Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Fish Shellfish Immunol ; 146: 109438, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38341116

RESUMEN

The global aquaculture industry of tilapia (Oreochromis niloticus) has been significantly impacted by the emergence of tilapia lake virus (TiLV). However, effective prevention and control measures are still not available due to a lack of unclear pathogenesis of TiLV. Our previous transcriptome found that coxsackievirus and adenovirus receptor (CAR) was in response to TiLV infection in tilapia. To explore the potential function of OnCAR, the effect of OnCAR on TiLV proliferation was analyzed in this study. The OnCAR open reading frame (ORF) sequence of tilapia was 516 bp in length that encoded 171 amino acids with an Ig-like domain and transmembrane region. The OnCAR gene showed widespread expression in all investigated tissues, with the highest levels in the heart. Moreover, the OnCAR gene in the liver and muscle of tilapia exhibited dynamic expression levels upon TiLV challenge. Subcellular localization analysis indicated that OnCAR protein was mainly localized on the membrane of tilapia brain (TiB) cells. Importantly, the gene transcripts, genome copy number, S8-encoded protein, cytopathic effect, and internalization of TiLV were obviously decreased in the TiB cells overexpressed with OnCAR, indicating that OnCAR could inhibit TiLV replication. Mechanically, OnCAR could interact with viral S8 and S10-encoded protein. To the best of our knowledge, OnCAR is the first potential anti-TiLV cellular surface molecular receptor discovered for inhibiting TiLV infection. This finding is beneficial for better understanding the antiviral mechanism of tilapia and lays a foundation for establishing effective prevention and control strategies against tilapia lake virus disease (TiLVD).


Asunto(s)
Enfermedades de los Peces , Infecciones por Orthomyxoviridae , Receptores Virales , Tilapia , Virus , Animales , Tilapia/genética
2.
J Fish Dis ; 47(8): e13960, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38708552

RESUMEN

In this issue, we established rapid, cost-effective, and simple detection methods including recombines polymerase amplification with lateral flow dipstick (RPA-LFD) and real-time RPA for cyprinid herpesvirus 3(CyHV-3), and evaluated their sensitivity, specificity, and applicability, the real-time RPA method could achieve sensitive diagnosis of CyHV-3 within 1.3 copies per reaction, respectively. The real-time RPA method is 10-fold more sensitive than RPA-LFD method. The exact number of CyHV-3 can be calculated in each sample by real-time RPA. The sera from koi also can be tested in these methods. In addition, no cross-reaction was observed with other related pathogens, including carp oedema virus (CEV), spring viraemia of carp virus (SVCV), cyprinid herpesvirus 1(CyHV-1), cyprinid herpesvirus 2(CyHV-2), type I grass carp reovirus (GCRV-I), type II GCRV (GCRV-II), type III GCRV (GCRV-III), and Aeromonas hydrophila.


Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Herpesviridae , Herpesviridae , Técnicas de Amplificación de Ácido Nucleico , Sensibilidad y Especificidad , Animales , Enfermedades de los Peces/diagnóstico , Enfermedades de los Peces/virología , Herpesviridae/aislamiento & purificación , Herpesviridae/genética , Infecciones por Herpesviridae/veterinaria , Infecciones por Herpesviridae/diagnóstico , Infecciones por Herpesviridae/virología , Carpas/virología , Técnicas de Amplificación de Ácido Nucleico/veterinaria , Técnicas de Amplificación de Ácido Nucleico/métodos , Recombinasas/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-38621626

RESUMEN

Hybrid snakehead (male Channa argus × female Channa maculata) is an emerging fish breed with increasing production levels. However, infection with hybrid snakehead rhabdovirus (HSHRV) critically affects hybrid snakehead farming. In this study, a fish cell line called CAMK, derived from the kidneys of hybrid snakehead, was established and characterized. CAMK cells exhibited the maximum growth rate at 28 °C in Leibovitz's-15 medium supplemented with 10% fetal bovine serum(FBS). Karyotyping revealed diploid chromosomes in 54% of the cells at the 50th passage (2n = 66), and 16S rRNA sequencing validated that CAMK cells originated fromhybrid snakehead, and the detection of kidney-specific antibodies suggested that it originated from kidney. .The culture was free from mycoplasma contamination, and the green fluorescent protein gene was effectively transfected into CAMK cells, indicating their potential use for in vitro gene expression investigations. Furthermore, qRT-PCR and immunofluorescence analysis revealed that HSHRV could replicate in CAMK cells, indicating that the cells were susceptible to the virus. Transmission electron microscopy revealed that the viral particles had bullet-like morphology. The replication efficiency of HSHRV was 107.33 TCID50/mL. Altogether, we successfully established and characterized a kidney cell line susceptible to the virus. These findings provide a valuable reference for further genetic and virological studies.


Asunto(s)
Peces , Riñón , Rhabdoviridae , Animales , Riñón/virología , Riñón/citología , Línea Celular , Femenino , Masculino , Peces/virología , Rhabdoviridae/fisiología , Enfermedades de los Peces/virología , Infecciones por Rhabdoviridae/veterinaria , Infecciones por Rhabdoviridae/virología
4.
Dev Comp Immunol ; 155: 105152, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38408717

RESUMEN

Tilapia lake virus (TiLV) is an emerging virus that seriously threatens the tilapia industries worldwide. Interferon regulatory factors (IRFs), which are the crucial mediators regulating the response of interferon (IFN) to combat invading viruses, have not yet been reported in tilapia during TiLV infection. Here, six IRF (IRF1, IRF2, IRF4, IRF7, IRF8, and IRF9) homologs from tilapia were characterized and analyzed. These IRFs typically shared the conserved domains and phylogenetic relationship with IRF homologs of other species. Tissue distribution analysis showed that all six IRF genes were expressed in various tissues, with the highest expression in immune-related tissues. Furthermore, overexpression of IRFs in tilapia brain (TiB) cells significantly inhibited TiLV propagation, as evidenced by decreased viral segment 8 gene transcripts and copy numbers of viral segment 1. More importantly, all six IRF genes significantly enhanced the promoter activity of type I interferon-a3 (IFNa3) in TiB cells, suggesting that tilapia IRF genes serve as positive regulators in activating IFNa3. Surprisingly, the promoter activity of IFNa3 mediated by IRF genes was markedly inhibited post-TiLV infection, indicating that TiLV antagonized IRF-mediated IFN immune response. Taken together, six IRF genes of tilapia are highly conserved transcription factors that inhibit TiLV infection by activating the promoter of IFNa3, which is in turn restrained by TiLV. These findings broaden our knowledge about the functionality of IRF-mediated antiviral immunity in tilapia against TiLV infection and host-TiLV interaction, which lays a foundation for developing antiviral strategies in tilapia cultural industries.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Tilapia , Virosis , Virus , Animales , Interferones/metabolismo , Cíclidos/genética , Cíclidos/metabolismo , Filogenia , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Virus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA