Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 710: 149541, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38608490

RESUMEN

For acute promyelocytic leukemia (APL), differentiation therapy with all-trans retinoic acid (ATRA) is well established. However, the narrow application and tolerance development of ATRA remain to be improved. In this study, we investigated the effects of combinations of glycosylation inhibitors with ATRA to achieve better efficiency than ATRA alone. We found that the combination of fucosylation inhibitor 6-alkynylfucose (6AF) and ATRA had an additional effect on cell differentiation, as revealed by expression changes in two differentiation markers, CD11b and CD11c, and significant morphological changes in NB4 APL and HL-60 acute myeloid leukemia (AML) cells. In AAL lectin blot analyses, ATRA or 6AF alone could decrease fucosylation, while their combination decreased fucosylation more efficiently. To clarify the molecular mechanism for the 6AF effect on ATRA-induced differentiation, we performed microarray analyses using NB4 cells. In a pathway analysis using DAVID software, we found that the C-type lectin receptor (CLR) signaling pathway was enriched with high significance. In real-time PCR analyses using NB4 and HL-60 cells, FcεRIγ, CLEC6A, CLEC7A, CASP1, IL-1ß, and EGR3, as components of the CLR pathway, as well as CD45 and AKT3 were upregulated by 6AF in ATRA-induced differentiation. Taken together, the present findings suggest that the CLR signaling pathway is involved in the 6AF effect on ATRA-induced differentiation.


Asunto(s)
Leucemia Promielocítica Aguda , Humanos , Leucemia Promielocítica Aguda/tratamiento farmacológico , Leucemia Promielocítica Aguda/metabolismo , Glicosilación , Tretinoina/farmacología , Tretinoina/metabolismo , Diferenciación Celular , Células HL-60 , Línea Celular Tumoral
2.
Cancer Med ; 12(8): 9684-9696, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36751113

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is the most common malignancy in the world, and novel molecular targeted therapies for CRC have been vigorously pursued. We searched for novel combination therapies based on the expression patterns of membrane proteins in CRC cell lines. RESULTS: A positive correlation was observed between the expression of human pidermal growth factor receptor (HER) 3 and mesenchymal-to-epithelial transition factor (MET) on the cell surface of CRC cell lines. The brief stimulation of HER3/MET-high SW1116 CRC cells with both neuregulin-1 (NRG1) and hepatocyte growth factor enhanced ERK phosphorylation and cell proliferation more than each stimulation alone. In addition, a prolonged NRG1 stimulation resulted in the tyrosine phosphorylation of MET. In this context, the Forkhead Box protein M1 (FOXM1)-regulated tyrosine phosphorylation of MET by NRG1 was demonstrated, suggesting the existence of a signaling pathway mediated by FOXM1 upon the NRG1 stimulation. Since the co-expression of HER3 and MET was also demonstrated in in vivo CRC tissues by immunohistochemistry, we investigated whether the co-inhibition of HER3 and MET could be an effective therapy for CRC. We established HER3-and/or MET-KO SW1116 cell lines, and HER3/MET-double KO resulted in the inhibition of in vitro cell proliferation and in vivo tumor growth in nude mice by SW1116 cells. Furthermore, the combination of patritumab, an anti-HER3 fully human mAb, and PHA665752, a MET inhibitor, markedly inhibited in vitro cell proliferation, 3D-colony formation, and in vivo tumor growth in nude mice by SW1116 cells CONCLUSION: The dual targeting of HER3/MET has potential as CRC therapy.


Asunto(s)
Neoplasias Colorrectales , Humanos , Animales , Ratones , Ratones Desnudos , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Transducción de Señal , Proliferación Celular , Tirosina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA