Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Immunity ; 50(5): 1172-1187.e7, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31076359

RESUMEN

Although viral infections elicit robust interferon-γ (IFN-γ) and long-lived antibody-secreting cell (ASC) responses, the roles for IFN-γ and IFN-γ-induced transcription factors (TFs) in ASC development are unclear. We showed that B cell intrinsic expression of IFN-γR and the IFN-γ-induced TF T-bet were required for T-helper 1 cell-induced differentiation of B cells into ASCs. IFN-γR signaling induced Blimp1 expression in B cells but also initiated an inflammatory gene program that, if not restrained, prevented ASC formation. T-bet did not affect Blimp1 upregulation in IFN-γ-activated B cells but instead regulated chromatin accessibility within the Ifng and Ifngr2 loci and repressed the IFN-γ-induced inflammatory gene program. Consistent with this, B cell intrinsic T-bet was required for formation of long-lived ASCs and secondary ASCs following viral, but not nematode, infection. Therefore, T-bet facilitates differentiation of IFN-γ-activated inflammatory effector B cells into ASCs in the setting of IFN-γ-, but not IL-4-, induced inflammatory responses.


Asunto(s)
Linfocitos B/inmunología , Interferón gamma/inmunología , Receptores de Interferón/metabolismo , Proteínas de Dominio T Box/metabolismo , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Células Productoras de Anticuerpos/inmunología , Linfocitos B/citología , Diferenciación Celular/inmunología , Células Cultivadas , Cromatina/metabolismo , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nematospiroides dubius/inmunología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Factor 1 de Unión al Dominio 1 de Regulación Positiva/biosíntesis , Infecciones por Strongylida/inmunología , Infecciones por Strongylida/parasitología , Proteínas de Dominio T Box/genética , Receptor de Interferón gamma
2.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L604-L617, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38442187

RESUMEN

Postnatal lung development results in an increasingly functional organ prepared for gas exchange and pathogenic challenges. It is achieved through cellular differentiation and migration. Changes in the tissue architecture during this development process are well-documented and increasing cellular diversity associated with it are reported in recent years. Despite recent progress, transcriptomic and molecular pathways associated with human postnatal lung development are yet to be fully understood. In this study, we investigated gene expression patterns associated with healthy pediatric lung development in four major enriched cell populations (epithelial, endothelial, and nonendothelial mesenchymal cells, along with lung leukocytes) from 1-day-old to 8-yr-old organ donors with no known lung disease. For analysis, we considered the donors in four age groups [less than 30 days old neonates, 30 days to < 1 yr old infants, toddlers (1 to < 2 yr), and children 2 yr and older] and assessed differentially expressed genes (DEG). We found increasing age-associated transcriptional changes in all four major cell types in pediatric lung. Transition from neonate to infant stage showed highest number of DEG compared with the number of DEG found during infant to toddler- or toddler to older children-transitions. Profiles of differential gene expression and further pathway enrichment analyses indicate functional epithelial cell maturation and increased capability of antigen presentation and chemokine-mediated communication. Our study provides a comprehensive reference of gene expression patterns during healthy pediatric lung development that will be useful in identifying and understanding aberrant gene expression patterns associated with early life respiratory diseases.NEW & NOTEWORTHY This study presents postnatal transcriptomic changes in major cell populations in human lung, namely endothelial, epithelial, mesenchymal cells, and leukocytes. Although human postnatal lung development continues through early adulthood, our results demonstrate that greatest transcriptional changes occur in first few months of life during neonate to infant transition. These early transcriptional changes in lung parenchyma are particularly notable for functional maturation and activation of alveolar type II cell genes.


Asunto(s)
Pulmón , Transcriptoma , Humanos , Pulmón/crecimiento & desarrollo , Pulmón/metabolismo , Recién Nacido , Lactante , Niño , Preescolar , Masculino , Femenino , Análisis de Secuencia de ARN/métodos , Células Epiteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Perfilación de la Expresión Génica
3.
Am J Physiol Lung Cell Mol Physiol ; 325(4): L419-L433, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37489262

RESUMEN

Bronchopulmonary dysplasia (BPD) is a disease of prematurity related to the arrest of normal lung development. The objective of this study was to better understand how proteome modulation and cell-type shifts are noted in BPD pathology. Pediatric human donors aged 1-3 yr were classified based on history of prematurity and histopathology consistent with "healed" BPD (hBPD, n = 3) and "established" BPD (eBPD, n = 3) compared with respective full-term born (n = 6) age-matched term controls. Proteins were quantified by tandem mass spectroscopy with selected Western blot validations. Multiplexed immunofluorescence (MxIF) microscopy was performed on lung sections to enumerate cell types. Protein abundances and MxIF cell frequencies were compared among groups using ANOVA. Cell type and ontology enrichment were performed using an in-house tool and/or EnrichR. Proteomics detected 5,746 unique proteins, 186 upregulated and 534 downregulated, in eBPD versus control with fewer proteins differentially abundant in hBPD as compared with age-matched term controls. Cell-type enrichment suggested a loss of alveolar type I, alveolar type II, endothelial/capillary, and lymphatics, and an increase in smooth muscle and fibroblasts consistent with MxIF. Histochemistry and Western analysis also supported predictions of upregulated ferroptosis in eBPD versus control. Finally, several extracellular matrix components mapping to angiogenesis signaling pathways were altered in eBPD. Despite clear parsing by protein abundance, comparative MxIF analysis confirms phenotypic variability in BPD. This work provides the first demonstration of tandem mass spectrometry and multiplexed molecular analysis of human lung tissue for critical elucidation of BPD trajectory-defining factors into early childhood.NEW & NOTEWORTHY We provide new insights into the natural history of bronchopulmonary dysplasia in donor human lungs after the neonatal intensive care unit hospitalization. This study provides new insights into how the proteome and histopathology of BPD changes in early childhood, uncovering novel pathways for future study.


Asunto(s)
Displasia Broncopulmonar , Preescolar , Recién Nacido , Humanos , Niño , Displasia Broncopulmonar/patología , Inmunohistoquímica , Proteoma , Proteómica , Pulmón/metabolismo
4.
BMC Bioinformatics ; 22(1): 82, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33622235

RESUMEN

BACKGROUND: Immunofluorescent confocal microscopy uses labeled antibodies as probes against specific macromolecules to discriminate between multiple cell types. For images of the developmental mouse lung, these cells are themselves organized into densely packed higher-level anatomical structures. These types of images can be challenging to segment automatically for several reasons, including the relevance of biomedical context, dependence on the specific set of probes used, prohibitive cost of generating labeled training data, as well as the complexity and dense packing of anatomical structures in the image. The use of an application ontology helps surmount these challenges by combining image data with its metadata to provide a meaningful biological context, modeled after how a human expert would make use of contextual information to identify histological structures, that constrains and simplifies the process of segmentation and object identification. RESULTS: We propose an innovative approach for the semi-supervised analysis of complex and densely packed anatomical structures from immunofluorescent images that utilizes an application ontology to provide a simplified context for image segmentation and object identification. We describe how the logical organization of biological facts in the form of an ontology can provide useful constraints that facilitate automatic processing of complex images. We demonstrate the results of ontology-guided segmentation and object identification in mouse developmental lung images from the Bioinformatics REsource ATlas for the Healthy lung database of the Molecular Atlas of Lung Development (LungMAP1) program CONCLUSION: We describe a novel ontology-guided approach to segmentation and classification of complex immunofluorescence images of the developing mouse lung. The ontology is used to automatically generate constraints for each image based on its biomedical context, which facilitates image segmentation and classification.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador , Pulmón , Microscopía Confocal , Animales , Técnica del Anticuerpo Fluorescente , Pulmón/diagnóstico por imagen , Ratones
5.
Pediatr Res ; 87(5): 862-867, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31726465

RESUMEN

BACKGROUND: Data on the host factors that contribute to infection of young children by respiratory syncytial virus (RSV) are limited. The human chemokine receptor, CX3CR1, has recently been implicated as an RSV receptor. Here we evaluate a role for CX3CR1 in pediatric lung RSV infections. METHODS: CX3CR1 transcript levels in the upper and lower pediatric airways were assessed. Tissue localization and cell-specific expression was confirmed using in situ hybridization and immunohistochemistry. The role of CX3CR1 in RSV infection was also investigated using a novel physiological model of pediatric epithelial cells. RESULTS: Low levels of CX3CR1 transcript were often, but not always, expressed in both upper (62%) and lower airways (36%) of pediatric subjects. CX3CR1 transcript and protein expression was detected in epithelial cells of normal human pediatric lung tissues. CX3CR1 expression was readily detected on primary cultures of differentiated pediatric/infant human lung epithelial cells. RSV demonstrated preferential infection of CX3CR1-positive cells, and blocking CX3CR1/RSV interaction significantly decreased viral load. CONCLUSION: CX3CR1 is present in the airways of pediatric subjects where it may serve as a receptor for RSV infection. Furthermore, CX3CR1 appears to play a mechanistic role in mediating viral infection of pediatric airway epithelial cells in vitro.


Asunto(s)
Receptor 1 de Quimiocinas CX3C/fisiología , Receptores Virales/fisiología , Infecciones por Virus Sincitial Respiratorio/metabolismo , Infecciones por Virus Sincitial Respiratorio/virología , Línea Celular , Niño , Preescolar , Células Epiteliales/citología , Células Epiteliales/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Inmunohistoquímica , Hibridación in Situ , Lactante , Recién Nacido , Pulmón/metabolismo , Pulmón/virología , Virus Sincitial Respiratorio Humano , Virosis
6.
Pediatr Res ; 87(3): 511-517, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-30776794

RESUMEN

BACKGROUND: Current in vitro human lung epithelial cell models derived from adult tissues may not accurately represent all attributes that define homeostatic and disease mechanisms relevant to the pediatric lung. METHODS: We report methods for growing and differentiating primary Pediatric Human Lung Epithelial (PHLE) cells from organ donor infant lung tissues. We use immunohistochemistry, flow cytometry, quantitative RT-PCR, and single cell RNA sequencing (scRNAseq) analysis to characterize the cellular and transcriptional heterogeneity of PHLE cells. RESULTS: PHLE cells can be expanded in culture up to passage 6, with a doubling time of ~4 days, and retain attributes of highly enriched epithelial cells. PHLE cells can form resistant monolayers, and undergo differentiation when placed at air-liquid interface. When grown at Air-Liquid Interface (ALI), PHLE cells expressed markers of airway epithelial cell lineages. scRNAseq suggests the cultures contained 4 main sub-phenotypes defined by expression of FOXJ1, KRT5, MUC5B, and SFTPB. These cells are available to the research community through the Developing Lung Molecular Atlas Program Human Tissue Core. CONCLUSION: Our data demonstrate that PHLE cells provide a novel in vitro human cell model that represents the pediatric airway epithelium, which can be used to study perinatal developmental and pediatric disease mechanisms.


Asunto(s)
Separación Celular , Células Epiteliales/fisiología , Pulmón/citología , Donantes de Tejidos , Factores de Edad , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Células Cultivadas , Células Epiteliales/metabolismo , Células Epiteliales/virología , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Gripe Humana/genética , Gripe Humana/metabolismo , Gripe Humana/virología , Queratina-5/genética , Queratina-5/metabolismo , Mucina 5B/genética , Mucina 5B/metabolismo , Fenotipo , Cultivo Primario de Células , Proteína B Asociada a Surfactante Pulmonar/genética , Proteína B Asociada a Surfactante Pulmonar/metabolismo , RNA-Seq , Análisis de la Célula Individual
7.
Am J Physiol Lung Cell Mol Physiol ; 317(3): L347-L360, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31268347

RESUMEN

Systems biology uses computational approaches to integrate diverse data types to understand cell and organ behavior. Data derived from complementary technologies, for example transcriptomic and proteomic analyses, are providing new insights into development and disease. We compared mRNA and protein profiles from purified endothelial, epithelial, immune, and mesenchymal cells from normal human infant lung tissue. Signatures for each cell type were identified and compared at both mRNA and protein levels. Cell-specific biological processes and pathways were predicted by analysis of concordant and discordant RNA-protein pairs. Cell clustering and gene set enrichment comparisons identified shared versus unique processes associated with transcriptomic and/or proteomic data. Clear cell-cell correlations between mRNA and protein data were obtained from each cell type. Approximately 40% of RNA-protein pairs were coherently expressed. While the correlation between RNA and their protein products was relatively low (Spearman rank coefficient rs ~0.4), cell-specific signature genes involved in functional processes characteristic of each cell type were more highly correlated with their protein products. Consistency of cell-specific RNA-protein signatures indicated an essential framework for the function of each cell type. Visualization and reutilization of the protein and RNA profiles are supported by a new web application, "LungProteomics," which is freely accessible to the public.


Asunto(s)
Pulmón/metabolismo , Proteoma/metabolismo , Proteómica , Transcriptoma/fisiología , Análisis por Conglomerados , Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Humanos , Lactante , Pulmón/crecimiento & desarrollo , Proteómica/métodos , ARN Mensajero/genética
8.
Am J Physiol Lung Cell Mol Physiol ; 315(4): L576-L583, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29975103

RESUMEN

Human lung morphogenesis begins by embryonic life and continues after birth into early childhood to form a complex organ with numerous morphologically and functionally distinct cell types. Pulmonary organogenesis involves dynamic changes in cell proliferation, differentiation, and migration of specialized cells derived from diverse embryonic lineages. Studying the molecular and cellular processes underlying formation of the fully functional lung requires isolating distinct pulmonary cell populations during development. We now report novel methods to isolate four major pulmonary cell populations from pediatric human lung simultaneously. Cells were dissociated by protease digestion of neonatal and pediatric lung and isolated on the basis of unique cell membrane protein expression patterns. Epithelial, endothelial, nonendothelial mesenchymal, and immune cells were enriched by fluorescence-activated cell sorting. Dead cells and erythrocytes were excluded by 7-aminoactinomycin D uptake and glycophorin-A (CD235a) expression, respectively. Leukocytes were identified by membrane CD45 (protein tyrosine phosphatase, receptor type C), endothelial cells by platelet endothelial cell adhesion molecule-1 (CD31) and vascular endothelial cadherin (CD144), and both were isolated. Thereafter, epithelial cell adhesion molecule (CD326)-expressing cells were isolated from the endothelial- and immune cell-depleted population to enrich epithelial cells. Cells lacking these membrane markers were collected as "nonendothelial mesenchymal" cells. Quantitative RT-PCR and RNA sequencing analyses of population specific transcriptomes demonstrate the purity of the subpopulations of isolated cells. The method efficiently isolates major human lung cell populations that we announce are now available through the National Heart, Lung, and Blood Institute Lung Molecular Atlas Program (LungMAP) for their further study.


Asunto(s)
Biomarcadores/metabolismo , Separación Celular/métodos , Citometría de Flujo/métodos , Enfermedades Pulmonares/patología , Pulmón/citología , Cadáver , Diferenciación Celular , Células Cultivadas , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Pulmón/metabolismo , Enfermedades Pulmonares/metabolismo , Masculino
9.
Angew Chem Int Ed Engl ; 57(38): 12370-12374, 2018 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-29797682

RESUMEN

We report on the quantitative proteomic analysis of single mammalian cells. Fluorescence-activated cell sorting was employed to deposit cells into a newly developed nanodroplet sample processing chip, after which samples were analyzed by ultrasensitive nanoLC-MS. An average of circa 670 protein groups were confidently identified from single HeLa cells, which is a far greater level of proteome coverage for single cells than has been previously reported. We demonstrate that the single-cell proteomics platform can be used to differentiate cell types from enzyme-dissociated human lung primary cells and identify specific protein markers for epithelial and mesenchymal cells.


Asunto(s)
Microfluídica/métodos , Nanotecnología/métodos , Proteoma/análisis , Proteómica/métodos , Cromatografía Líquida de Alta Presión/métodos , Células HeLa , Humanos , Pulmón/citología , Pulmón/metabolismo , Análisis de Componente Principal , Espectrometría de Masas en Tándem/métodos
10.
Am J Physiol Lung Cell Mol Physiol ; 313(5): L940-L949, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28798254

RESUMEN

Infants born prematurely often require supplemental oxygen, which contributes to aberrant lung development and increased pulmonary morbidity following a respiratory viral infection. We have been using a mouse model to understand how early-life hyperoxia affects the adult lung response to influenza A virus (IAV) infection. Prior studies showed how neonatal hyperoxia (100% oxygen) increased sensitivity of adult mice to infection with IAV [IAV (A/Hong Kong/X31) H3N2] as defined by persistent inflammation, pulmonary fibrosis, and mortality. Since neonatal hyperoxia alters lung structure, we used a novel fluorescence-expressing reporter strain of H1N1 IAV [A/Puerto Rico/8/34 mCherry (PR8-mCherry)] to evaluate whether it also altered early infection of the respiratory epithelium. Like Hong Kong/X31, neonatal hyperoxia increased morbidity and mortality of adult mice infected with PR8-mCherry. Whole lung imaging and histology suggested a modest increase in mCherry expression in adult mice exposed to neonatal hyperoxia compared with room air-exposed animals. However, this did not reflect an increase in airway or alveolar epithelial infection when mCherry-positive cells were identified and quantified by flow cytometry. Instead, a modest increase in the number of CD45-positive macrophages expressing mCherry was detected. While neonatal hyperoxia does not alter early epithelial infection with IAV, it may increase the activity of macrophages toward infected cells, thereby enhancing early epithelial injury.


Asunto(s)
Hiperoxia/virología , Infecciones por Orthomyxoviridae/virología , Oxígeno/metabolismo , Fibrosis Pulmonar/virología , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Epitelio/virología , Humanos , Hiperoxia/patología , Virus de la Influenza A , Pulmón/crecimiento & desarrollo , Pulmón/patología , Pulmón/virología , Ratones Endogámicos C57BL
11.
Thorax ; 72(5): 481-484, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28070014

RESUMEN

'LungGENS', our previously developed web tool for mapping single-cell gene expression in the developing lung, has been well received by the pulmonary research community. With continued support from the 'LungMAP' consortium, we extended the scope of the LungGENS database to accommodate transcriptomics data from pulmonary tissues and cells from human and mouse at different stages of lung development. Lung Gene Expression Analysis (LGEA) web portal is an extended version of LungGENS useful for the analysis, display and interpretation of gene expression patterns obtained from single cells, sorted cell populations and whole lung tissues. The LGEA web portal is freely available at http://research.cchmc.org/pbge/lunggens/mainportal.html.


Asunto(s)
Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Expresión Génica , Internet , Pulmón/crecimiento & desarrollo , Animales , Mapeo Cromosómico , Humanos , Ratones , Programas Informáticos , Factores de Transcripción
12.
Genes (Basel) ; 15(3)2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-38540357

RESUMEN

While animal model studies have extensively defined the mechanisms controlling cell diversity in the developing mammalian lung, there exists a significant knowledge gap with regards to late-stage human lung development. The NHLBI Molecular Atlas of Lung Development Program (LungMAP) seeks to fill this gap by creating a structural, cellular and molecular atlas of the human and mouse lung. Transcriptomic profiling at the single-cell level created a cellular atlas of newborn human lungs. Frozen single-cell isolates obtained from two newborn human lungs from the LungMAP Human Tissue Core Biorepository, were captured, and library preparation was completed on the Chromium 10X system. Data was analyzed in Seurat, and cellular annotation was performed using the ToppGene functional analysis tool. Transcriptional interrogation of 5500 newborn human lung cells identified distinct clusters representing multiple populations of epithelial, endothelial, fibroblasts, pericytes, smooth muscle, immune cells and their gene signatures. Computational integration of data from newborn human cells and with 32,000 cells from postnatal days 1 through 10 mouse lungs generated by the LungMAP Cincinnati Research Center facilitated the identification of distinct cellular lineages among all the major cell types. Integration of the newborn human and mouse cellular transcriptomes also demonstrated cell type-specific differences in maturation states of newborn human lung cells. Specifically, newborn human lung matrix fibroblasts could be separated into those representative of younger cells (n = 393), or older cells (n = 158). Cells with each molecular profile were spatially resolved within newborn human lung tissue. This is the first comprehensive molecular map of the cellular landscape of neonatal human lung, including biomarkers for cells at distinct states of maturity.


Asunto(s)
Perfilación de la Expresión Génica , Pulmón , Animales , Humanos , Ratones , Pulmón/metabolismo , Mamíferos/genética , Pericitos , Fenotipo , Transcriptoma/genética , Recién Nacido
13.
Nat Commun ; 14(1): 4566, 2023 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-37516747

RESUMEN

Accurate cell type identification is a key and rate-limiting step in single-cell data analysis. Single-cell references with comprehensive cell types, reproducible and functionally validated cell identities, and common nomenclatures are much needed by the research community for automated cell type annotation, data integration, and data sharing. Here, we develop a computational pipeline utilizing the LungMAP CellCards as a dictionary to consolidate single-cell transcriptomic datasets of 104 human lungs and 17 mouse lung samples to construct LungMAP single-cell reference (CellRef) for both normal human and mouse lungs. CellRefs define 48 human and 40 mouse lung cell types catalogued from diverse anatomic locations and developmental time points. We demonstrate the accuracy and stability of LungMAP CellRefs and their utility for automated cell type annotation of both normal and diseased lungs using multiple independent methods and testing data. We develop user-friendly web interfaces for easy access and maximal utilization of the LungMAP CellRefs.


Asunto(s)
Perfilación de la Expresión Génica , Difusión de la Información , Animales , Ratones , Humanos , Análisis de la Célula Individual , Transcriptoma
14.
J Virol ; 85(10): 5027-35, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21367900

RESUMEN

Seasonal influenza epidemics recur due to antigenic drift of envelope glycoprotein antigens and immune evasion of circulating viruses. Additionally, antigenic shift can lead to influenza pandemics. Thus, a universal vaccine that protects against multiple influenza virus strains could alleviate the continuing impact of this virus on human health. In mice, accelerated clearance of a new viral strain (cross-protection) can be elicited by prior infection (heterosubtypic immunity) or by immunization with the highly conserved internal nucleoprotein (NP). Both heterosubtypic immunity and NP-immune protection require antibody production. Here, we show that systemic immunization with NP readily accelerated clearance of a 2009 pandemic H1N1 influenza virus isolate in an antibody-dependent manner. However, human immunization with trivalent inactivated influenza virus vaccine (TIV) only rarely and modestly boosted existing levels of anti-NP IgG. Similar results were observed in mice, although the reaction could be enhanced with adjuvants, by adjusting the stoichiometry among NP and other vaccine components, and by increasing the interval between TIV prime and boost. Importantly, mouse heterosubtypic immunity that had waned over several months could be enhanced by injecting purified anti-NP IgG or by boosting with NP protein, correlating with a long-lived increase in anti-NP antibody titers. Thus, current immunization strategies poorly induce NP-immune antibody that is nonetheless capable of contributing to long-lived cross-protection. The high conservation of NP antigen and the known longevity of antibody responses suggest that the antiviral activity of anti-NP IgG may provide a critically needed component of a universal influenza vaccine.


Asunto(s)
Anticuerpos Antivirales/sangre , Inmunoglobulina G/sangre , Vacunas contra la Influenza/inmunología , Proteínas de Unión al ARN/inmunología , Proteínas del Núcleo Viral/inmunología , Animales , Anticuerpos Antivirales/inmunología , Protección Cruzada , Modelos Animales de Enfermedad , Experimentación Humana , Humanos , Inmunización Secundaria/métodos , Inmunoglobulina G/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Pulmón/virología , Ratones , Ratones Endogámicos C57BL , Proteínas de la Nucleocápside , Infecciones por Orthomyxoviridae/prevención & control , Proteínas de Unión al ARN/administración & dosificación , Enfermedades de los Roedores/prevención & control , Vacunación/métodos , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/inmunología , Proteínas del Núcleo Viral/administración & dosificación , Carga Viral
15.
Dev Cell ; 57(1): 112-145.e2, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-34936882

RESUMEN

The human lung plays vital roles in respiration, host defense, and basic physiology. Recent technological advancements such as single-cell RNA sequencing and genetic lineage tracing have revealed novel cell types and enriched functional properties of existing cell types in lung. The time has come to take a new census. Initiated by members of the NHLBI-funded LungMAP Consortium and aided by experts in the lung biology community, we synthesized current data into a comprehensive and practical cellular census of the lung. Identities of cell types in the normal lung are captured in individual cell cards with delineation of function, markers, developmental lineages, heterogeneity, regenerative potential, disease links, and key experimental tools. This publication will serve as the starting point of a live, up-to-date guide for lung research at https://www.lungmap.net/cell-cards/. We hope that Lung CellCards will promote the community-wide effort to establish, maintain, and restore respiratory health.


Asunto(s)
Pulmón/citología , Pulmón/fisiología , Diferenciación Celular/genética , Bases de Datos como Asunto , Humanos , Pulmón/metabolismo , Regeneración/genética , Análisis de la Célula Individual/métodos
16.
Toxics ; 9(12)2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34941793

RESUMEN

Diacetyl (DA) is a highly reactive alpha diketone associated with flavoring-related lung disease. In rodents, acute DA vapor exposure can initiate an airway-centric, inflammatory response. However, this immune response has yet to be fully characterized in the context of flavoring-related lung disease progression. The following studies were designed to characterize the different T cell populations within the lung following repetitive DA vapor exposures. Sprague-Dawley rats were exposed to 200 parts-per-million DA vapor for 5 consecutive days × 6 h/day. Lung tissue and bronchoalveolar lavage fluid (BALF) were analyzed for changes in histology by H&E and Trichrome stain, T cell markers by flow cytometry, total BALF cell counts and differentials, BALF IL17a and total protein immediately, 1 and 2 weeks post-exposure. Lung histology and BALF cell composition demonstrated mixed, granulocytic lung inflammation with bronchial lymphoid aggregates at all time points in DA-exposed lungs compared to air controls. While no significant change was seen in percent lung CD3+, CD4+, or CD8+ T cells, a significant increase in lung CD4+CD25+ T cells developed at 1 week that persisted at 2 weeks post-exposure. Further characterization of this CD4+CD25+ T cell population identified Foxp3+ T cells at 1 week that failed to persist at 2 weeks. Conversely, BALF IL-17a increased significantly at 2 weeks in DA-exposed rats compared to air controls. Lung CD4+CD25+ T cells and BALF IL17a correlated directly with BALF total protein and inversely with rat oxygen saturations. Repetitive DA vapor exposure at occupationally relevant concentrations induced mixed, granulocytic lung inflammation with increased CD4+CD25+ T cells in the rat lung.

17.
Pediatr Med ; 42021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34095814

RESUMEN

Electronic cigarettes (e-cigarettes) are commonly used devices by adolescents and young adults. Since their introduction, the popularity of e-cigarettes has increased significantly with close to twenty percent of United States high school students reporting current use in 2020. As the number of e-cigarette users has increased, so have reports of vaping related health complications. Overall, respiratory tract infections remain one of the top ten leading causes of death in the US for every age group. Specific to the pediatric population, lower respiratory tract infections are the leading cause for hospitalization. This review highlights the current evidence behind e-cigarette exposure and its association with impaired innate immune function and the risk of lower respiratory tract infections. To date, various preclinical models have evaluated the direct effects of e-cigarette exposure on the innate immune system. More specifically, e-cigarette exposure impairs certain cell types of the innate immune system including the airway epithelium, lung macrophage and neutrophils. Identified effects of e-cigarette exposure common to the lung's innate immunity include abnormal mucus composition, reduced epithelial barrier function, impaired phagocytosis and elevated systemic markers of inflammation. These identified impairments in the lung's innate immunity have been shown to increase adhesion of certain bacteria and fungi as well as to increase virulence of common respiratory pathogens such as influenza virus, Staphylococcus aureus or Streptococcus pneumoniae. Information summarized in this review will provide guidance to healthcare providers, policy advocates and researchers for making informed decisions regarding the associated respiratory health risks of e-cigarette use in pediatric and young adults.

18.
Front Immunol ; 11: 563473, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33552042

RESUMEN

Many premature babies who are born with neonatal respiratory distress syndrome (RDS) go on to develop Bronchopulmonary Dysplasia (BPD) and later Post-Prematurity Respiratory Disease (PRD) at one year corrected age, characterized by persistent or recurrent lower respiratory tract symptoms frequently related to inflammation and viral infection. Transcriptomic profiles were generated from sorted peripheral blood CD8+ T cells of preterm and full-term infants enrolled with consent in the NHLBI Prematurity and Respiratory Outcomes Program (PROP) at the University of Rochester and the University at Buffalo. We identified outcome-related gene expression patterns following standard methods to identify markers for oxygen utilization and BPD as outcomes in extremely premature infants. We further identified predictor gene sets for BPD based on transcriptomic data adjusted for gestational age at birth (GAB). RNA-Seq analysis was completed for CD8+ T cells from 145 subjects. Among the subjects with highest risk for BPD (born at <29 weeks gestational age (GA); n=72), 501 genes were associated with oxygen utilization. In the same set of subjects, 571 genes were differentially expressed in subjects with a diagnosis of BPD and 105 genes were different in BPD subjects as defined by physiologic challenge. A set of 92 genes could predict BPD with a moderately high degree of accuracy. We consistently observed dysregulation of TGFB, NRF2, HIPPO, and CD40-associated pathways in BPD. Using gene expression data from both premature and full-term subjects (n=116), we identified a 28 gene set that predicted the PRD status with a moderately high level of accuracy, which also were involved in TGFB signaling. Transcriptomic data from sort-purified peripheral blood CD8+ T cells from 145 preterm and full-term infants identified sets of molecular markers of inflammation associated with independent development of BPD in extremely premature infants at high risk for the disease and of PRD among the preterm and full-term subjects.


Asunto(s)
Displasia Broncopulmonar/sangre , Displasia Broncopulmonar/genética , Linfocitos T CD8-positivos/inmunología , Nacimiento Prematuro/sangre , Nacimiento Prematuro/genética , Síndrome de Dificultad Respiratoria del Recién Nacido/sangre , Síndrome de Dificultad Respiratoria del Recién Nacido/genética , Transcriptoma/genética , Biomarcadores/sangre , Femenino , Edad Gestacional , Humanos , Recien Nacido Extremadamente Prematuro/sangre , Recién Nacido , Activación de Linfocitos , Masculino , Embarazo , Pronóstico , RNA-Seq
19.
Pathogens ; 8(4)2019 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-31779153

RESUMEN

Influenza virus infection is responsible for significant morbidity and mortality in the pediatric and pregnant women populations, with deaths frequently caused by severe influenza-associated lower respiratory tract infection and acute respiratory distress syndrome (ARDS). An appropriate immune response requires controlling the viral infection through activation of antiviral defenses, which involves cells of the lung and immune system. High levels of viral infection or high levels of inflammation in the lower airways can contribute to ARDS. Pregnant women and young children, especially those born prematurely, may develop serious complications if infected with influenza virus. Vaccination against influenza will lead to lower infection rates and fewer complications, even if the vaccine is poorly matched to circulating viral strains, with maternal vaccination offering infants protection via antibody transmission through the placenta and breast milk. Despite the health benefits of the influenza vaccine, vaccination rates around the world remain well below targets. Trust in the use of vaccines among the public must be restored in order to increase vaccination rates and decrease the public health burden of influenza.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA