Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Environ Res ; 262(Pt 1): 119808, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39153565

RESUMEN

The widespread application of macrolide antibiotics has caused antibiotic resistance pollution, threatening the river ecological health. In this study, five macrolide antibiotics (azithromycin, clarithromycin, roxithromycin, erythromycin, and anhydro erythromycin A) were monitored in the Zao River across three hydrological periods (April, July, and December). Simultaneously, the changes in antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and planktonic bacterial communities were determined using metagenomic sequencing. A clear pollution gradient was observed for azithromycin and roxithromycin, with the concentrations in the dry season surpassing those in other seasons. The highest concentration was observed for azithromycin (1.36 µg/L). The abundance of MLS resistance genes increased along the Zao River during the dry season, whereas the opposite trend was obtained during the wet season. A significant correlation between the levels of MLS resistance genes and macrolide antibiotics was identified during the dry season. Notably, compared with the reference site, the abundance of transposase in the effluent from wastewater treatment plants (WWTPs) was significantly elevated in both dry and wet seasons, whereas the abundance of insertion sequences (IS) and plasmids declined during the dry season. The exposure to wastewater containing macrolide antibiotics altered the diversity of planktonic bacterial communities. The bacterial host for ARGs appeared to be Pseudomonas, primarily associated with multidrug subtypes. Moreover, the ARG subtypes were highly correlated with MGEs (transposase and istA). The partial least-squares path model (PLS-PM) demonstrated a positive correlation between the abundance of MGEs and ARGs, indicating the significance of horizontal gene transfer (HGT) in the dissemination of ARGs within the Zao River. Environmental variables, such as TN and NO3--N, were significantly correlated with the abundance of MGEs, ARGs, and bacteria. Collectively, our findings could provide insights into the shift patterns of the microbiome and ARGs across the contamination gradient of AZI and ROX in the river.

2.
Environ Res ; 244: 117934, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38109957

RESUMEN

Florfenicol, as a replacement for chloramphenicol, can tightly bind to the A site of the 23S rRNA in the 50S subunit of the 70S ribosome, thereby inhibiting protein synthesis and bacterial proliferation. Due to the widespread use in aquaculture and veterinary medicine, florfenicol has been detected in the aquatic environment worldwide. Concerns over the effects and health risks of florfenicol on target and non-target organisms have been raised in recent years. Although the ecotoxicity of florfenicol has been widely reported in different species, no attempt has been made to review the current research progress of florfenicol toxicity, hormesis, and its health risks posed to biota. In this study, a comprehensive literature review was conducted to summarize the effects of florfenicol on various organisms including bacteria, algae, invertebrates, fishes, birds, and mammals. The generation of antibiotic resistant bacteria and spread antibiotic resistant genes, closely associated with hormesis, are pressing environmental health issues stemming from overuse or misuse of antibiotics including florfenicol. Exposure to florfenicol at µg/L-mg/L induced hormetic effects in several algal species, and chromoplasts might serve as a target for florfenicol-induced effects; however, the underlying molecular mechanisms are completely lacking. Exposure to high levels (mg/L) of florfenicol modified the xenobiotic metabolism, antioxidant systems, and energy metabolism, resulting in hepatotoxicity, renal toxicity, immunotoxicity, developmental toxicity, reproductive toxicity, obesogenic effects, and hormesis in different animal species. Mitochondria and the associated energy metabolism are suggested to be the primary targets for florfenicol toxicity in animals, albeit further in-depth investigations are warranted for revealing the long-term effects (e.g., whole-life-cycle impacts, multigenerational effects) of florfenicol, especially at environmental levels, and the underlying mechanisms. This will facilitate the evaluation of potential hormetic effects and construction of adverse outcome pathways for environmental risk assessment and regulation of florfenicol.


Asunto(s)
Antibacterianos , Tianfenicol , Tianfenicol/análogos & derivados , Animales , Antibacterianos/toxicidad , Tianfenicol/toxicidad , Cloranfenicol/farmacología , Bacterias , Mamíferos
3.
Ecotoxicol Environ Saf ; 263: 115242, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37441949

RESUMEN

Erythromycin (ERY) is a typical macrolide antibiotic with large production and extensive use on a global scale. Detection of ERY in both freshwaters and coaster seawaters, as well as relatively high ecotoxicity of ERY have been documented. Notably, hormesis has been reported on several freshwater algae under ERY stress, where growth was promoted at relatively lower exposures but inhibited at higher treatment levels. On the contrary, there is limited information of ERY toxicity in marine algae, hampering the risk assessment on ERY in the coaster waters. The presence of hormesis may challenge the current concept of dose-response adopted in chemical risk assessment. Whether and how exposure to ERY can induce dose-dependent toxicity in marine algae remain virtually unknown, especially at environmentally relevant concentrations. The present study used a model marine diatom Thalassiosira weissflogii (T. weissflogii) to reveal its toxicological responses to ERY at different biological levels and decipher the underlying mechanisms. Assessment of multiple apical endpoints shows an evident growth promotion following ERY exposure at an environmentally relevant concentration (1 µg/L), associated with increased contents reactive oxygen species (ROS) and chlorophyll-a (Chl-a), activated signaling pathways related to ribosome biosynthesis and translation, and production of total soluble protein. By contrast, growth inhibition in the 750 and 2500 µg/L treatments was attributed to reduced viability, increased ROS formation, reduced content of total soluble protein, inhibited photosynthesis, and perturbed signaling pathways involved in xenobiotic metabolism, ribosome, metabolism of amino acid, and nitrogen metabolism. Measurements of multiple apical endpoints coupled with de novo transcriptomics analysis applied in the present study, a systems biology approach, can generate detailed mechanistic information of chemical toxicity including dose-response and species sensitivity difference used in environmental risk assessment.


Asunto(s)
Diatomeas , Eritromicina , Eritromicina/toxicidad , Diatomeas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Hormesis , Antibacterianos/toxicidad
4.
J Environ Sci (China) ; 127: 82-90, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36522109

RESUMEN

Exposure to triclosan (TCS) has been reported to reduce photosynthetic pigments, suppress photosynthesis, and inhibit growth in both prokaryotic and eukaryotic algae including Anabaena flos-aquae (a model cyanobacterium). In particular, cyanobacteria are more sensitive to TCS toxicity compared to eukaryotic algae possibly due to the structural similarity to bacteria (target organisms); however, whether TCS exerts its toxicity to cyanobacteria by targeting signaling pathways of fatty acid biosynthesis as in bacteria remains virtually unknown, particularly at environmental exposure levels. With the complete genome sequence of A. flos-aquae presented in this study, the transcriptomic alterations and potential toxic mechanisms in A. flos-aquae under TCS stress were revealed. The growth, pigments and photosynthetic activity of A. flos-aquae were markedly suppressed following a 7-day TCS exposure at 0.5 µg/L but not 0.1 µg/L (both concentrations applied are environmentally relevant). The transcriptomic sequencing analysis showed that signaling pathways, such as biofilm formation - Pseudomonas aeruginosa, two-component system, starch and sucrose metabolism, and photosynthesis were closely related to the TCS-induced growth inhibition in the 0.5 µg/L TCS treatment. Photosynthesis systems and potentially two-component system were identified to be sensitive targets of TCS toxicity in A. flos-aquae. The present study provides novel insights on TCS toxicity at the transcriptomic level in A. flos-aquae.


Asunto(s)
Cianobacterias , Dolichospermum flos-aquae , Triclosán , Dolichospermum flos-aquae/metabolismo , Triclosán/toxicidad , Transcriptoma , Fotosíntesis
5.
J Environ Sci (China) ; 124: 591-601, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36182165

RESUMEN

A recent study showed that erythromycin (ERY) exposure caused hormesis in a model alga (Raphidocelis subcapitata) where the growth was promoted at an environmentally realistic concentration (4 µg/L) but inhibited at two higher concentrations (80 and 120 µg/L), associated with opposite actions of certain signaling pathways (e.g., xenobiotic metabolism, DNA replication). However, these transcriptional alterations remain to be investigated and verified at the metabolomic level. This study uncovered metabolomic profiles and detailed toxic mechanisms of ERY in R. subcapitata using untargeted metabolomics. The metabolomic analysis showed that metabolomic pathways including ABC transporters, fatty acid biosynthesis and purine metabolism were associated with growth promotion in algae treated with 4 µg/L ERY. An overcompensation was possibly activated by the low level of ERY in algae where more resources were reallocated to efficiently restore the temporary impairments, ultimately leading to the outperformance of growth. By contrast, algal growth inhibition in the 80 and 120 µg/L ERY treatments was likely attributed to the dysfunction of metabolomic pathways related to ABC transporters, energy metabolism and metabolism of nucleosides. Apart from binding of ERY to the 50S subunit of ribosomes to inhibit protein translation as in bacteria, the data presented here indicate that inhibition of protein translation and growth performance of algae by ERY may also result from the suppression of amino acid biosynthesis and aminoacyl-tRNA biosynthesis. This study provides novel insights into the dose-dependent toxicity of ERY on R. subcapitata.


Asunto(s)
Chlorophyta , Eritromicina , Transportadoras de Casetes de Unión a ATP , Aminoácidos , Metabolismo Energético , Eritromicina/toxicidad , Ácidos Grasos , Purinas , ARN de Transferencia , Xenobióticos
6.
J Environ Sci (China) ; 127: 336-348, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36522066

RESUMEN

Benzo[a]pyrene (BaP), a ubiquitous pollutant, raises environmental health concerns due to induction of bone toxicity in the unexposed offspring. Exposure of F0 ancestor medaka (Oryzias latipes) to 1 µg/L BaP for 21 days causes reduced vertebral bone thickness in the unexposed F3 male offspring. To reveal the inherited modifications, osteoblast (OB) abundance and molecular signaling pathways of transgenerational BaP-induced bone thinning were assessed. Histomorphometric analysis showed a reduction in OB abundance. Analyses of the miRNA and mRNA transcriptomes revealed the dysregulation of Wnt signaling (frzb/ola-miR-1-3p, sfrp5/ola-miR-96-5p/miR-455-5p) and bone morphogenetic protein (Bmp) signaling (bmp3/ola-miR-96-5p/miR-181b-5p/miR-199a-5p/miR-205-5p/miR-455-5p). Both pathways are major indicators of impaired bone formation, while the altered Rank signaling in osteoclasts (c-fos/miR-205-5p) suggests a potentially augmented bone resorption. Interestingly, a typical BaP-responsive pathway, the Nrf2-mediated oxidative stress response (gst/ola-miR-181b-5p/miR-199a-5p/miR-205), was also affected. Moreover, mRNA levels of epigenetic modification enzymes (e.g., hdac6, hdac7, kdm5b) were found dysregulated. The findings indicated that epigenetic factors (e.g., miRNAs, histone modifications) may directly regulate the expression of genes associated with transgenerational BaP bone toxicity and warrants further studies. The identified candidate genes and miRNAs may serve as potential biomarkers for BaP-induced bone disease and as indicators of historic exposures in wild fish for conservation purposes.


Asunto(s)
MicroARNs , Oryzias , Contaminantes Químicos del Agua , Animales , Masculino , Oryzias/fisiología , Benzo(a)pireno/toxicidad , Benzo(a)pireno/análisis , Benzo(a)pireno/metabolismo , Transcriptoma , Contaminantes Químicos del Agua/análisis , ARN Mensajero , MicroARNs/metabolismo
7.
Ecotoxicol Environ Saf ; 243: 114010, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36030683

RESUMEN

With development of e-waste related legislation in China, formal recycling activities are designated in some areas while informal ones are illegally transferred to emerging areas to avoid supervision. However, the resulting environmental impact and ecological risks are not clear. Here, we investigated the discharge of polychlorinated biphenyls (PCBs) to soil and aquatic environments by e-waste recycling activities in the Lian River Basin, China. The study area included a designated industrial park in the traditional e-waste recycling area (Guiyu, known as the world's largest e-waste center), several emerging informal recycling zones, and their surrounding areas and coastal area. A total of 27 PCBs were analyzed, and the highest concentration was found in an emerging site for soil (354 ng g-1) and in a traditional site for sediment (1350 ng g--1) respectively. The pollution levels were significantly higher in both the traditional and emerging recycling areas than in their respective upstream countryside areas (p = 0.0356 and 0.0179, respectively). Source analysis revealed that the traditional and emerging areas had similar PCB sources mainly associated with three PCB technical mixtures manufactured in Japan (KC600) and the USA (Aroclor 1260 and Aroclor 1262). The PCB pollution in their downstream areas including the coastal area was evidently affected by the formal and informal recycling activities through river runoff. The ecological risk assessments showed that PCBs in soils and sediments in the Lian River Basin could cause adverse ecotoxicological consequences to humans and aquatic organisms.


Asunto(s)
Residuos Electrónicos , Bifenilos Policlorados , China , Residuos Electrónicos/análisis , Monitoreo del Ambiente/métodos , Humanos , Bifenilos Policlorados/análisis , Reciclaje , Ríos , Suelo
8.
J Environ Sci (China) ; 111: 400-411, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34949369

RESUMEN

Recent studies show that triclosan (TCS) exposure causes reduction in pigments, suppression of photosynthesis, and induction of oxidative stress at the physiological level, resulting in morphological alteration and growth inhibition in algae including Raphidocelis subcapitata (R. subcapitata, a freshwater model green alga). However, the underlying molecular mechanisms remain to be elucidated, especially at environmentally relevant concentrations. The present study uncovered the transcriptional profiles and molecular mechanisms of TCS toxicity in R. subcapitata using next-generation sequencing. The algal growth was drastically inhibited following a 7-day exposure at both 75 and 100 µg/L TCS, but not at 5 µg/L (environmentally realistic level). The transcriptomic analysis shows that molecular signaling pathways including porphyrin and chlorophyll metabolism, photosynthesis - antenna proteins, and photosynthesis were suppressed in all three TCS treatments, and the perturbations of these signaling pathways were exacerbated with increased TCS exposure concentrations. Additionally, signaling of replication-coupled DNA repair was only activated in 100 µg/L TCS treatment. These results indicate that photosynthesis systems were sensitive targets of TCS toxicity in R. subcapitata, which is distinct from the inhibition of lipid synthesis by TCS in bacteria. This study provides novel knowledge on molecular mechanisms of TCS toxicity in R. subcapitata.


Asunto(s)
Chlorophyceae , Triclosán , Contaminantes Químicos del Agua , Reparación del ADN , Fotosíntesis , Triclosán/toxicidad , Contaminantes Químicos del Agua/toxicidad
9.
Environ Sci Technol ; 54(19): 12271-12284, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32840350

RESUMEN

Ancestral benzo[a]pyrene (BaP) (1 µg/L, 21 days) exposure has previously been shown to cause skeletal deformities in medaka (Oryzias latipes) larvae in the F1-F3 generation. However, when and how this deformity is induced during bone development remain to be elucidated. The col10a1:nlGFP/osx:mCherry double transgenic medaka model was employed to determine the temporal and spatial changes of col10a1:nlGFP- positive osteochondral progenitor cells (OPCs) and osx:mCherry-positive premature osteoblasts (POBs) [8 days postfertilization (dpf)-31 dpf] in combination with changes in bone mineralization at the tissue level. Ancestral BaP exposure delayed the development of col10a1:nlGFP- and osx:mCherry-positive osteoblasts and reduced the abundance of col10a1:nlGFP-positive osteoblast progenitors and col10a1:nlGFP/osx:mCherry double-positive premature osteoblasts during critical windows of early vertebral bone formation, associated with reduced bone mineralization in embryos (14 dpf) and larvae (31 dpf), compressed vertebral segments in larvae (31 dpf), and reduced bone thickness in adult male medaka (6 months old) of the F1-F3 generations. Both Col10a1:nlGFP and osx:mCherry were identified as potential targets of epigenetic modifications underlying the transgenerational inheritance of BaP bone toxicity. The present study provides novel knowledge of the underlying mechanisms of transgenerational toxicity of BaP at the cellular level.


Asunto(s)
Oryzias , Contaminantes Químicos del Agua , Animales , Benzo(a)pireno/toxicidad , Calcificación Fisiológica , Masculino , Osteoblastos , Osteogénesis , Contaminantes Químicos del Agua/toxicidad
10.
Ecotoxicol Environ Saf ; 201: 110737, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32505758

RESUMEN

Macrolide antibiotics are common contaminants in the aquatic environment. They are toxic to a wide range of primary producers, inhibiting the algal growth and further hindering the delivery of several ecosystem services. Yet the molecular mechanisms of macrolides in algae remain undetermined. The objectives of this study were therefore to: 1. evaluate whether macrolides at the environmentally relevant level inhibit the growth of algae; and 2. test the hypothesis that macrolides bind to ribosome and inhibit protein translocation in algae, as it does in bacteria. In this study, transcriptomic analysis was applied to elucidate the toxicological mechanism in a model green alga Raphidocelis subcapitata treated with 5 and 90 µg L-1 of a typical macrolide roxithromycin (ROX). While exposure to ROX at 5 µg L-1 for 7 days did not affect algal growth and the transciptome, ROX at 90 µg L-1 resulted in 45% growth inhibition and 2306 (983 up- and 1323 down-regulated) DEGs, which were primarily enriched in the metabolism of energy, lipid, vitamins, and DNA replication and repair pathways. Nevertheless, genes involved in pathways in relation to translation and protein translocation and processing were dysregulated. Surprisingly, we found that genes involved in the base excision repair process were mostly repressed, suggesting that ROX may be genotoxic and cause DNA damage in R. subcapitata. Taken together, ROX was unlikely to pose a threat to green algae in the environment and the mode of action of macrolides in bacteria may not be directly extrapolated to green algae.


Asunto(s)
Antibacterianos/toxicidad , Chlorophyceae/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Roxitromicina/toxicidad , Contaminantes Químicos del Agua/toxicidad , Chlorophyceae/genética , Chlorophyceae/crecimiento & desarrollo , Daño del ADN/genética , Reparación del ADN/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Transcriptoma/efectos de los fármacos
11.
Ecotoxicol Environ Saf ; 161: 515-525, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29913420

RESUMEN

Zinc pyrithione (ZPT) is widely used as a substitute booster biocide for tributyltin and is also an additive to antidandruff shampoos and medical cosmetic products. ZPT and pyrithione have been detected in different environmental matrices and biota, suggesting that it may pose health threats to aquatic organisms and even humans. The present study used HepG2 cells, a human hepatoma cell line, to study the hepatotoxicity of ZPT (0.1-5.0 µM). ZPT treatment caused marked viability reduction and induced apoptosis depending on its dose used. ZPT-induced apoptosis involved an increased Bax/Bcl-2 ratio, loss of mitochondrial membrane potential, cytochrome c release, and enhanced caspase-9/-3 activity. In addition, a significant elevation in the amount of zinc ions and oxidative stress was evident. The involvement of these in ZPT-induced apoptosis was confirmed by toxicity comparison with analogs of ZPT and the observation that pretreatment with antioxidants afforded protection. Overall, these results suggest that ZPT induces zinc accumulation, oxidative stress, and subsequent apoptosis by causing mitochondrial dysfunction. Importantly, ROS was an initial and prolonged signal in ZPT-induced apoptosis in HepG2 cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Compuestos Organometálicos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Piridinas/toxicidad , Antioxidantes/metabolismo , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Contaminantes Ambientales/metabolismo , Células Hep G2 , Humanos , Mitocondrias/metabolismo , Compuestos Organometálicos/metabolismo , Piridinas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
12.
Sci Total Environ ; 933: 173012, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38719038

RESUMEN

Microplastics and nanoplastics (MNPs) have received increasing attention due to their high detection rates in human matrices and adverse health implications. However, the toxicity of MNPs on embryo/fetal development following maternal exposure remains largely unexplored. Zebrafish, sharing genetic similarities with human, boast a shorter life cycle, rapid embryonic development, and the availability of many transgenic strains, is a suitable model for environmental toxicology studies. This review comprehensively explores the existing research on the impacts of MNPs on zebrafish embryo development. MNPs exposure induces a wide array of toxic effects, encompassing neurodevelopmental toxicity, immunotoxicity, gastrointestinal effects, microbiota dysbiosis, cardiac dysfunctions, vascular toxicity, and metabolic imbalances. Moreover, MNPs disrupt the balance between reactive oxygen species (ROS) production and antioxidant capacity, culminating in oxidative damage and apoptosis. This study also offers insight into the current omics- and multi-omics based approaches in MNPs research, which greatly expedite the discovery of biochemical or metabolic pathways, and molecular mechanisms underlying MNPs exposure. Additionally, this review proposes a preliminary adverse outcome pathway framework to predict developmental toxicity caused by MNPs. It provides a comprehensive overview of pathways, facilitating a clearer understanding of the exposure and toxicity of MNPs, from molecular effects to adverse outcomes. The compiled data in this review provide a better understanding for MNPs effects on early life development, with the goal of increasing awareness about the risks posed to pregnant women by MNPs exposure and its potential impact on the health of their future generations.


Asunto(s)
Embrión no Mamífero , Desarrollo Embrionario , Microplásticos , Contaminantes Químicos del Agua , Pez Cebra , Animales , Microplásticos/toxicidad , Embrión no Mamífero/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Desarrollo Embrionario/efectos de los fármacos , Nanopartículas/toxicidad
13.
Aquat Toxicol ; 275: 107070, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39217791

RESUMEN

Discharged sewage is the dominant source of urban river pollution. Macrolide antibiotics have emerged as prominent contaminants, which are frequently detected in sewage and rivers and pose a threat to aquatic microbial community. As a typical primary producer, periphyton is crucial for maintaining the biodiversity and functions of aquatic ecosystem. However, effects of antibiotic exposure time as well as the recovery process of periphyton remain undetermined. In the present study, five exposure scenarios of two typical macrolides, erythromycin (ERY) and roxithromycin (ROX) were investigated at 50 µg/L, dose to evaluate their potential detrimental effects on the structure and function of periphyton and the subsequent recovery process in 14 days. Results revealed that the composition of periphytic community returned to normal over the recovery period, except for a few sensitive species. The antibiotics-caused significant photodamage to photosystem II, leading to continuous inhibition of the photosynthetic capacity of periphyton. Furthermore, no significant difference in carbon metabolism capacity was observed after direct antibiotic exposure, while the amine carbon utilization capacity of periphyton remarkably increased during the recovery process. These results indicated that periphyton community was capable of coping with the periodic exposure of antibiotic pollutants and recovering on its own. However, the ecological functions of periphyton can be permanently disturbed due to macrolide exposure. Overall, this study sheds light on the influence of macrolide exposure on the development, structure and function of the periphytic microbial community in rivers.


Asunto(s)
Antibacterianos , Macrólidos , Perifiton , Ríos , Contaminantes Químicos del Agua , Ríos/química , Contaminantes Químicos del Agua/toxicidad , Antibacterianos/toxicidad , Macrólidos/toxicidad , Perifiton/efectos de los fármacos , Roxitromicina/toxicidad , Eritromicina/toxicidad , Fotosíntesis/efectos de los fármacos
14.
Plants (Basel) ; 13(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38337887

RESUMEN

Erythromycin, a macrolide antibiotic, is a prioritized pollutant that poses a high risk to environmental health. It has been detected in different environmental matrices and can cause undesired effects in aquatic organisms, particularly freshwater algae, which are primary producers. However, the impact of erythromycin on marine algae remains largely unexplored. Erythromycin has been reported to induce hormetic effects in the marine diatom Thalassiosira weissflogii (T. weissflogii). These effects are associated with the molecular pathways and biological processes of ribosome assembly, protein translation, photosynthesis, and oxidative stress. However, the alterations in the global gene expression have yet to be validated at the metabolic level. The present study used non-targeted metabolomic analysis to reveal the altered metabolic profiles of T. weissflogii under erythromycin stress. The results showed that the increased cell density was possibly attributed to the accumulation of steroidal compounds with potential hormonic action at the metabolic level. Additionally, slight increases in the mitochondrial membrane potential (MMP) and viable cells were observed in the treatment of 0.001 mg/L of erythromycin (an environmentally realistic level). Contrarily, the 0.75 and 2.5 mg/L erythromycin treatments (corresponding to EC20 and EC50, respectively) showed decreases in the MMP, cell density, and viable algal cells, which were associated with modified metabolic pathways involving ATP-binding cassette (ABC) transporters, the metabolism of hydrocarbons and lipids, thiamine metabolism, and the metabolism of porphyrin and chlorophyll. These findings suggest that metabolomic analysis, as a complement to the measurement of apical endpoints, could provide novel insights into the molecular mechanisms of hormesis induced by antibiotic agents in algae.

15.
Water Res ; 251: 121140, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38246076

RESUMEN

Assessment of the interaction between the biotransformation of chemical contaminants and enzyme activity from aquatic microbial communities is critical for improving the micropollutant degradation in river remediation. Here, association mining based on metatranscriptomic analysis was initially applied to determine the genes encoding enzymes involved in the azithromycin (AZI) transformation process and the corresponding microbial hosts in periphyton, followed by revealing the dynamic variation in the community structure and function. In terms of the biotransformation potential, the highly correlated 15 enzymes were suggested to be primarily involved in AZI biotransformation, energy supply, and antibiotic resistance processes, especially aryl-alcohol dehydrogenases (EC: 1.1.1.90), hydroxylamine dehydrogenase (EC: 1.7.2.6), and monooxygenases (EC: 1.14.11.57) that were involved in the biotransformation of AZI. In the matter of community ecological function, the photosystem II (PSII) reaction center in the periphytic photosynthetic process, as indicated by Fv/Fm, was inhibited after AZI exposure, which may be attributed to the down-regulated genes enriched in the photosynthesis - antenna proteins (ko00196), photosynthesis (ko00195), and two-component system (ko02020) pathways. Furthermore, the periphytic utilization capacity for carbohydrates and phenolic acids was enhanced, which was in accordance with all the increased expression of transcripts involved in the corresponding molecular pathways, including aminobenzoate degradation (ko00627), starch and sucrose metabolism (ko00500), ABC transporters (ko02010), phosphotransferase system (ko02060), galactose metabolism (ko00052), amino sugar and nucleotide sugar metabolism (ko00520). Taken together, this study highlighted the critical role of river periphyton in the micropollutant degradation and unraveled the molecular mechanism of antibiotic biotransformation as well as the structural and functional damage in the periphyton.


Asunto(s)
Microbiota , Perifiton , Contaminantes Químicos del Agua , Azitromicina , Ríos , Antibacterianos , Biotransformación , Contaminantes Químicos del Agua/metabolismo
16.
Mar Pollut Bull ; 203: 116466, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38713926

RESUMEN

Due to the detrimental effects on aquatic organisms and ecosystem, tributyltin as a antifouling agent have been banned worldwide since 1990s. As a replacement for tributyltin, zinc pyrithione (ZnPT) has emerged as a new environmentally friendly antifouling agent. However, the widespread use of ZnPT unavoidably leads to the occurrence and accumulation in aquatic environments, especially in waters with limited sunlight. Despite empirical evidence demonstrating the ecotoxicity and health risks of ZnPT to different organisms, there has been no attempt to compile and interpret this data. The present review revealed that over the past 50 years, numerous studies have documented the toxicity of ZnPT in various organisms, both in vitro and in vivo. However, long-term effects and underlying mechanisms of ZnPT on biota, particularly at environmentally realistic exposure levels, remain largely unexplored. In-depth studies are thus necessary to generate detailed ecotoxicological information of ZnPT for environmental risk assessment and management.


Asunto(s)
Compuestos Organometálicos , Piridinas , Contaminantes Químicos del Agua , Piridinas/toxicidad , Compuestos Organometálicos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Organismos Acuáticos/efectos de los fármacos , Medición de Riesgo , Ecosistema , Monitoreo del Ambiente
17.
Bioresour Technol ; 399: 130636, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38548032

RESUMEN

Biofuel production from microalgae has been greatly restricted by low biomass productivity and long-term photosynthetic efficacy. Here, a novel strategy for selecting high-growing, stress-resistant algal strains with high photosynthetic capacity was proposed based on biocompatible extracellular polymeric substances (EPS) probes with aggregation-induced emission (AIE) properties. Specifically, AIE active EPS probes were synthesized for in-situ long-term monitoring of the EPS productivity at different algal growth stages. By coupling the AIE-based fluorescent techniques, algal cells were classified into four diverse populations based on their chlorophyll and EPS signals. Mechanistic studies on the sorted algal cells revealed their remarkable stress resistance and high expression of cell division, biopolymer production and photosynthesis-related genes. The sorted and subcultured algal cells consistently exhibited relatively higher growth rates and photosynthetic capacities, resulting in an increased (1.2 to 1.8-fold) algal biomass production, chlorophyll, and lipids. This study can potentially open new strategies to boost microalgal-based biofuel production.


Asunto(s)
Chlamydomonas reinhardtii , Microalgas , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Biocombustibles , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Bioprospección , Clorofila/metabolismo , Microalgas/metabolismo
18.
Environ Sci Pollut Res Int ; 30(17): 48868-48902, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36884171

RESUMEN

Concerns over the ecotoxicological effects of active pharmaceutical ingredients (APIs) on aquatic invertebrates have been raised in the last decade. While numerous studies have reported the toxicity of APIs in invertebrates, no attempt has been made to synthesize and interpret this dataset in terms of different exposure scenarios (acute, chronic, multigenerational), multiple crustacean species, and the toxic mechanisms. In this study, a thorough literature review was performed to summarize the ecotoxicological data of APIs tested on a range of invertebrates. Therapeutic classes including antidepressants, anti-infectives, antineoplastic agents, hormonal contraceptives, immunosuppressants, and neuro-active drugs exhibited higher toxicity to crustaceans than other API groups. The species sensitivity towards APIs exposure is compared in D. magna and other crustacean species. In the case of acute and chronic bioassays, ecotoxicological studies mainly focus on the apical endpoints including growth and reproduction, whereas sex ratio and molting frequency are commonly used for evaluating the substances with endocrine-disrupting properties. The multigenerational and "Omics" studies, primarily transcriptomics and metabolomics, were confined to a few API groups including beta-blocking agents, blood lipid-lowing agents, neuroactive agents, anticancer drugs, and synthetic hormones. We emphasize that in-depth studies on the multigenerational effects and the toxic mechanisms of APIs on the endocrine systems of freshwater crustacean are warranted.


Asunto(s)
Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/análisis , Invertebrados , Reproducción , Crustáceos , Agua Dulce , Preparaciones Farmacéuticas , Daphnia
19.
Sci Total Environ ; 872: 162262, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36801337

RESUMEN

In vitro assays are widely proposed as a test alternative to traditional in vivo standard acute and chronic toxicity tests. However, whether toxicity information derived from in vitro assays instead of in vivo tests could provide sufficient protection (e.g., 95 % of protection) for chemical risks remain evaluated. To investigate the feasibility of zebrafish (Danio rerio) cell-based in vitro test method as a test alternative, we comprehensively compared sensitivity differences among endpoints, among test methods (in vitro, FET and in vivo), and between zebrafish and rat (Rattus norvegicus), respectively using chemical toxicity distribution (CTD) approach. For each test method involved, sublethal endpoints were more sensitive than lethal endpoints for both zebrafish and rat, respectively. Biochemistry (zebrafish in vitro), development (zebrafish in vivo and FET), physiology (rat in vitro) and development (rat in vivo) were the most sensitive endpoints for each test method. Nonetheless, zebrafish FET test was the least sensitive one compared to its in vivo and in vitro tests for either lethal or sublethal responses. Comparatively, rat in vitro tests considering cell viability and physiology endpoints were more sensitive than rat in vivo test. Zebrafish was found to be more sensitive than rat regardless of in vivo or in vitro tests for each pairwise endpoint of concern. Those findings indicate that zebrafish in vitro test is a feasible test alternative to zebrafish in vivo and FET test and traditional mammalian test. It is suggesting that zebrafish in vitro test can be optimized by choosing more sensitive endpoints, such as biochemistry to provide sufficient protection for zebrafish in vivo test and to establish applications of zebrafish in vitro test in future risk assessment. Our findings are vital for evaluating and further application of in vitro toxicity toxicity information as an alternative for chemical hazard and risk assessment.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Ratas , Animales , Pez Cebra/fisiología , Embrión no Mamífero , Pruebas de Toxicidad Crónica , Medición de Riesgo , Técnicas In Vitro , Mamíferos
20.
Epigenetics ; 18(1): 2222246, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37322851

RESUMEN

Benzo[a]pyrene (BaP) is ubiquitously present in the aquatic environment and has been identified as a bone toxicant. Previous studies have demonstrated that ancestral BaP exposure can cause transgenerational bone deformities in fish. Transgenerational effects are thought to be caused by heritable epigenetic changes, such as DNA methylation, histone modification, and non-coding RNAs. To investigate the role of DNA methylation in BaP-induced transgenerational skeletal deformities and the related transcriptomic changes in deformed vertebrae, we examined the vertebrae of male F1 and F3 medaka fish using high-throughput RNA sequencing (RNA-seq) and whole-genome bisulphite sequencing (WGBS). The histological results revealed that osteoblast numbers at the vertebral bone decreased in the BaP-derived F1 and F3 adult males in comparison with the control group. Differentially methylated genes (DMGs) associated with osteoblastogenesis (F1 and F3), chondrogenesis (F1 and F3), and osteoclastogenesis (F3) were identified. However, RNA-seq data did not support the role of DNA methylation in the regulation of genes involved in skeletogenesis since there was very little correlation between the level of differential methylation and gene expression profiles related to skeletogenesis. Although DNA methylation plays a major role in the epigenetic regulation of gene expression, the dysregulation of vertebral gene expression patterns observed in the current study is most likely to be mediated by histone modification and miRNAs. Notably, RNA-seq and WGBS data indicated that genes related to nervous system development are more sensitive to ancestral BaP exposure, indicating a more complex transgenerational phenotype in response to ancestral BaP exposure.


Asunto(s)
MicroARNs , Oryzias , Animales , Masculino , Metilación de ADN , Epigénesis Genética , Benzo(a)pireno/toxicidad , Oryzias/genética , Columna Vertebral , Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA