Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int Heart J ; 63(2): 338-346, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35354754

RESUMEN

Dilated cardiomyopathy (DCM) is caused by various gene variants and characterized by systolic dysfunction. Lamin variants have been reported to have a poor prognosis. Medical and device therapies are not sufficient to improve the prognosis of DCM with the lamin variants. Recently, induced pluripotent stem (iPS) cells have been used for research on genetic disorders. However, few studies have evaluated the contractile function of cardiac tissue with lamin variants. The aim of this study was to elucidate the function of cardiac cell sheet tissue derived from patients with lamin variant DCM. iPS cells were generated from a patient with lamin A/C (LMNA) -mutant DCM (LMNA p.R225X mutation). After cardiac differentiation and purification, cardiac cell sheets that were fabricated through cultivation on a temperature-responsive culture dish were transferred to the surface of the fibrin gel, and the contractile force was measured. The contractile force and maximum contraction velocity, but not the maximum relaxation velocity, were significantly decreased in cardiac cell sheet tissue with the lamin variant. A qRT-PCR analysis revealed that mRNA expression of some contractile proteins, cardiac transcription factors, Ca2+-handling genes, and ion channels were downregulated in cardiac tissue with the lamin variant.Human iPS-derived bioengineered cardiac tissue with the LMNA p.R225X mutation has the functional properties of systolic dysfunction and may be a promising tissue model for understanding the underlying mechanisms of DCM.


Asunto(s)
Cardiomiopatías , Cardiomiopatía Dilatada , Células Madre Pluripotentes Inducidas , Cardiomiopatías/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Mutación , Miocitos Cardíacos/metabolismo
2.
Biomaterials ; 281: 121351, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34979417

RESUMEN

Alignment, as seen in the native myocardium, is crucial for the fabrication of functional cardiac tissue. However, it remains unclear whether the control of cardiomyocyte alignment influences cardiac function and the underlying mechanisms. We fabricated aligned human cardiac tissue using a micro-processed fibrin gel with inverted V-shaped ridges (MFG) and elucidated the effect of alignment control on contractile properties. When human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were seeded on MFG, hiPSC-CMs were aligned more uniformly than the control, and we succeeded in fabricating the aligned cardiac tissue. Assessing the contractile properties with the direct contractile measurement system, the contractile force, maximum contractile velocity, and relaxation velocity were significantly increased in aligned cardiac tissue compared with non-aligned cardiac tissue. However, gene expression profiles were not different between the two groups, suggesting that functional improvement of cardiac tissue through alignment control might not be dependent on cardiomyocyte maturation. Motion capture analysis revealed that the cardiomyocytes in the aligned cardiac tissues showed more unidirectional and synchronous contraction than the non-aligned cardiac tissues, indicating that cardiac tissue maturation involves electrical integration of cardiomyocytes. Herein, cardiomyocyte alignment control might improve the contractile properties of cardiac tissue through promoting unidirectional and synchronous cardiomyocyte contraction.


Asunto(s)
Células Madre Pluripotentes Inducidas , Diferenciación Celular , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Fenómenos Mecánicos , Contracción Miocárdica , Miocardio , Miocitos Cardíacos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA