Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neuroeng Rehabil ; 17(1): 133, 2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-33032615

RESUMEN

BACKGROUND: Motor hand skill and associated dexterity is important for meeting the challenges of daily activity and an important resource post-stroke. In this context, the present study investigated the finger movements of right-handed subjects during tactile manipulation of a cuboid, a prototypical task underlying tactile exploration. During one motor act, the thumb and fingers of one hand surround the cuboid in a continuous and regular manner. While the object is moved by the guiding thumb, the opposed supporting fingers are replaced once they reach their joint limits by free fingers, a mechanism termed finger gaiting. METHODS: For both hands of 22 subjects, we acquired the time series of consecutive manipulations of a cuboid at a frequency of 1 Hz, using a digital data glove consisting of 29 sensors. Using principle component analysis, we decomposed the short action into motor patterns related to successive manipulations of the cuboid. The components purport to represent changing grasp configurations involving the stabilizing fingers and guiding thumb. The temporal features of the components permits testing whether the distinct configurations occur at the frequency of 1 Hz, i.e. within the time window of 1 s, and, thus, taxonomic classification of the manipulation as finger gaiting. RESULTS: The fraction of variance described by the principal components indicated that three components described the salient features of the single motor acts for each hand. Striking in the finger patterns was the prominent and varying roles of the MCP and PIP joints of the fingers, and the CMC joint of the thumb. An important aspect of the three components was their representation of distinct finger configurations within the same motor act. Principal component and graph theory analysis confirmed modular, functionally synchronous action of the involved joints. The computation of finger trajectories in one subject illustrated the workspace of the task, which differed for the right and left hands. CONCLUSION: In this task one complex motor act of 1 s duration could be described by three elementary and hierarchically ordered grasp configurations occurring at the prescribed frequency of 1 Hz. Therefore, these configurations represent finger gaiting, described until now only in artificial systems, as the principal mechanism underlying this prototypical task. TRIAL REGISTRATION: clinicaltrials.gov, NCT02865642 , registered 12 August 2016.


Asunto(s)
Dedos/fisiología , Destreza Motora/fisiología , Tacto/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad
2.
J Chem Inf Model ; 59(5): 2218-2230, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-30855963

RESUMEN

Epothilones are among the most potent chemotherapeutic drugs used for the treatment of cancer. Epothilone A (EpoA), a natural product, is a macrocyclic molecule containing 34 non-hydrogen atoms and a thiazole side chain. NMR studies of EpoA in aqueous solution, unbound as well as bound to αß-tubulin, and unbound in dimethyl sulfoxide (DMSO) solution have delivered sets of nuclear Overhauser effect (NOE) atom-atom distance bounds, but no structures based on NMR data are present in structural data banks. X-ray diffraction of crystals has provided structures of EpoA unbound and bound to αß-tubulin. Since both crystal structures derived from X-ray diffraction intensities do not completely satisfy the three available sets of NOE distance bounds for EpoA, molecular dynamics (MD) simulations have been employed to obtain conformational ensembles in aqueous and in DMSO solution that are compatible with the respective NOE data. It was found that EpoA displays a larger conformational variability in DMSO than in water and the two conformational ensembles show little overlap. Yet, they both provide conformational scaffolds that are energetically accessible at physiological temperature and pressure.


Asunto(s)
Epotilonas/química , Epotilonas/metabolismo , Simulación de Dinámica Molecular , Moduladores de Tubulina/química , Moduladores de Tubulina/metabolismo , Tubulina (Proteína)/metabolismo , Dimetilsulfóxido/química , Ligandos , Conformación Molecular , Agua/química
3.
Phys Imaging Radiat Oncol ; 29: 100531, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38292650

RESUMEN

Background and purpose: Respiratory suppression techniques represent an effective motion mitigation strategy for 4D-irradiation of lung tumors with protons. A magnetic resonance imaging (MRI)-based study applied and analyzed methods for this purpose, including enhanced Deep-Inspiration-Breath-Hold (eDIBH). Twenty-one healthy volunteers (41-58 years) underwent thoracic MR scans in four imaging sessions containing two eDIBH-guided MRIs per session to simulate motion-dependent irradiation conditions. The automated MRI segmentation algorithm presented here was critical in determining the lung volumes (LVs) achieved during eDIBH. Materials and methods: The study included 168 MRIs acquired under eDIBH conditions. The lung segmentation algorithm consisted of four analysis steps: (i) image preprocessing, (ii) MRI histogram analysis with thresholding, (iii) automatic segmentation, (iv) 3D-clustering. To validate the algorithm, 46 eDIBH-MRIs were manually contoured. Sørensen-Dice similarity coefficients (DSCs) and relative deviations of LVs were determined as similarity measures. Assessment of intrasessional and intersessional LV variations and their differences provided estimates of statistical and systematic errors. Results: Lung segmentation time for 100 2D-MRI planes was âˆ¼ 10 s. Compared to manual lung contouring, the median DSC was 0.94 with a lower 95 % confidence level (CL) of 0.92. The relative volume deviations yielded a median value of 0.059 and 95 % CLs of -0.013 and 0.13. Artifact-based volume errors, mainly of the trachea, were estimated. Estimated statistical and systematic errors ranged between 6 and 8 %. Conclusions: The presented analytical algorithm is fast, precise, and readily available. The results are comparable to time-consuming, manual segmentations and other automatic segmentation approaches. Post-processing to remove image artifacts is under development.

4.
Biochemistry ; 51(42): 8455-63, 2012 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-22978582

RESUMEN

Phosphorylation is an important mechanism regulating protein-protein interactions involving intrinsically disordered protein regions. Stathmin, an archetypical example of an intrinsically disordered protein, is a key regulator of microtubule dynamics in which phosphorylation of 63Ser within the helical nucleation sequence strongly down-regulates the tubulin binding and microtubule destabilizing activities of the protein. Experimental studies on a peptide encompassing the 19-residue helical nucleation sequence of stathmin (residues 55-73) indicate that phosphorylation of 63Ser destabilizes the peptide's secondary structure by disrupting the salt bridges supporting its helical conformation. In order to investigate this hypothesis at atomic resolution, we performed molecular dynamics simulations of nonphosphorylated and phosphorylated stathmin-[55-73] at room temperature and pressure, neutral pH, and explicit solvation using the recently released GROMOS force field 54A7. In the simulations of nonphosphorylated stathmin-[55-73] emerged salt bridges associated with helical configurations. In the simulations of 63Ser phosphorylated stathmin-[55-73] these configurations dispersed and were replaced by a proliferation of salt bridges yielding disordered configurations. The transformation of the salt bridges was accompanied by emergence of numerous interactions between main and side chains, involving notably the oxygen atoms of the phosphorylated 63Ser. The loss of helical structure induced by phosphorylation is reversible, however, as a final simulation showed. The results extend the hypothesis of salt bridge derangement suggested by experimental observations of the stathmin nucleation sequence, providing new insights into regulation of intrinsically disordered protein systems mediated by phosphorylation.


Asunto(s)
Simulación de Dinámica Molecular , Estatmina/química , Fragmentos de Péptidos/química , Fosforilación , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
5.
FASEB J ; 25(9): 2980-6, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21613573

RESUMEN

Receptor tyrosine kinases play essential roles in tissue development and homeostasis, and aberrant signaling by these molecules is the basis of many diseases. Understanding the activation mechanism of these receptors is thus of high clinical relevance. We investigated vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs), which regulate blood and lymph vessel formation. We analyzed the structural changes in the extracellular receptor domain that were induced by ligand binding and that represent the initial step in transmembrane signaling, culminating in the activation of the intracellular receptor kinase domain. High-resolution structural information for the ligand binding domain became available recently, but the flexibility of the extracellular domain and inhomogeneous glycosylation of VEGFRs have prevented the production of highly diffracting crystals of the entire extracellular domain so far. Therefore, we chose to further investigate VEGFR structure by small-angle X-ray scattering in solution (SAXS). SAXS data were combined with independent distance restraint determination obtained by mass spectrometric analysis of chemically cross-linked ligand/receptor complexes. With these data, we constructed a structural model of the entire extracellular receptor domain in the unbound form and in complex with VEGF.


Asunto(s)
Dispersión del Ángulo Pequeño , Factor A de Crecimiento Endotelial Vascular/química , Receptor 2 de Factores de Crecimiento Endotelial Vascular/química , Difracción de Rayos X , Sitios de Unión , Ligandos , Espectrometría de Masas , Modelos Moleculares , Conformación Proteica , Estructura Terciaria de Proteína , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
6.
Neuroimage Clin ; 36: 103193, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36126517

RESUMEN

From a cohort of 36 patients presenting apperceptive tactile agnosia after first cortical ischemic stroke, 14 showed temporary impairment at admission. A previous multi-voxel analysis of the cortical lesions, using as explanatory variable the course of tactile object recognition performance over the recovery period of 9 months, partitioned the cohort into three subgroups. Of the 14 patients constituting two of the subgroups, 7 recovered from their impairment whereas 7 did not. These two subgroups could not be distinguished at admission. The primary aim of the present study is to present two assessments that can do so. The first assessment comprises a pattern of behavioral measures, determined via principal component analysis, encoded in three tests: picking small objects, macrogeometrical discrimination and tactile object recognition. The receiver operating characteristic curve derived from permutation of the behavioral test scores yielded an 80% probability of correct identification of the patient subgroup and an 8% probability for false identification. As done with the permuted scores, the pattern could predict the persistence of affliction of new stroke patients with tactile agnosia. The second predictive assessment extends our previous evaluation of cortical MRI lesion maps to include subcortical regions. Confirming our previous study, the lesions of the persistently impaired subgroup disrupted significantly the anterior arcuatus fasciculus and associated superior longitudinal fasciculus III in the ipsilesional hemisphere, impeding reciprocal information transfer between supramarginal gyrus and both the ventral premotor cortex and Brodmann area 44. Due to the importance of interhemispheric information transfer in tactile agnosia, we performed a supplementary analysis of tactile object recognition scores. It showed that haptic information transfer from the non-affected to the affected hands in the persistent cases partly restored function during the nine months, possibly following restoration of functional interhemispheric haptic information transfer at the border of posterior corpus callosum and splenium. In conclusion, the combined findings of the cortical lesion at subarea PFt of the inferior parietal lobule and the associated subcortical tract lesions permit almost perfect prediction of persistent impairment of tactile object recognition. The study substantiates the need for combined analysis of both cortical lesions and white matter tract disconnections.


Asunto(s)
Agnosia , Accidente Cerebrovascular , Sustancia Blanca , Humanos , Sustancia Blanca/patología , Agnosia/diagnóstico por imagen , Agnosia/etiología , Tacto , Lóbulo Parietal , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/patología
7.
Front Oncol ; 11: 621350, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33996545

RESUMEN

Background: To safely treat lung tumors using particle radiation therapy (PRT), motion-mitigation strategies are of critical importance to ensure precise irradiation. Therefore, we compared applicability, effectiveness, reproducibility, and subjects' acceptance of enhanced deep-inspiration breath hold (eDIBH) with high-frequency percussive ventilation (HFPV) by MRI assessment within 1 month. Methods: Twenty-one healthy subjects (12 males/9 females; age: 49.5 ± 5.8 years; BMI: 24.7 ± 3.3 kg/m-2) performed two 1.5 T MRI scans in four visits at weekly intervals under eDIBH and HFPV conditions, accompanied by daily, home-based breath-hold training and spirometric assessments over a 3-week period. eDIBH consisted of 8-min 100% O2 breathing (3 min resting ventilation, 5 min controlled hyperventilation) prior to breath hold. HFPV was set at 200-250 pulses min-1 and 0.8-1.2 bar. Subjects' acceptance and preference were evaluated by questionnaire. To quantify inter- and intrafractional changes, a lung distance metric representing lung topography was computed for 10 reference points: a motion-invariant spinal cord and nine lung structure contours (LSCs: apex, carina, diaphragm, and six vessels as tumor surrogates distributed equally across the lung). To parameterize individual LSC localizability, measures of their spatial variabilities were introduced and lung volumes calculated by automated MRI analysis. Results: eDIBH increased breath-hold duration by > 100% up to 173 ± 73 s at visit 1, and to 217 ± 67 s after 3 weeks of home-based training at visit 4 (p < 0.001). Measures of vital capacity and lung volume remained constant over the 3-week period. Two vessels in the lower lung segment and the diaphragm yielded a two- to threefold improved positional stability with eDIBH, whereby absolute distance variability was significantly smaller for five LSCs; ≥70% of subjects showed significantly better intrafractional lung motion mitigation under reproducible conditions with eDIBH compared with HFPV with smaller ranges most apparent in the anterior-posterior and cranial-caudal directions. Approximately 80% of subjects preferred eDIBH over HFPV, with "less discomfort" named as most frequent reason. Conclusions: Both, eDIBH, and HFPV were well-tolerated. eDIBH duration was long enough to allow for potential PRT. Variability in lung volume was smaller and position of lung structures more precise with eDIBH. Subjects preferred eDIBH over HFPV. Thus, eDIBH is a very promising tool for lung tumor therapy with PRT, and further investigation of its applicability in patients is warranted.

8.
J Biomol NMR ; 47(3): 221-35, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20524044

RESUMEN

The C-terminal trigger sequence is essential in the coiled-coil formation of GCN4-p1; its conformational properties are thus of importance for understanding this process at the atomic level. A solution NMR model structure of a peptide, GCN4p16-31, encompassing the GCN4-p1 trigger sequence was proposed a few years ago. Derived using a standard single-structure refinement protocol based on 172 nuclear Overhauser effect (NOE) distance restraints, 14 hydrogen-bond and 11 phi torsional-angle restraints, the resulting set of 20 NMR model structures exhibits regular alpha-helical structure. However, the set slightly violates some measured NOE bounds and does not reproduce all 15 measured (3)J(H(N)-H(Calpha))-coupling constants, indicating that different conformers of GCN4p16-31 might be present in solution. With the aim to resolve structures compatible with all NOE upper distance bounds and (3)J-coupling constants, we executed several structure refinement protocols employing unrestrained and restrained molecular dynamics (MD) simulations with two force fields. We find that only configurational ensembles obtained by applying simultaneously time-averaged NOE distance and (3)J-coupling constant restraining with either force field reproduce all the experimental data. Additionally, analyses of the simulated ensembles show that the conformational variability of GCN4p16-31 in solution admitted by the available set of 187 measured NMR data is larger than represented by the set of the NMR model structures. The conformations of GCN4p16-31 in solution differ in the orientation not only of the side-chains but also of the backbone. The inconsistencies between the NMR model structures and the measured NMR data are due to the neglect of averaging effects and the inclusion of hydrogen-bond and torsional-angle restraints that have little basis in the primary, i.e. measured NMR data.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/química , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular/métodos , Péptidos/química , Proteínas de Saccharomyces cerevisiae/química , Protones , Reproducibilidad de los Resultados , Termodinámica
9.
J Magn Reson Imaging ; 31(4): 821-8, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20373425

RESUMEN

PURPOSE: To compare two data-driven methods of statistical image analysis, principal and independent component analysis (PCA, ICA), in identifying neural networks related to the transient occurrence of phosphenes experienced by a female patient subsequent to a brain infarct. MATERIALS AND METHODS: An initial functional magnetic resonance imaging (fMRI) session consisted of two acquisitions: one of the patient experiencing phosphenes and a second responding to a well-defined visual stimulation paradigm. A second fMRI session 6 months later, when the patient no longer experienced phosphenes, consisted of an acquisition in which no stimulation was presented. Analysis of correlations between the temporal expression coefficients and models of the hemodynamic response identified salient components. Spectral analysis confirmed the identification. The phosphene model was based solely on the subjective report of the patient. RESULTS: Both methods revealed occipital cortical and subcortical areas known to be sites for visual information-processing during stimulation, as did SPM. In addition, higher-order visual areas such as the precuneus and the lateral parietal cortex were implicated in the PCA of the phosphenes. CONCLUSION: The analyses suggest the capability of data-driven approaches to identify the brain structures involved in these transient, spontaneous visual events.


Asunto(s)
Infarto Encefálico/patología , Imagen por Resonancia Magnética/métodos , Redes Neurales de la Computación , Fosfenos , Infarto Encefálico/diagnóstico , Mapeo Encefálico/métodos , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Persona de Mediana Edad , Lóbulo Occipital/patología , Análisis de Componente Principal , Corteza Visual/patología
10.
Behav Brain Funct ; 6: 71, 2010 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-21106078

RESUMEN

BACKGROUND: Somatosensory object discrimination has been shown to involve widespread cortical and subcortical structures in both cerebral hemispheres. In this study we aimed to identify the networks involved in tactile object manipulation by principal component analysis (PCA) of individual subjects. We expected to find more than one network. METHODS: Seven healthy right-handed male volunteers (aged 22 to 44 yrs) manipulated with their right hand aluminium spheres during 5 s with a repetition frequency of 0.5-0.7 Hz. The correlation coefficients between the principal component temporal expression coefficients and the hemodynamic response modelled by SPM (ecc) determined the task-related components. To establish reproducibility within subjects and similarity of functional connectivity patterns among subjects, regional correlation coefficients (rcc) were computed between task-related component image volumes. By hierarchically categorizing, selecting and averaging the task-related component image volumes across subjects according to the rccs, mean component images (MCIs) were derived describing neural networks associated with tactile object manipulation. RESULTS: Two independent mean component images emerged. Each included the primary sensorimotor cortex contralateral to the manipulating hand. The region extended to the premotor cortex in MCI 1, whereas it was restricted to the hand area of the primary sensorimotor cortex in MCI 2. MCI 1 showed bilateral involvement of the paralimbic anterior cingulate cortex (ACC), whereas MCI 2 implicated the midline thalamic nuclei and two areas of the rostral dorsal pons. CONCLUSIONS: Two distinct networks participate in tactile object manipulation as revealed by the intra- and interindividual comparison of individual scans. Both were employed by most subjects, suggesting that both are involved in normal somatosensory object discrimination.


Asunto(s)
Potenciales Evocados Somatosensoriales/fisiología , Red Nerviosa/fisiología , Desempeño Psicomotor/fisiología , Tacto/fisiología , Adulto , Discriminación en Psicología/fisiología , Humanos , Masculino , Adulto Joven
11.
Cortex ; 115: 264-279, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30875614

RESUMEN

Until now tactile agnosia has been reported only in small, but detailed cross-sectional case studies. Here we show that multi-voxel pattern analysis (MVPA) of early diffusion-weighted lesion maps can be used to accurately predict long-term recovery of tactile object recognition (TOR) in 35 subjects with varying hand skill impairment and associated specific daily activity limitation after cortical sensori-motor stroke. Multiple regression analysis revealed the essentially dysfunctional subprocesses for object recognition in the specifically impaired subjects, i.e., grasping as determined by a subtest of Jebsen Taylor hand function test, and perception of macrogeometrical object properties. The Gaussian process regression of MVPA represents a function that relates a selection of lesioned voxels as input variables to TOR performance scores as target variables. On the behavioural level, patients fell into three recovery subgroups, depending on TOR performance over the observation period. Only baseline motor hand skill and shape discrimination were significantly correlated with the TOR trajectories. To define functionally meaningful voxels, we combined information from MVPA of lesion maps and a priori knowledge of regions of interest derived from a data bank for shape recognition. A high significance for the predicted TOR performances over nine months could be verified by permutation tests, leading us to expect that the model generalises to larger patient cohorts with first cortical ischemic stroke. The lesion sites of the persistently impaired subjects exhibited an overlap with critical areas related to the MVPA prediction map in the cytoarchitectonic areas PFt of inferior parietal lobule and OP1 of parietal operculum which are associated with higher order sensory processing. This ultimate check corroborated the significance of the MVPA map for the prediction of tactile object recognition. The clinical implication of our study is that neuroimaging data acquired immediately after first stroke could facilitate individual forecasting of post-stroke recovery.


Asunto(s)
Agnosia/fisiopatología , Corteza Motora/fisiopatología , Reconocimiento en Psicología/fisiología , Corteza Somatosensorial/fisiopatología , Accidente Cerebrovascular/fisiopatología , Percepción del Tacto/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Agnosia/diagnóstico por imagen , Agnosia/etiología , Femenino , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Corteza Motora/diagnóstico por imagen , Estudios Prospectivos , Corteza Somatosensorial/diagnóstico por imagen , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagen , Tacto/fisiología
12.
Chembiochem ; 9(11): 1749-56, 2008 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-18553323

RESUMEN

The solvent structure and dynamics around ccbeta-p, a 17-residue peptide that forms a parallel three-stranded alpha-helical coiled coil in solution, was analysed through 10 ns explicit solvent molecular dynamics (MD) simulations at 278 and 330 K. Comparison with two corresponding simulations of the monomeric form of ccbeta-p was used to investigate the changes of hydration upon coiled-coil formation. Pronounced peaks in the solvent density distribution between residues Arg8 and Glu13 of neighbouring helices show the presence of water bridges between the helices of the ccbeta-p trimer; this is in agreement with the water sites observed in X-ray crystallography experiments. Interestingly, this water site is structurally conserved in many three-stranded coiled coils and, together with the Arg and Glu residues, forms part of a motif that determines three-stranded coiled-coil formation. Our findings show that little direct correlation exists between the solvent density distribution and the temporal ordering of water around the trimeric coiled coil. The MD-calculated effective residence times of up to 40 ps show rapid exchange of surface water molecules with the bulk phase, and indicate that the solvent distribution around biomolecules requires interpretation in terms of continuous density distributions rather than in terms of discrete molecules of water. Together, our study contributes to understanding the principles of three-stranded coiled-coil formation.


Asunto(s)
Modelos Moleculares , Péptidos/química , Agua/química , Secuencias de Aminoácidos , Cristalografía por Rayos X , Enlace de Hidrógeno , Probabilidad , Estructura Secundaria de Proteína , Solventes/química , Propiedades de Superficie , Temperatura , Factores de Tiempo
13.
Behav Brain Funct ; 4: 41, 2008 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-18798977

RESUMEN

BACKGROUND: Human emotional expressions serve an important communicatory role allowing the rapid transmission of valence information among individuals. We aimed at exploring the neural networks mediating the recognition of and empathy with human facial expressions of emotion. METHODS: A principal component analysis was applied to event-related functional magnetic imaging (fMRI) data of 14 right-handed healthy volunteers (29 +/- 6 years). During scanning, subjects viewed happy, sad and neutral face expressions in the following conditions: emotion recognition, empathizing with emotion, and a control condition of simple object detection. Functionally relevant principal components (PCs) were identified by planned comparisons at an alpha level of p < 0.001. RESULTS: Four PCs revealed significant differences in variance patterns of the conditions, thereby revealing distinct neural networks: mediating facial identification (PC 1), identification of an expressed emotion (PC 2), attention to an expressed emotion (PC 12), and sense of an emotional state (PC 27). CONCLUSION: Our findings further the notion that the appraisal of human facial expressions involves multiple neural circuits that process highly differentiated cognitive aspects of emotion.

14.
Brain Behav ; 8(6): e00975, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-30106253

RESUMEN

INTRODUCTION: Serving as a pilot study of poststroke pharmacotherapy, the present investigation was intended to establish the effect of a single dose of escitalopram on motor task performance in normal volunteers. METHODS: Ten healthy volunteers of median age 63 years including four females performed a well-studied tactile manipulation task in two fMRI sessions using a double-blind cross-over design. The sessions began approximately three hours after ingestion of 20 mg escitalopram or placebo presented in pseudorandom order. The fMRI image sequences were submitted to principal component analysis (PCA). RESULTS: Based on volume correlations of task-related principal components with the mean component images derived in our previous study, we established the reproducibility of two networks of sensorimotor activity proposed there. The network reflecting motor control (cerebral pattern I) appeared invariably in placebo and verum conditions. In contrast, the other network, attributed to diminished motor control due to distracting mental processing (cerebral pattern II), emerged less regularly and exhibited more variability. Second-level PCAs of both conditions confirmed the findings of the initial analysis. Specifically, it validated the dominant and invariable expression of cerebral pattern I after application of a single dose of escitalopram. Dynamic causal modeling confirmed enhanced motor output as a result of a significantly increased connectivity between primary motor cortex and dorsal premotor cortex. CONCLUSION: This pilot study suggests the promise of stimulation by a specific serotonin reuptake inhibitor in regard to recovery and preservation of motor control after stroke.


Asunto(s)
Desempeño Psicomotor/efectos de los fármacos , Corteza Sensoriomotora/efectos de los fármacos , Accidente Cerebrovascular , Citalopram/administración & dosificación , Citalopram/farmacocinética , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto , Análisis de Componente Principal , Reproducibilidad de los Resultados , Inhibidores Selectivos de la Recaptación de Serotonina/administración & dosificación , Inhibidores Selectivos de la Recaptación de Serotonina/farmacocinética , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/fisiopatología
15.
Protein Sci ; 16(7): 1349-59, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17586770

RESUMEN

Detailed knowledge of how networks of surface salt bridges contribute to protein thermal stability is essential not only to understand protein structure and function but also to design thermostable proteins for industrial applications. Experimental studies investigating thermodynamic stability through measurements of free energy associated with mutational alterations in proteins provide only macroscopic evidence regarding the structure of salt-bridge networks and assessment of their contribution to protein stability. Using explicit-solvent molecular dynamics simulations to provide insight on the atomic scale, we investigate here the structural stability, defined in terms of root-mean-square fluctuations, of a short polypeptide designed to fold into a stable trimeric coiled coil with a well-packed hydrophobic core and an optimal number of intra- and interhelical surface salt bridges. We find that the increase of configurational entropy of the backbone and side-chain atoms and decreased pair correlations of these with increased temperature are consistent with nearly constant atom-positional root-mean-square fluctuations, increased salt-bridge occupancies, and stronger electrostatic interactions in the coiled coil. Thus, our study of the coiled coil suggests a mechanism in which well-designed salt-bridge networks could accommodate stochastically the disorder of increased thermal motion to produce thermostability.


Asunto(s)
Entropía , Conformación Proteica , Proteínas/química , Algoritmos , Aminoácidos/química , Dimerización , Modelos Moleculares , Pliegue de Proteína , Sales (Química)/química
16.
Structure ; 24(8): 1358-1371, 2016 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-27477386

RESUMEN

Centrioles are microtubule-based structures that play important roles notably in cell division and cilium biogenesis. CEP135/Bld10p family members are evolutionarily conserved microtubule-binding proteins important for centriole formation. Here, we analyzed in detail the microtubule-binding activity of human CEP135 (HsCEP135). X-ray crystallography and small-angle X-ray scattering in combination with molecular modeling revealed that the 158 N-terminal residues of HsCEP135 (HsCEP135-N) form a parallel two-stranded coiled-coil structure. Biochemical, cryo-electron, and fluorescence microscopy analyses revealed that in vitro HsCEP135-N interacts with tubulin, protofilaments, and microtubules and induces the formation of microtubule bundles. We further identified a 13 amino acid segment spanning residues 96-108, which represents a major microtubule-binding site in HsCEP135-N. Within this segment, we identified a cluster of three lysine residues that contribute to the microtubule bundling activity of HsCEP135-N. Our results provide the first structural information on CEP135/Bld10p proteins and offer insights into their microtubule-binding mechanism.


Asunto(s)
Proteínas Portadoras/química , Microtúbulos/metabolismo , Secuencias de Aminoácidos , Sitios de Unión , Proteínas Portadoras/metabolismo , Humanos , Unión Proteica , Tubulina (Proteína)/metabolismo
17.
Sci Rep ; 6: 30668, 2016 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-27485312

RESUMEN

Tight regulation of kinesin activity is crucial and malfunction is linked to neurological diseases. Point mutations in the KIF21A gene cause congenital fibrosis of the extraocular muscles type 1 (CFEOM1) by disrupting the autoinhibitory interaction between the motor domain and a regulatory region in the stalk. However, the molecular mechanism underlying the misregulation of KIF21A activity in CFEOM1 is not understood. Here, we show that the KIF21A regulatory domain containing all disease-associated substitutions in the stalk forms an intramolecular antiparallel coiled coil that inhibits the kinesin. CFEOM1 mutations lead to KIF21A hyperactivation by affecting either the structural integrity of the antiparallel coiled coil or the autoinhibitory binding interface, thereby reducing its affinity for the motor domain. Interaction of the KIF21A regulatory domain with the KIF21B motor domain and sequence similarities to KIF7 and KIF27 strongly suggest a conservation of this regulatory mechanism in other kinesin-4 family members.


Asunto(s)
Enfermedades Hereditarias del Ojo/genética , Fibrosis/genética , Cinesinas/antagonistas & inhibidores , Cinesinas/genética , Trastornos de la Motilidad Ocular/genética , Dominios Proteicos/genética , Animales , Células COS , Línea Celular , Chlorocebus aethiops , Cristalografía por Rayos X , Células HEK293 , Humanos , Cinesinas/metabolismo , Simulación del Acoplamiento Molecular , Mutación/genética , Unión Proteica/genética , Pliegue de Proteína
18.
Chem Biodivers ; 2(8): 1086-104, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17193192

RESUMEN

We report the investigation of two 16-residue peptides in aqueous solution by means of molecular-dynamics simulations. The peptides constitute the C- and N-terminal halves of the 33-residue monomer whose dimer constitutes the leucine zipper of the yeast transcriptional activator, denoted GCN4-p1. To examine a hypothesis about coiled-coil formation, in which the C-terminal half contains a helix-formation trigger site absent in the N-terminal half, experimental studies of the two peptides have determined their helix propensities under several conditions of temperature, pH, and salt concentration with circular dichroism. An NMR experiment provides additional evidence. At temperatures of 278 and 325 K and pH 7.5, mixtures of alpha- and pi-helical secondary structure constitute the most probable conformations in both C- and N-terminal halves. A bifurcated salt bridge between Arg25 and Glu22/20 correlates with the structural fluctuations of the C-terminal half. It also exhibits a persistent loop at the N-terminal end involving the side chains of His18 and Glu22, which is reminiscent of helix-capping boxes. Nonreversible unfolding appears to occur abruptly in the Arg25 mutant, suggesting a cooperative event. Analysis does not indicate that the N-terminal half is less stable than the C-terminal half, indicating that 100 ns is too short a period to observe complete unfolding.


Asunto(s)
Proteínas de Unión al ADN/química , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/química , Factores de Transcripción/química , Secuencia de Aminoácidos , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Simulación por Computador , Proteínas de Unión al ADN/metabolismo , Conformación Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Soluciones/química , Factores de Transcripción/metabolismo
19.
Front Neurol ; 6: 211, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26528235

RESUMEN

AIM: To describe structural covariance networks of gray matter volume (GMV) change in 28 patients with first-ever stroke to the primary sensorimotor cortices, and to investigate their relationship to hand function recovery and local GMV change. METHODS: Tensor-based morphometry maps derived from high-resolution structural images were subject to principal component analyses to identify the networks. We calculated correlations between network expression and local GMV change, sensorimotor hand function and lesion volume. To verify which of the structural covariance networks of GMV change have a significant relationship to hand function, we performed an additional multivariate regression approach. RESULTS: Expression of the second network, explaining 9.1% of variance, correlated with GMV increase in the medio-dorsal (md) thalamus and hand motor skill. Patients with positive expression coefficients were distinguished by significantly higher GMV increase of this structure during stroke recovery. Significant nodes of this network were located in md thalamus, dorsolateral prefrontal cortex, and higher order sensorimotor cortices. Parameter of hand function had a unique relationship to the network and depended on an interaction between network expression and lesion volume. Inversely, network expression is limited in patients with large lesion volumes. CONCLUSION: Chronic phase of sensorimotor cortical stroke has been characterized by a large scale co-varying structural network in the ipsilesional hemisphere associated specifically with sensorimotor hand skill. Its expression is related to GMV increase of md thalamus, one constituent of the network, and correlated with the cortico-striato-thalamic loop involved in control of motor execution and higher order sensorimotor cortices. A close relation between expression of this network with degree of recovery might indicate reduced compensatory resources in the impaired subgroup.

20.
J Nucl Med ; 45(3): 464-70, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15001689

RESUMEN

UNLABELLED: The novel, dedicated small animal PET tomograph, quad-HIDAC, offers submillimeter resolution in instrumental characterization experiments. The aim of this study was to establish the tomograph's utility in a biologic application and to demonstrate the feasibility of rapid dynamic neuroreceptor imaging in mice. METHODS: We used the well-established, high-affinity dopamine D(2) receptor PET ligand (18)F-fallypride for imaging striatal D(2) receptors in NMRI mice. Dynamic PET data were acquired using the quad-HIDAC tomograph and subject to 2 different kinetic modeling approaches. The cerebellum, a brain region devoid of D(2) receptors, was chosen as a reference region for kinetic modeling. RESULTS: The resolution of the quad-HIDAC camera allowed clear visualization of the left and right mouse striatum with high target-to-nontarget signal ratios. The sensitivity of the tomograph permitted the generation of time-activity curves with initial time frames of 120 s. PET experiments acquiring data for 150 min demonstrated that the binding potential of (18)F-fallypride could be fitted robustly with both reference tissue models for scan durations of >or=40 min. Voxel-wise modeling resulted in parametric maps of high quality. The values for the binding potential in the striatum reached approximately 14, consistent with striatum-to-cerebellum ratios extracted from regional time-activity curves. Comparison of in vivo PET imaging results with ex vivo postmortem tissue sampling analyses indicated discrepancies in signal intensity, possibly resulting from scatter and random background in the cerebellum region of interest and leading to an overestimation of cerebellar activity concentrations and degradation of striatum-to-cerebellum ratios in PET experiments. Intraperitoneal injection of the unlabeled D(2) receptor antagonist haloperidol 30 min before intravenous injection of (18)F-fallypride blocked tracer accumulation in the striatum by >95%. CONCLUSION: The quad-HIDAC camera represents a powerful tool for future dynamic neuroreceptor PET studies in mice and rats under numerous pharmacologic or pathophysiologic conditions.


Asunto(s)
Benzamidas/farmacocinética , Cuerpo Estriado/diagnóstico por imagen , Cuerpo Estriado/metabolismo , Análisis de Falla de Equipo , Pirrolidinas/farmacocinética , Receptores de Dopamina D2/metabolismo , Tomografía Computarizada de Emisión/instrumentación , Tomografía Computarizada de Emisión/métodos , Animales , Masculino , Tasa de Depuración Metabólica , Ratones , Radiofármacos/farmacocinética , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA