Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Materials (Basel) ; 16(12)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37374670

RESUMEN

Distribution of inclusions plays an essential role in inducing intracrystalline ferrite, and the migration behavior of inclusions during solidification has a significant influence on their distribution. The solidification process of DH36 (ASTMA36) steel and the migration behavior of inclusions at the solidification front were observed in situ using high-temperature laser confocal microscopy. The annexation, rejection, and drift behavior of inclusions in the solid-liquid two-phase region were analyzed, providing a theoretical basis for regulating the distribution of inclusions. Analysis of inclusion trajectories showed that the velocity of inclusions decreases significantly as they near the solidification front. Further study of the force on inclusions at the solidification frontier shows three situations: attraction, repulsion, and no influence. Additionally, a pulsed magnetic field was applied during the solidification process. The original dendritic growth mode changed to that of equiaxed crystals. The compelling attraction distance for inclusion particles with a diameter of 6 µm at the solidification interface front increased from 46 µm to 89 µm, i.e., the effective length for the solidification front engulfing inclusions can be increased by controlling the flow of molten steel.

2.
J Phys Chem B ; 110(31): 15218-23, 2006 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-16884238

RESUMEN

Alpha-Fe(2)O(3) nanorods and nanotubes have been synthesized and characterized by high-resolution transmission electron microscopy and X-ray diffraction. By means of different surfactant assistance, the high-quality one-dimensional products were obtained, respectively, with aqueous butanol solution as the solvent and carbamide as the base, giving rise to single-crystalline products at 150 degrees C. The formation mechanism has been presented. Significantly, the magnetic investigations show that the magnetic properties are strongly shape-dependent; i.e., the nanorods have a Morin transition at 166 K from canted antiferromagnetic state to antiferromagnetic state, while the nanotubes exhibit a three-dimensional magnetic ordering above 300 K that has been attributed to the presence of small particles in a few regions of the tubes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA