in cultured cells. Here, we describe use of capillary zone electrophoresis to both identify and quantify sulfinamides, which are specific markers of the reaction of thiols with nitroxyl (HNO), a putative biologically relevant reactive nitrogen species.


Asunto(s)
Óxidos de Nitrógeno/análisis , Línea Celular Tumoral , Electroforesis Capilar , Glutatión/análogos & derivados , Glutatión/análisis , Glutatión/química , Humanos , Óxidos de Nitrógeno/química
2.
Inorg Chem ; 60(21): 15941-15947, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34694129

RESUMEN

The mechanistic roles of nitric oxide (NO) during cancer progression have been important considerations since its discovery as an endogenously generated free radical. Nonetheless, the impacts of this signaling molecule can be seemingly contradictory, being both pro-and antitumorigenic, which complicates the development of cancer treatments based on the modulation of NO fluxes in tumors. At a fundamental level, low levels of NO drive oncogenic pathways, immunosuppression, metastasis, and angiogenesis, while higher levels lead to apoptosis and reduced hypoxia and also sensitize tumors to conventional therapies. However, clinical outcome depends on the type and stage of the tumor as well as the tumor microenvironment. In this Viewpoint, the current understanding of the concentration, spatial, and temporal dependence of responses to NO is correlated with potential treatment and prevention technologies and strategies.


Asunto(s)
Óxido Nítrico
3.
Int J Mol Sci ; 22(13)2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34209132

RESUMEN

The metabolic requirements and functions of cancer and normal tissues are vastly different. Due to the rapid growth of cancer cells in the tumor microenvironment, distorted vasculature is commonly observed, which creates harsh environments that require rigorous and constantly evolving cellular adaption. A common hallmark of aggressive and therapeutically resistant tumors is hypoxia and hypoxia-induced stress markers. However, recent studies have identified alterations in a wide spectrum of metabolic pathways that dictate tumor behavior and response to therapy. Accordingly, it is becoming clear that metabolic processes are not uniform throughout the tumor microenvironment. Metabolic processes differ and are cell type specific where various factors promote metabolic heterogeneity within the tumor microenvironment. Furthermore, within the tumor, these metabolically distinct cell types can organize to form cellular neighborhoods that serve to establish a pro-tumor milieu in which distant and spatially distinct cellular neighborhoods can communicate via signaling metabolites from stroma, immune and tumor cells. In this review, we will discuss how biochemical interactions of various metabolic pathways influence cancer and immune microenvironments, as well as associated mechanisms that lead to good or poor clinical outcomes.


Asunto(s)
Neoplasias/inmunología , Óxido Nítrico/inmunología , Transducción de Señal/inmunología , Microambiente Tumoral/inmunología , Animales , Humanos , Neoplasias/patología
4.
Nitric Oxide ; 103: 31-46, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32721555

RESUMEN

In this article we discuss the fundamental chemical and physical properties of NO and related nitrogen oxides (NO2-, NO2, N2O3, etc.) under solution conditions relevant to mammalian biology.


Asunto(s)
Óxido Nítrico/metabolismo , Especies de Nitrógeno Reactivo/metabolismo , Humanos , Óxido Nítrico/química , Soluciones
5.
Int J Mol Sci ; 21(24)2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33321789

RESUMEN

Nitric oxide (NO) is a key player in both the development and suppression of tumourigenesis depending on the source and concentration of NO. In this review, we discuss the mechanisms by which NO induces DNA damage, influences the DNA damage repair response, and subsequently modulates cell cycle arrest. In some circumstances, NO induces cell cycle arrest and apoptosis protecting against tumourigenesis. NO in other scenarios can cause a delay in cell cycle progression, allowing for aberrant DNA repair that promotes the accumulation of mutations and tumour heterogeneity. Within the tumour microenvironment, low to moderate levels of NO derived from tumour and endothelial cells can activate angiogenesis and epithelial-to-mesenchymal transition, promoting an aggressive phenotype. In contrast, high levels of NO derived from inducible nitric oxide synthase (iNOS) expressing M1 and Th1 polarised macrophages and lymphocytes may exert an anti-tumour effect protecting against cancer. It is important to note that the existing evidence on immunomodulation is mainly based on murine iNOS studies which produce higher fluxes of NO than human iNOS. Finally, we discuss different strategies to target NO related pathways therapeutically. Collectively, we present a picture of NO as a master regulator of cancer development and progression.


Asunto(s)
Neoplasias/metabolismo , Óxido Nítrico/metabolismo , Transducción de Señal , Animales , Humanos , Inmunoterapia/métodos , Neoplasias/terapia
6.
J Biol Inorg Chem ; 24(3): 315-316, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31037467

RESUMEN

Many nitrogen oxides have long been referred to by their common names rather than by IUPAC recommended nomenclature. This practice has expanded with the discovery that nitrogen oxides serve as biological signaling agents. This commentary addresses the recent introduction of a new term for metal nitrosyl complexes upon reduction and suggests a community-based approach to changes in nomenclature rather than through spontaneous introduction in the literature.


Asunto(s)
Complejos de Coordinación/química , Óxido Nítrico/química , Compuestos Nitrosos/química , Ligandos
7.
Nitric Oxide ; 44: 39-46, 2015 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-25460322

RESUMEN

Donors of nitroxyl (HNO) exhibit pharmacological properties that are potentially favorable for treatment of a variety of diseases. To fully evaluate the pharmacological utility of HNO, it is therefore important to understand its chemistry, particularly involvement in deleterious biological reactions. Of particular note is the cytotoxic species formed from HNO autoxidation that is capable of inducing double strand DNA breaks. The identity of this species remains elusive, but a conceivable product is peroxynitrous acid. However, chemical comparison studies have demonstrated that HNO autoxidation leads to a unique reactive nitrogen oxide species to that of synthetic peroxynitrite. Here, we extend the analysis to include a new preparation of peroxynitrite formed via autoxidation of nitroxyl anion (NO(-)). Both peroxynitrite preparations exhibited similar chemical profiles, although autoxidation of NO(-) provided a more reliable sample of peroxynitrite. Furthermore, the observed dissimilarities to the HNO donor Angeli's salt substantiate that HNO autoxidation produces a unique intermediate from peroxynitrite.


Asunto(s)
Aniones/química , Óxidos de Nitrógeno/química , Oxidación-Reducción , Ácido Peroxinitroso/química , Ácido Benzoico , Colorantes Fluorescentes , Concentración de Iones de Hidrógeno , Hidroxilación , Nitratos , Óxido Nítrico , Nitritos , Oxígeno , Rodaminas
8.
Nitric Oxide ; 43: 17-28, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25153034

RESUMEN

Nitric oxide (NO) synthase 2 (NOS2), a major inflammatory protein, modulates disease progression via NO in a number of pathologies, including cancer. The role of NOS2-derived NO is not only flux-dependent, which is higher in mouse vs human cells, but also varies based on spatial and temporal distribution both within tumor cells and in the tumor microenvironment. NO donors have been utilized to mimic NO flux conditions and to investigate the effects of varied NO concentrations. As a wide range of effects mediated by NO and other nitrogen oxides such as nitroxyl (HNO) have been elucidated, multiple NO- and HNO-releasing compounds have been developed as potential therapeutics, including as tumor modulators. One of the challenges is to determine differences in biomarker expression from extracellular vs intracellular generation of NO or HNO. Taking advantage of new NO and HNO releasing agents, we have characterized the gene expression profile of estrogen receptor-negative human breast cancer (MDA-MB-231) cells following exposure to aspirin, the NO donor DEA/NO, the HNO donor IPA/NO andtheir intracellularly-activated prodrug conjugates DEA/NO-aspirin and IPA/NO-aspirin. Comparison of the gene expression profiles demonstrated that several genes were uniquely expressed with respect to NO or HNO, such as miR-21, HSP70, cystathionine γ-lyase and IL24. These findings provide insight into targets and pathways that could be therapeutically exploited by the redox related species NO and HNO.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Donantes de Óxido Nítrico/farmacología , Óxido Nítrico/farmacología , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/terapia , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Perfilación de la Expresión Génica , Humanos , Ratones , Óxido Nítrico Sintasa/metabolismo , Transducción de Señal
9.
Nitric Oxide ; 42: 70-8, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25192820

RESUMEN

Nitroxyl (HNO) donors have been shown to elicit a variety of pharmacological responses, ranging from tumoricidal effects to treatment of heart failure. Isopropylamine-based diazeniumdiolates have been shown to produce HNO on decomposition under physiological conditions. Herein, we report the synthesis and HNO release profiles of primary alicyclic amine-based diazeniumdiolates. These compounds extend the range of known diazeniumdiolate-based HNO donors. Acetoxymethyl ester-protected diazeniumdiolates were also synthesized to improve purification and cellular uptake. The acetoxymethyl derivative of cyclopentylamine diazeniumdiolate not only showed higher cytotoxicity toward cancer cells as compared to the parent anion but was also effective in combination with tamoxifen for targeting estrogen receptor α-negative breast cancer cells.


Asunto(s)
Compuestos Azo/química , Óxido Nítrico/metabolismo , Espectroscopía de Resonancia Magnética , Espectrofotometría Ultravioleta
10.
Crit Rev Oncog ; 28(1): 27-45, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37824385

RESUMEN

Nitric oxide (NO) and the enzyme that synthesizes it, nitric oxide synthase 2 (NOS2), have emerged as key players in inflammation and cancer. Expression of NOS2 in tumors has been correlated both with positive outcomes and with poor prognoses. The chemistry of NO is the major determinate to the biological outcome and the concentration of NO, which can range over five orders of magnitude, is critical in determining which pathways are activated. It is the activation of specific oncogenic and immunological mechanisms that shape the outcome. The kinetics of specific reactions determine the mechanisms of action. In this review, the relevant reactions of NO and related species are discussed with respect to these oncogenic and immunological signals.


Asunto(s)
Neoplasias , Óxido Nítrico Sintasa de Tipo II , Óxido Nítrico , Humanos , Neoplasias/genética , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Transducción de Señal
11.
Nat Commun ; 14(1): 5114, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37607904

RESUMEN

M1 macrophages enter a glycolytic state when endogenous nitric oxide (NO) reprograms mitochondrial metabolism by limiting aconitase 2 and pyruvate dehydrogenase (PDH) activity. Here, we provide evidence that NO targets the PDH complex by using lipoate to generate nitroxyl (HNO). PDH E2-associated lipoate is modified in NO-rich macrophages while the PDH E3 enzyme, also known as dihydrolipoamide dehydrogenase (DLD), is irreversibly inhibited. Mechanistically, we show that lipoate facilitates NO-mediated production of HNO, which interacts with thiols forming irreversible modifications including sulfinamide. In addition, we reveal a macrophage signature of proteins with reduction-resistant modifications, including in DLD, and identify potential HNO targets. Consistently, DLD enzyme is modified in an HNO-dependent manner at Cys477 and Cys484, and molecular modeling and mutagenesis show these modifications impair the formation of DLD homodimers. In conclusion, our work demonstrates that HNO is produced physiologically. Moreover, the production of HNO is dependent on the lipoate-rich PDH complex facilitating irreversible modifications that are critical to NO-dependent metabolic rewiring.


Asunto(s)
Óxido Nítrico , Óxidos de Nitrógeno , Macrófagos , Complejo Piruvato Deshidrogenasa , Oxidorreductasas , Piruvatos
12.
Pathogens ; 12(8)2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37624023

RESUMEN

Chagas disease (CD), caused by Trypanosoma cruzi, is a neglected tropical disease prevalent in Latin America. Infected patients are treated to eliminate the parasite, reduce the cardiomyopathy risk, and interrupt the disease transmission cycle. The World Health Organization recognizes benznidazole (BZ) and nifurtimox as effective drugs for CD treatment. In the chronic phase, both drugs have low cure rates and serious side effects. T. cruzi infection causes intense tissue inflammation that controls parasite proliferation and CD evolution. Compounds that liberate nitric oxide (NO) (NO donors) have been used as anti-T. cruzi therapeutics. Currently, there is no evidence that nitroxyl (HNO) affects T. cruzi infection outcomes. This study investigated the effects of the HNO donor Angeli's salt (AS) on C57BL/6 mice infected with T. cruzi (Y strain, 5 × 103 trypomastigotes, intraperitoneally). AS reduced the number of parasites in the bloodstream and heart nests and increased the protective antioxidant capacity of erythrocytes in infected animals, reducing disease severity. Furthermore, in vitro experiments showed that AS treatment reduced parasite uptake and trypomastigote release by macrophages. Taken together, these findings from the murine model and in vitro testing suggest that AS could be a promising therapy for CD.

14.
Inorg Chem ; 50(8): 3262-70, 2011 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-21405089

RESUMEN

The growing evidence that nitroxyl (HNO) has a rich pharmacological potential that differs from that of nitric oxide (NO) has intensified interest in HNO donors. Recently, the diazeniumdiolate (NONOate) based on isopropylamine (IPA/NO; Na[(CH(3))(2)CHNH(N(O)NO)]) was demonstrated to function under physiological conditions as an organic analogue to the commonly used HNO donor Angeli's salt (Na(2)N(2)O(3)). The decomposition mechanism of Angeli's salt is dependent on pH, with transition from an HNO to an NO donor occurring abruptly near pH 3. Here, pH is shown to also affect product formation from IPA/NO. Chemical analysis of HNO and NO production led to refinement of an earlier, quantum mechanically based prediction of the pH-dependent decomposition mechanisms of primary amine NONOates such as IPA/NO. Under basic conditions, the amine proton of IPA/NO is able to initiate decomposition to HNO by tautomerization to the nitroso nitrogen (N(2)). At lower pH, protonation activates a competing pathway to NO production. At pH 8, the donor properties of IPA/NO and Angeli's salt are demonstrated to be comparable, suggesting that at or above this pH, IPA/NO is primarily an HNO donor. Below pH 5, NO is the major product, while IPA/NO functions as a dual donor of HNO and NO at intermediate pH. This pH-dependent variability in product formation may prove useful in examination of the chemistry of NO and HNO. Furthermore, primary amine NONOates may serve as a tunable class of nitrogen oxide donor.


Asunto(s)
Aminas/química , Compuestos Azo/química , Óxidos de Nitrógeno/química , Concentración de Iones de Hidrógeno
15.
Biochim Biophys Acta ; 1787(7): 835-40, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19426703

RESUMEN

Once a virtually unknown nitrogen oxide, nitroxyl (HNO) has emerged as a potential pharmacological agent. Recent advances in the understanding of the chemistry of HNO has led to the an understanding of HNO biochemistry which is vastly different from the known chemistry and biochemistry of nitric oxide (NO), the one-electron oxidation product of HNO. The cardiovascular roles of NO have been extensively studied, as NO is a key modulator of vascular tone and is involved in a number of vascular related pathologies. HNO displays unique cardiovascular properties and has been shown to have positive lusitropic and ionotropic effects in failing hearts without a chronotropic effect. Additionally, HNO causes a release of CGRP and modulates calcium channels such as ryanodine receptors. HNO has shown beneficial effects in ischemia reperfusion injury, as HNO treatment before ischemia-reperfusion reduces infarct size. In addition to the cardiovascular effects observed, HNO has shown initial promise in the realm of cancer therapy. HNO has been demonstrated to inhibit GAPDH, a key glycolytic enzyme. Due to the Warburg effect, inhibiting glycolysis is an attractive target for inhibiting tumor proliferation. Indeed, HNO has recently been shown to inhibit tumor proliferation in mouse xenografts. Additionally, HNO inhibits tumor angiogenesis and induces cancer cell apoptosis. The effects seen with HNO donors are quite different from NO donors and in some cases are opposite. The chemical nature of HNO explains how HNO and NO, although closely chemically related, act so differently in biochemical systems. This also gives insight into the potential molecular motifs that may be reactive towards HNO and opens up a novel field of pharmacological development.


Asunto(s)
Óxidos de Nitrógeno/farmacología , Animales , Insuficiencia Cardíaca/tratamiento farmacológico , Humanos , Modelos Biológicos , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Óxido Nítrico/farmacología , Óxido Nítrico/uso terapéutico , Óxidos de Nitrógeno/química , Óxidos de Nitrógeno/uso terapéutico
16.
J Am Chem Soc ; 132(46): 16526-32, 2010 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-21033665

RESUMEN

Here we describe a novel caged form of the highly reactive bioeffector molecule, nitroxyl (HNO). Reacting the labile nitric oxide (NO)- and HNO-generating salt of structure iPrHN-N(O)═NO(-)Na(+) (1, IPA/NO) with BrCH(2)OAc produced a stable derivative of structure iPrHN-N(O)═NO-CH(2)OAc (2, AcOM-IPA/NO), which hydrolyzed an order of magnitude more slowly than 1 at pH 7.4 and 37 °C. Hydrolysis of 2 to generate HNO proceeded by at least two mechanisms. In the presence of esterase, straightforward dissociation to acetate, formaldehyde, and 1 was the dominant path. In the absence of enzyme, free 1 was not observed as an intermediate and the ratio of NO to HNO among the products approached zero. To account for this surprising result, we propose a mechanism in which base-induced removal of the N-H proton of 2 leads to acetyl group migration from oxygen to the neighboring nitrogen, followed by cleavage of the resulting rearrangement product to isopropanediazoate ion and the known HNO precursor, CH(3)-C(O)-NO. The trappable yield of HNO from 2 was significantly enhanced over 1 at physiological pH, in part because the slower rate of hydrolysis for 2 generated a correspondingly lower steady-state concentration of HNO, thus, minimizing self-consumption and enhancing trapping by biological targets such as metmyoglobin and glutathione. Consistent with the chemical trapping efficiency data, micromolar concentrations of prodrug 2 displayed significantly more potent sarcomere shortening effects relative to 1 on ventricular myocytes isolated from wild-type mouse hearts, suggesting that 2 may be a promising lead compound for the development of heart failure therapies.


Asunto(s)
Compuestos Azo/química , Donantes de Óxido Nítrico/química , Óxidos de Nitrógeno/química , Profármacos/química , Animales , Espectroscopía de Resonancia Magnética , Ratones , Estructura Molecular , Células Musculares/química , Células Musculares/metabolismo
17.
Inorg Chem ; 49(14): 6283-92, 2010 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-20666387

RESUMEN

The formation and interconversion of nitrogen oxides has been of interest in numerous contexts for decades. Early studies focused on gas-phase reactions, particularly with regard to industrial and atmospheric environments, and on nitrogen fixation. Additionally, investigation of the coordination chemistry of nitric oxide (NO) with hemoglobin dates back nearly a century. With the discovery in the early 1980s that NO is biosynthesized as a molecular signaling agent, the literature has been focused on the biological effects of nitrogen oxides, but the original concerns remain relevant. For instance, hemoglobin has long been known to react with nitrite, but this reductase activity has recently been considered to be important to produce NO under hypoxic conditions. The association of nitrosyl hydride (HNO; also commonly referred to as nitroxyl) with heme proteins can also produce NO by reductive nitrosylation. Furthermore, HNO is considered to be an intermediate in bacterial denitrification, but conclusive identification has been elusive. The authors of this article have approached the bioinorganic chemistry of HNO from different perspectives, which have converged because heme proteins are important biological targets of HNO.


Asunto(s)
Hemoproteínas/química , Compuestos Nitrosos/química , Animales , Hemoproteínas/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Estructura Molecular , Compuestos Nitrosos/metabolismo
18.
Arch Pharm Res ; 32(8): 1139-53, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19727606

RESUMEN

For the past couple of decades nitric oxide (NO) and nitroxyl (HNO) have been extensively studied due to the important role they play in many physiological and/or pharmacological processes. Many researchers have reported important signaling pathways as well as mechanisms of action of these species, showing direct and indirect effects depending on the environment. Both NO and HNO can react with, among others, metals, proteins, thiols and heme proteins via unique and distinct chemistry leading to improvement of some clinical conditions. Understanding the basic chemistry of NO and HNO and distinguishing their mechanisms of action as well as methods of detection are crucial for understanding the current and potential clinical applications. In this review, we summarize some of the most important findings regarding NO and HNO chemistry, revealing some of the possible mechanisms of their beneficial actions.


Asunto(s)
Óxido Nítrico/química , Óxidos de Nitrógeno/química , Animales , Humanos , Óxido Nítrico/fisiología , Óxidos de Nitrógeno/metabolismo , Especies de Nitrógeno Reactivo/metabolismo
19.
Eur J Med Chem ; 162: 650-665, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30481687

RESUMEN

Glucose intolerance is associated with metabolic syndrome and type 2 diabetes mellitus (T2DM) while some new therapeutic drugs, such as rosiglitazone (Rosi), for T2DM can cause severe cardiovascular side effects. Herein we report the synthesis of Rosi-ferulic acid (FA)-nitric oxide (NO) donor trihybrids to improve glucose tolerance and minimize the side effects. In comparison with Rosi, the most active compound 21 exhibited better effects on improving glucose tolerance, which was associated with its NO production, antioxidant and anti-inflammatory activities. Furthermore, 21 displayed relatively high stability in the simulated gastrointestinal environments and human liver microsomes, and released Rosi in plasma. More importantly, 21, unlike Rosi, had little stimulatory effect on the membrane translocation of aquaporin-2 (AQP2) in kidney collecting duct epithelial cells. These, together with a better safety profile, suggest that the trihybrids, like 21, may be promising candidates for intervention of glucose intolerance-related metabolic syndrome and T2DM.


Asunto(s)
Ácidos Cumáricos/química , Intolerancia a la Glucosa/tratamiento farmacológico , Donantes de Óxido Nítrico/química , Rosiglitazona/química , Antiinflamatorios , Antioxidantes , Acuaporina 2/metabolismo , Células Cultivadas , Ácidos Cumáricos/farmacología , Ácidos Cumáricos/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diseño de Fármacos , Humanos , Túbulos Renales Colectores/citología , Túbulos Renales Colectores/metabolismo , Síndrome Metabólico/tratamiento farmacológico , Microsomas Hepáticos , Donantes de Óxido Nítrico/farmacología , Donantes de Óxido Nítrico/uso terapéutico , Rosiglitazona/farmacología , Rosiglitazona/uso terapéutico
20.
Free Radic Biol Med ; 45(6): 749-55, 2008 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-18572022

RESUMEN

Nitrosation of enzyme regulatory cysteines is one of the key posttranslational modification mechanisms of enzyme function. Frequently such modifications are readily reversible; however, cysteine proteases, such as cathepsin B, have been shown to be covalently and permanently inactivated by nitroxyl (HNO), the one-electron reduction product of NO. Owing to the high reactivity of HNO with NO, endogenous NO production could provide direct protection for the less reactive protein cysteines by scavenging HNO. Additionally, endogenous cellular production of NO could rescue enzyme function by protective nitrosation of cysteines prior to exposure to HNO. Thus, we studied the effect of endogenous NO production, induced by LPS or IFN-gamma, on inhibition of cysteine protease cathepsin B in RAW macrophages. Both LPS and IFN-gamma induce iNOS with generation of nitrate up to 9 muM in the media after a 24-h stimulation, while native RAW 264.7 macrophages neither express iNOS nor generate nitrate. After the 24-h stimulation, the HNO-releasing Angeli's salt (0-316 microM) caused dose-dependent and DTT-irreversible loss of cathepsin B activity, and induction of iNOS activity did not protect the enzyme. The lack of protection was also verified in an in vitro setup, where papain, a close structural analogue of cathepsin B, was inhibited by Angeli's salt (2.7 microM) in the presence of the NO donor DEA/NO (0-316 microM). This clearly showed that a high molar excess of DEA/NO (EC(50) 406 microM) is needed to protect papain from the DTT-irreversible covalent modification by HNO. Our results provide first evidence on a cellular level for the remarkably high sensitivity of active-site cysteines in cysteine proteases for modification by HNO.


Asunto(s)
Catepsina B/antagonistas & inhibidores , Óxido Nítrico/fisiología , Óxidos de Nitrógeno/metabolismo , Animales , Western Blotting , Catepsina B/metabolismo , Línea Celular , Glutatión/farmacología , Inmunohistoquímica , Interferón gamma/farmacología , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/enzimología , Macrófagos/metabolismo , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA