Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 616(7958): 798-805, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37046089

RESUMEN

Oncogene amplification on extrachromosomal DNA (ecDNA) drives the evolution of tumours and their resistance to treatment, and is associated with poor outcomes for patients with cancer1-6. At present, it is unclear whether ecDNA is a later manifestation of genomic instability, or whether it can be an early event in the transition from dysplasia to cancer. Here, to better understand the development of ecDNA, we analysed whole-genome sequencing (WGS) data from patients with oesophageal adenocarcinoma (EAC) or Barrett's oesophagus. These data included 206 biopsies in Barrett's oesophagus surveillance and EAC cohorts from Cambridge University. We also analysed WGS and histology data from biopsies that were collected across multiple regions at 2 time points from 80 patients in a case-control study at the Fred Hutchinson Cancer Center. In the Cambridge cohorts, the frequency of ecDNA increased between Barrett's-oesophagus-associated early-stage (24%) and late-stage (43%) EAC, suggesting that ecDNA is formed during cancer progression. In the cohort from the Fred Hutchinson Cancer Center, 33% of patients who developed EAC had at least one oesophageal biopsy with ecDNA before or at the diagnosis of EAC. In biopsies that were collected before cancer diagnosis, higher levels of ecDNA were present in samples from patients who later developed EAC than in samples from those who did not. We found that ecDNAs contained diverse collections of oncogenes and immunomodulatory genes. Furthermore, ecDNAs showed increases in copy number and structural complexity at more advanced stages of disease. Our findings show that ecDNA can develop early in the transition from high-grade dysplasia to cancer, and that ecDNAs progressively form and evolve under positive selection.


Asunto(s)
Adenocarcinoma , Esófago de Barrett , Carcinogénesis , ADN , Progresión de la Enfermedad , Detección Precoz del Cáncer , Neoplasias Esofágicas , Humanos , Adenocarcinoma/genética , Adenocarcinoma/patología , Esófago de Barrett/genética , Esófago de Barrett/patología , Estudios de Casos y Controles , ADN/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Carcinogénesis/genética , Secuenciación Completa del Genoma , Estudios de Cohortes , Biopsia , Oncogenes , Inmunomodulación , Variaciones en el Número de Copia de ADN , Amplificación de Genes , Detección Precoz del Cáncer/métodos
2.
Nature ; 619(7968): 176-183, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37286593

RESUMEN

Chromosomal instability (CIN) and epigenetic alterations are characteristics of advanced and metastatic cancers1-4, but whether they are mechanistically linked is unknown. Here we show that missegregation of mitotic chromosomes, their sequestration in micronuclei5,6 and subsequent rupture of the micronuclear envelope7 profoundly disrupt normal histone post-translational modifications (PTMs), a phenomenon conserved across humans and mice, as well as in cancer and non-transformed cells. Some of the changes in histone PTMs occur because of the rupture of the micronuclear envelope, whereas others are inherited from mitotic abnormalities before the micronucleus is formed. Using orthogonal approaches, we demonstrate that micronuclei exhibit extensive differences in chromatin accessibility, with a strong positional bias between promoters and distal or intergenic regions, in line with observed redistributions of histone PTMs. Inducing CIN causes widespread epigenetic dysregulation, and chromosomes that transit in micronuclei experience heritable abnormalities in their accessibility long after they have been reincorporated into the primary nucleus. Thus, as well as altering genomic copy number, CIN promotes epigenetic reprogramming and heterogeneity in cancer.


Asunto(s)
Inestabilidad Cromosómica , Segregación Cromosómica , Cromosomas , Epigénesis Genética , Micronúcleos con Defecto Cromosómico , Neoplasias , Animales , Humanos , Ratones , Cromatina/genética , Inestabilidad Cromosómica/genética , Cromosomas/genética , Cromosomas/metabolismo , Histonas/química , Histonas/metabolismo , Neoplasias/genética , Neoplasias/patología , Mitosis , Variaciones en el Número de Copia de ADN , Procesamiento Proteico-Postraduccional
3.
Nature ; 602(7897): 510-517, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35140399

RESUMEN

Clustered somatic mutations are common in cancer genomes and previous analyses reveal several types of clustered single-base substitutions, which include doublet- and multi-base substitutions1-5, diffuse hypermutation termed omikli6, and longer strand-coordinated events termed kataegis3,7-9. Here we provide a comprehensive characterization of clustered substitutions and clustered small insertions and deletions (indels) across 2,583 whole-genome-sequenced cancers from 30 types of cancer10. Clustered mutations were highly enriched in driver genes and associated with differential gene expression and changes in overall survival. Several distinct mutational processes gave rise to clustered indels, including signatures that were enriched in tobacco smokers and homologous-recombination-deficient cancers. Doublet-base substitutions were caused by at least 12 mutational processes, whereas most multi-base substitutions were generated by either tobacco smoking or exposure to ultraviolet light. Omikli events, which have previously been attributed to APOBEC3 activity6, accounted for a large proportion of clustered substitutions; however, only 16.2% of omikli matched APOBEC3 patterns. Kataegis was generated by multiple mutational processes, and 76.1% of all kataegic events exhibited mutational patterns that are associated with the activation-induced deaminase (AID) and APOBEC3 family of deaminases. Co-occurrence of APOBEC3 kataegis and extrachromosomal DNA (ecDNA), termed kyklonas (Greek for cyclone), was found in 31% of samples with ecDNA. Multiple distinct kyklonic events were observed on most mutated ecDNA. ecDNA containing known cancer genes exhibited both positive selection and kyklonic hypermutation. Our results reveal the diversity of clustered mutational processes in human cancer and the role of APOBEC3 in recurrently mutating and fuelling the evolution of ecDNA.


Asunto(s)
Neoplasias , Desaminasas APOBEC/genética , Genoma , Humanos , Mutación INDEL , Mutagénesis/genética , Mutación , Neoplasias/genética
4.
Genome Res ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38981681

RESUMEN

Extrachromosomal DNA (ecDNA) is a central mechanism for focal oncogene amplification in cancer, occurring in approximately 15% of early-stage cancers and 30% of late-stage cancers. EcDNAs drive tumor formation, evolution, and drug resistance by dynamically modulating oncogene copy-number and rewiring gene-regulatory networks. Elucidating the genomic architecture of ecDNA amplifications is critical for understanding tumor pathology and developing more effective therapies. Paired-end short-read (Illumina) sequencing and mapping have been utilized to represent ecDNA amplifications using a breakpoint graph, where the inferred architecture of ecDNA is encoded as a cycle in the graph. Traversals of breakpoint graph have been used to successfully predict ecDNA presence in cancer samples. However, short-read technologies are intrinsically limited in the identification of breakpoints, phasing together of complex rearrangements and internal duplications, and deconvolution of cell-to-cell heterogeneity of ecDNA structures. Long-read technologies, such as from Oxford Nanopore Technologies, have the potential to improve inference as the longer reads are better at mapping structural variants and are more likely to span rearranged or duplicated regions. Here, we propose CoRAL (Complete Reconstruction of Amplifications with Long reads), for reconstructing ecDNA architectures using long-read data. CoRAL reconstructs likely cyclic architectures using quadratic programming that simultaneously optimizes parsimony of reconstruction, explained copy number, and consistency of long-read mapping. CoRAL substantially improves reconstructions in extensive simulations and 10 datasets from previously-characterized cell lines as compared to previous short and long-read based tools. As long-read usage becomes wide-spread, we anticipate that CoRAL will be a valuable tool for profiling the landscape and evolution of focal amplifications in tumors.

5.
Nature ; 600(7890): 731-736, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34819668

RESUMEN

Extrachromosomal DNA (ecDNA) is prevalent in human cancers and mediates high expression of oncogenes through gene amplification and altered gene regulation1. Gene induction typically involves cis-regulatory elements that contact and activate genes on the same chromosome2,3. Here we show that ecDNA hubs-clusters of around 10-100 ecDNAs within the nucleus-enable intermolecular enhancer-gene interactions to promote oncogene overexpression. ecDNAs that encode multiple distinct oncogenes form hubs in diverse cancer cell types and primary tumours. Each ecDNA is more likely to transcribe the oncogene when spatially clustered with additional ecDNAs. ecDNA hubs are tethered by the bromodomain and extraterminal domain (BET) protein BRD4 in a MYC-amplified colorectal cancer cell line. The BET inhibitor JQ1 disperses ecDNA hubs and preferentially inhibits ecDNA-derived-oncogene transcription. The BRD4-bound PVT1 promoter is ectopically fused to MYC and duplicated in ecDNA, receiving promiscuous enhancer input to drive potent expression of MYC. Furthermore, the PVT1 promoter on an exogenous episome suffices to mediate gene activation in trans by ecDNA hubs in a JQ1-sensitive manner. Systematic silencing of ecDNA enhancers by CRISPR interference reveals intermolecular enhancer-gene activation among multiple oncogene loci that are amplified on distinct ecDNAs. Thus, protein-tethered ecDNA hubs enable intermolecular transcriptional regulation and may serve as units of oncogene function and cooperative evolution and as potential targets for cancer therapy.


Asunto(s)
Neoplasias , Proteínas Nucleares , Azepinas/farmacología , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Amplificación de Genes , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/genética , Proteínas Nucleares/genética , Oncogenes/genética , Factores de Transcripción/genética
6.
Proc Natl Acad Sci U S A ; 120(20): e2210991120, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155843

RESUMEN

In 2021, the World Health Organization reclassified glioblastoma, the most common form of adult brain cancer, into isocitrate dehydrogenase (IDH)-wild-type glioblastomas and grade IV IDH mutant (G4 IDHm) astrocytomas. For both tumor types, intratumoral heterogeneity is a key contributor to therapeutic failure. To better define this heterogeneity, genome-wide chromatin accessibility and transcription profiles of clinical samples of glioblastomas and G4 IDHm astrocytomas were analyzed at single-cell resolution. These profiles afforded resolution of intratumoral genetic heterogeneity, including delineation of cell-to-cell variations in distinct cell states, focal gene amplifications, as well as extrachromosomal circular DNAs. Despite differences in IDH mutation status and significant intratumoral heterogeneity, the profiled tumor cells shared a common chromatin structure defined by open regions enriched for nuclear factor 1 transcription factors (NFIA and NFIB). Silencing of NFIA or NFIB suppressed in vitro and in vivo growths of patient-derived glioblastomas and G4 IDHm astrocytoma models. These findings suggest that despite distinct genotypes and cell states, glioblastoma/G4 astrocytoma cells share dependency on core transcriptional programs, yielding an attractive platform for addressing therapeutic challenges associated with intratumoral heterogeneity.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Glioblastoma/genética , Glioblastoma/patología , Cromatina/genética , Transcriptoma , Astrocitoma/genética , Astrocitoma/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Mutación , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo
7.
Annu Rev Genomics Hum Genet ; 23: 29-52, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35609926

RESUMEN

In cancer, complex genome rearrangements and other structural alterations, including the amplification of oncogenes on circular extrachromosomal DNA (ecDNA) elements, drive the formation and progression of tumors. ecDNA is a particularly challenging structural alteration. By untethering oncogenes from chromosomal constraints, it elevates oncogene copy number, drives intratumoral genetic heterogeneity, promotes rapid tumor evolution, and results in treatment resistance. The profound changes in DNA shape and nuclear architecture generated by ecDNA alter the transcriptional landscape of tumors by catalyzing new types of regulatory interactions that do not occur on chromosomes. The current suite of tools for interrogating cancer genomes is well suited for deciphering sequence but has limited ability to resolve the complex changes in DNA structure and dynamics that ecDNA generates. Here, we review the challenges of resolving ecDNA form and function and discuss the emerging tool kit for deciphering ecDNA architecture and spatial organization, including what has been learned to date about how this dramatic change in shape alters tumor development, progression, and drug resistance.


Asunto(s)
Neoplasias , Oncogenes , Cromosomas , ADN/genética , Humanos , Neoplasias/genética , Neoplasias/patología
8.
Nature ; 569(7757): 570-575, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31019297

RESUMEN

Precision oncology hinges on linking tumour genotype with molecularly targeted drugs1; however, targeting the frequently dysregulated metabolic landscape of cancer has proven to be a major challenge2. Here we show that tissue context is the major determinant of dependence on the nicotinamide adenine dinucleotide (NAD) metabolic pathway in cancer. By analysing more than 7,000 tumours and 2,600 matched normal samples of 19 tissue types, coupled with mathematical modelling and extensive in vitro and in vivo analyses, we identify a simple and actionable set of 'rules'. If the rate-limiting enzyme of de novo NAD synthesis, NAPRT, is highly expressed in a normal tissue type, cancers that arise from that tissue will have a high frequency of NAPRT amplification and be completely and irreversibly dependent on NAPRT for survival. By contrast, tumours that arise from normal tissues that do not express NAPRT highly are entirely dependent on the NAD salvage pathway for survival. We identify the previously unknown enhancer that underlies this dependence. Amplification of NAPRT is shown to generate a pharmacologically actionable tumour cell dependence for survival. Dependence on another rate-limiting enzyme of the NAD synthesis pathway, NAMPT, as a result of enhancer remodelling is subject to resistance by NMRK1-dependent synthesis of NAD. These results identify a central role for tissue context in determining the choice of NAD biosynthetic pathway, explain the failure of NAMPT inhibitors, and pave the way for more effective treatments.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Amplificación de Genes , NAD/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Animales , Ligasas de Carbono-Nitrógeno con Glutamina como Donante de Amida-N/metabolismo , Muerte Celular , Línea Celular Tumoral , Citocinas/antagonistas & inhibidores , Citocinas/genética , Citocinas/metabolismo , Epigénesis Genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Neoplasias/enzimología , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Nicotinamida Fosforribosiltransferasa/genética , Nicotinamida Fosforribosiltransferasa/metabolismo , Pentosiltransferasa/genética , Pentosiltransferasa/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo
9.
Nature ; 575(7784): 699-703, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31748743

RESUMEN

Oncogenes are commonly amplified on particles of extrachromosomal DNA (ecDNA) in cancer1,2, but our understanding of the structure of ecDNA and its effect on gene regulation is limited. Here, by integrating ultrastructural imaging, long-range optical mapping and computational analysis of whole-genome sequencing, we demonstrate the structure of circular ecDNA. Pan-cancer analyses reveal that oncogenes encoded on ecDNA are among the most highly expressed genes in the transcriptome of the tumours, linking increased copy number with high transcription levels. Quantitative assessment of the chromatin state reveals that although ecDNA is packaged into chromatin with intact domain structure, it lacks higher-order compaction that is typical of chromosomes and displays significantly enhanced chromatin accessibility. Furthermore, ecDNA is shown to have a significantly greater number of ultra-long-range interactions with active chromatin, which provides insight into how the structure of circular ecDNA affects oncogene function, and connects ecDNA biology with modern cancer genomics and epigenetics.


Asunto(s)
Cromatina/genética , ADN Circular/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Neoplasias/genética , Oncogenes/genética , Línea Celular Tumoral , Cromatina/química , ADN Circular/genética , Humanos , Microscopía Electrónica de Rastreo , Neoplasias/fisiopatología
10.
Mol Cell ; 67(1): 128-138.e7, 2017 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-28648777

RESUMEN

Mutations in cancer reprogram amino acid metabolism to drive tumor growth, but the molecular mechanisms are not well understood. Using an unbiased proteomic screen, we identified mTORC2 as a critical regulator of amino acid metabolism in cancer via phosphorylation of the cystine-glutamate antiporter xCT. mTORC2 phosphorylates serine 26 at the cytosolic N terminus of xCT, inhibiting its activity. Genetic inhibition of mTORC2, or pharmacologic inhibition of the mammalian target of rapamycin (mTOR) kinase, promotes glutamate secretion, cystine uptake, and incorporation into glutathione, linking growth factor receptor signaling with amino acid uptake and utilization. These results identify an unanticipated mechanism regulating amino acid metabolism in cancer, enabling tumor cells to adapt to changing environmental conditions.


Asunto(s)
Sistema de Transporte de Aminoácidos y+/metabolismo , Neoplasias Encefálicas/enzimología , Cisteína/metabolismo , Glioblastoma/enzimología , Glutamina/metabolismo , Complejos Multiproteicos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Células A549 , Sistema de Transporte de Aminoácidos y+/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Glioblastoma/genética , Glioblastoma/patología , Glutatión/biosíntesis , Células HEK293 , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos/genética , Mutación , Fosforilación , Unión Proteica , Proteómica/métodos , Interferencia de ARN , Serina , Serina-Treonina Quinasas TOR/genética , Espectrometría de Masas en Tándem , Factores de Tiempo , Transfección , Microambiente Tumoral
11.
Genes Dev ; 31(12): 1212-1227, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28724615

RESUMEN

In glioblastoma (GBM), heterogeneous expression of amplified and mutated epidermal growth factor receptor (EGFR) presents a substantial challenge for the effective use of EGFR-directed therapeutics. Here we demonstrate that heterogeneous expression of the wild-type receptor and its constitutively active mutant form, EGFRvIII, limits sensitivity to these therapies through an interclonal communication mechanism mediated by interleukin-6 (IL-6) cytokine secreted from EGFRvIII-positive tumor cells. IL-6 activates a NF-κB signaling axis in a paracrine and autocrine manner, leading to bromodomain protein 4 (BRD4)-dependent expression of the prosurvival protein survivin (BIRC5) and attenuation of sensitivity to EGFR tyrosine kinase inhibitors (TKIs). NF-κB and survivin are coordinately up-regulated in GBM patient tumors, and functional inhibition of either protein or BRD4 in in vitro and in vivo models restores sensitivity to EGFR TKIs. These results provide a rationale for improving anti-EGFR therapeutic efficacy through pharmacological uncoupling of a convergence point of NF-κB-mediated survival that is leveraged by an interclonal circuitry mechanism established by intratumoral mutational heterogeneity.


Asunto(s)
Resistencia a Antineoplásicos/genética , Glioblastoma/fisiopatología , FN-kappa B/genética , FN-kappa B/metabolismo , Transducción de Señal/genética , Animales , Comunicación Celular , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Interleucina-6/metabolismo , Ratones , Ratones Desnudos , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
J Am Chem Soc ; 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37017374

RESUMEN

Glioblastoma (GBM) is the most prevalent and aggressive primary central nervous system (CNS) malignancy. YM155 is a highly potent broad-spectrum anti-cancer drug that was derived from a phenotypic screen for functional inhibitors of survivin expression, but for which the relevant biomolecular target remains unknown. Presumably as a result of its lack of cell-type selectivity, YM155 has suffered from tolerability issues in the clinic. Based on its structural similarity to the GBM-selective prodrug RIPGBM, here, we report the design, synthesis, and characterization of a prodrug form of YM155, termed aYM155. aYM155 displays potent cell killing activity against a broad panel of patient-derived GBM cancer stem-like cells (IC50 = 0.7-10 nM), as well as EGFR-amplified and EGFR variant III-expressing (EGFRvIII) cell lines (IC50 = 3.8-36 nM), and becomes activated in a cell-type-dependent manner. Mass spectrometry-based analysis indicates that enhanced cell-type selectivity results from relative rates of prodrug activation in transformed versus non-transformed cell types. The prodrug strategy also facilitates transport into the brain (brain-to-plasma ratio, aYM155 = 0.56; YM155 = BLQ). In addition, we determine that the survivin-suppressing and apoptosis-inducing activities of YM155 involve its interaction with receptor-interacting protein kinase 2 (RIPK2). In an orthotopic intracranial GBM xenograft model, aYM155 prodrug significantly inhibits brain tumor growth in vivo, which correlates with cell-type selective survivin-based pharmacodynamic effects.

13.
Nature ; 543(7643): 122-125, 2017 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-28178237

RESUMEN

Human cells have twenty-three pairs of chromosomes. In cancer, however, genes can be amplified in chromosomes or in circular extrachromosomal DNA (ecDNA), although the frequency and functional importance of ecDNA are not understood. We performed whole-genome sequencing, structural modelling and cytogenetic analyses of 17 different cancer types, including analysis of the structure and function of chromosomes during metaphase of 2,572 dividing cells, and developed a software package called ECdetect to conduct unbiased, integrated ecDNA detection and analysis. Here we show that ecDNA was found in nearly half of human cancers; its frequency varied by tumour type, but it was almost never found in normal cells. Driver oncogenes were amplified most commonly in ecDNA, thereby increasing transcript level. Mathematical modelling predicted that ecDNA amplification would increase oncogene copy number and intratumoural heterogeneity more effectively than chromosomal amplification. We validated these predictions by quantitative analyses of cancer samples. The results presented here suggest that ecDNA contributes to accelerated evolution in cancer.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Evolución Molecular , Amplificación de Genes/genética , Heterogeneidad Genética , Modelos Genéticos , Neoplasias/genética , Oncogenes/genética , Cromosomas Humanos/genética , Análisis Citogenético , Análisis Mutacional de ADN , Genoma Humano/genética , Humanos , Metafase/genética , Neoplasias/clasificación , ARN Mensajero/análisis , ARN Neoplásico/genética , Reproducibilidad de los Resultados , Programas Informáticos
14.
Mol Cell ; 60(2): 307-18, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26455392

RESUMEN

Epidermal growth factor receptor (EGFR) gene amplification and mutations are the most common oncogenic events in glioblastoma (GBM), but the mechanisms by which they promote aggressive tumor growth are not well understood. Here, through integrated epigenome and transcriptome analyses of cell lines, genotyped clinical samples, and TCGA data, we show that EGFR mutations remodel the activated enhancer landscape of GBM, promoting tumorigenesis through a SOX9 and FOXG1-dependent transcriptional regulatory network in vitro and in vivo. The most common EGFR mutation, EGFRvIII, sensitizes GBM cells to the BET-bromodomain inhibitor JQ1 in a SOX9, FOXG1-dependent manner. These results identify the role of transcriptional/epigenetic remodeling in EGFR-dependent pathogenesis and suggest a mechanistic basis for epigenetic therapy.


Asunto(s)
Neoplasias Encefálicas/genética , Epigénesis Genética , Receptores ErbB/genética , Factores de Transcripción Forkhead/genética , Glioblastoma/genética , Proteínas del Tejido Nervioso/genética , Factor de Transcripción SOX9/genética , Adulto , Animales , Azepinas/farmacología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Niño , Receptores ErbB/metabolismo , Factores de Transcripción Forkhead/metabolismo , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Ratones , Ratones Desnudos , Mutación , Trasplante de Neoplasias , Proteínas del Tejido Nervioso/metabolismo , Factor de Transcripción SOX9/metabolismo , Transducción de Señal , Transcriptoma , Triazoles/farmacología
15.
Pathol Int ; 73(11): 533-541, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37755062

RESUMEN

Molecular genetic approaches are now mandatory for cancer diagnostics, especially for brain tumors. Genotype-based diagnosis has predominated over the phenotype-based approach, with its prognostic and predictive powers. However, comprehensive genetic testing would be difficult to perform in the clinical setting, and translational research is required to histologically decipher the peculiar biology of cancer. Of interest, recent studies have demonstrated discrete links between oncogenotypes and the resultant metabolic phenotypes, revealing cancer metabolism as a promising histologic surrogate to reveal specific characteristics of each cancer type and indicate the best way to manage cancer patients. Here, we provide an overview of our research progress to work on cancer metabolism, with a particular focus on the genomically well-characterized malignant tumor glioblastoma. With the use of clinically relevant animal models and human tissue, we found that metabolic reprogramming plays a major role in the aggressive cancer biology by conferring therapeutic resistance to cancer cells and rewiring their epigenomic landscapes. We further discuss our future endeavor to establish "metabolism-based pathology" on how the basic knowledge of cancer metabolism could be leveraged to improve the management of patients by linking cancer cell genotype, epigenotype, and phenotype through metabolic reprogramming.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Animales , Humanos , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Epigenómica , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Epigénesis Genética
16.
Cancer Sci ; 113(5): 1555-1563, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35271755

RESUMEN

Cancer cells depend on metabolic reprogramming for survival, undergoing profound shifts in nutrient sensing, nutrient uptake and flux through anabolic pathways, in order to drive nucleotide, lipid, and protein synthesis and provide key intermediates needed for those pathways. Although metabolic enzymes themselves can be mutated, including to generate oncometabolites, this is a relatively rare event in cancer. Usually, gene amplification, overexpression, and/or downstream signal transduction upregulate rate-limiting metabolic enzymes and limit feedback loops, to drive persistent tumor growth. Recent molecular-genetic advances have revealed discrete links between oncogenotypes and the resultant metabolic phenotypes. However, more comprehensive approaches are needed to unravel the dynamic spatio-temporal regulatory map of enzymes and metabolites that enable cancer cells to adapt to their microenvironment to maximize tumor growth. Proteomic and metabolomic analyses are powerful tools for analyzing a repertoire of metabolic enzymes as well as intermediary metabolites, and in conjunction with other omics approaches could provide critical information in this regard. Here, we provide an overview of cancer metabolism, especially from an omics perspective and with a particular focus on the genomically well characterized malignant brain tumor, glioblastoma. We further discuss how metabolomics could be leveraged to improve the management of patients, by linking cancer cell genotype, epigenotype, and phenotype through metabolic reprogramming.


Asunto(s)
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Glioma/genética , Glioma/metabolismo , Humanos , Metabolómica , Proteómica , Microambiente Tumoral
17.
Biochem Soc Trans ; 50(6): 1911-1920, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36355400

RESUMEN

The genome of cancer cells contains circular extrachromosomal DNA (ecDNA) elements not found in normal cells. Analysis of clinical samples reveal they are common in most cancers and their presence indicates poor prognosis. They often contain enhancers and driver oncogenes that are highly expressed. The circular ecDNA topology leads to an open chromatin conformation and generates new gene regulatory interactions, including with distal enhancers. The absence of centromeres leads to random distribution of ecDNAs during cell division and genes encoded on them are transmitted in a non-mendelian manner. ecDNA can integrate into and exit from chromosomal DNA. The numbers of specific ecDNAs can change in response to treatment. This dynamic ability to remodel the cancer genome challenges long-standing fundamentals, providing new insights into tumor heterogeneity, cancer genome remodeling, and drug resistance.


Asunto(s)
Neoplasias , Oncogenes , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Genómica , ADN Circular , ADN , Resistencia a Medicamentos
18.
Proc Natl Acad Sci U S A ; 116(13): 6435-6440, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30846550

RESUMEN

Glioblastoma multiforme (GBM; grade IV astrocytoma) is the most prevalent and aggressive form of primary brain cancer. A subpopulation of multipotent cells termed GBM cancer stem cells (CSCs) play a critical role in tumor initiation, tumor maintenance, metastasis, drug resistance, and recurrence following surgery. Here we report the identification of a small molecule, termed RIPGBM, from a cell-based chemical screen that selectively induces apoptosis in multiple primary patient-derived GBM CSC cultures. The cell type-dependent selectivity of this compound appears to arise at least in part from redox-dependent formation of a proapoptotic derivative, termed cRIPGBM, in GBM CSCs. cRIPGBM induces caspase 1-dependent apoptosis by binding to receptor-interacting protein kinase 2 (RIPK2) and acting as a molecular switch, which reduces the formation of a prosurvival RIPK2/TAK1 complex and increases the formation of a proapoptotic RIPK2/caspase 1 complex. In an orthotopic intracranial GBM CSC tumor xenograft mouse model, RIPGBM was found to significantly suppress tumor formation in vivo. Our chemical genetics-based approach has identified a drug candidate and a potential drug target that provide an approach to the development of treatments for this devastating disease.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Animales , Astrocitos , Línea Celular Tumoral , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos , Evaluación Preclínica de Medicamentos , Femenino , Glioblastoma , Xenoinjertos , Ensayos Analíticos de Alto Rendimiento , Humanos , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones , Ratones Desnudos , Células Madre Neoplásicas/efectos de los fármacos , Piroptosis/efectos de los fármacos , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
19.
J Biol Chem ; 294(51): 19740-19751, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31712311

RESUMEN

In cancer, aberrant growth factor receptor signaling reprograms cellular metabolism and global gene transcription to drive aggressive growth, but the underlying mechanisms are not well-understood. Here we show that in the highly lethal brain tumor glioblastoma (GBM), mTOR complex 2 (mTORC2), a critical core component of the growth factor signaling system, couples acetyl-CoA production with nuclear translocation of histone-modifying enzymes including pyruvate dehydrogenase and class IIa histone deacetylases to globally alter histone acetylation. Integrated analyses in orthotopic mouse models and in clinical GBM samples reveal that mTORC2 controls iron metabolisms via histone H3 acetylation of the iron-related gene promoter, promoting tumor cell survival. These results nominate mTORC2 as a critical epigenetic regulator of iron metabolism in cancer.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Epigénesis Genética , Glioblastoma/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Hierro/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Transporte Activo de Núcleo Celular , Animales , Línea Celular Tumoral , Supervivencia Celular , Regulación Neoplásica de la Expresión Génica , Histonas/química , Humanos , Proteínas Inmediatas-Precoces/metabolismo , Metaboloma , Ratones , Trasplante de Neoplasias , Regiones Promotoras Genéticas , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Piruvato Deshidrogenasa (Lipoamida)/metabolismo , Transducción de Señal
20.
Nucleic Acids Res ; 46(7): 3309-3325, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29579309

RESUMEN

The integration of viral sequences into the host genome is an important driver of tumorigenesis in many viral mediated cancers, notably cervical cancer and hepatocellular carcinoma. We present ViFi, a computational method that combines phylogenetic methods with reference-based read mapping to detect viral integrations. In contrast with read-based reference mapping approaches, ViFi is faster, and shows high precision and sensitivity on both simulated and biological data, even when the integrated virus is a novel strain or highly mutated. We applied ViFi to matched genomic and mRNA data from 68 cervical cancer samples from TCGA and found high concordance between the two. Surprisingly, viral integration resulted in a dramatic transcriptional upregulation in all proximal elements, including LINEs and LTRs that are not normally transcribed. This upregulation is highly correlated with the presence of a viral gene fused with a downstream human element. Moreover, genomic rearrangements suggest the formation of apparent circular extrachromosomal (ecDNA) human-viral structures. Our results suggest the presence of apparent small circular fusion viral/human ecDNA, which correlates with indiscriminate and unregulated expression of proximal genomic elements, potentially contributing to the pathogenesis of HPV-associated cervical cancers. ViFi is available at https://github.com/namphuon/ViFi.


Asunto(s)
ADN Circular/química , Papillomaviridae/genética , Neoplasias del Cuello Uterino/genética , Integración Viral/genética , Biología Computacional/instrumentación , ADN Circular/genética , ADN Viral/química , ADN Viral/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Genoma Humano/genética , Humanos , Elementos de Nucleótido Esparcido Largo/genética , Papillomaviridae/patogenicidad , ARN Mensajero/química , ARN Mensajero/genética , Secuencias Repetidas Terminales/genética , Transcripción Genética , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA