Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 555(7698): 678-682, 2018 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-29562234

RESUMEN

Histidine phosphorylation, the so-called hidden phosphoproteome, is a poorly characterized post-translational modification of proteins. Here we describe a role of histidine phosphorylation in tumorigenesis. Proteomic analysis of 12 tumours from an mTOR-driven hepatocellular carcinoma mouse model revealed that NME1 and NME2, the only known mammalian histidine kinases, were upregulated. Conversely, expression of the putative histidine phosphatase LHPP was downregulated specifically in the tumours. We demonstrate that LHPP is indeed a protein histidine phosphatase. Consistent with these observations, global histidine phosphorylation was significantly upregulated in the liver tumours. Sustained, hepatic expression of LHPP in the hepatocellular carcinoma mouse model reduced tumour burden and prevented the loss of liver function. Finally, in patients with hepatocellular carcinoma, low expression of LHPP correlated with increased tumour severity and reduced overall survival. Thus, LHPP is a protein histidine phosphatase and tumour suppressor, suggesting that deregulated histidine phosphorylation is oncogenic.


Asunto(s)
Histidina/metabolismo , Pirofosfatasa Inorgánica/metabolismo , Neoplasias Hepáticas/enzimología , Neoplasias Hepáticas/patología , Proteínas Supresoras de Tumor/metabolismo , Animales , Carcinoma Hepatocelular/enzimología , Carcinoma Hepatocelular/patología , Modelos Animales de Enfermedad , Humanos , Pirofosfatasa Inorgánica/deficiencia , Pirofosfatasa Inorgánica/genética , Masculino , Ratones , Fosforilación , Proteómica , Análisis de Supervivencia , Serina-Treonina Quinasas TOR/metabolismo , Carga Tumoral , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética
2.
Exp Eye Res ; 201: 108326, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33147472

RESUMEN

The Descemet's membrane (DM) and the lens capsule (LC) are two ocular basement membranes (BMs) that are essential in maintaining stability and structure of the cornea and lens. In this study, we investigated the proteomes and biomechanical properties of these two materials to uncover common and unique properties. We also screened for possible protein changes during diabetes. LC-MS/MS was used to determine the proteomes of both BMs. Biomechanical measurements were conducted by atomic force microscopy (AFM) in force spectroscopy mode, and complemented with immunofluorescence microscopy. Proteome analysis showed that all six existing collagen IV chains represent 70% of all LC-protein, and are thus the dominant components of the LC. The DM on the other hand is predominantly composed of a single protein, TGF-induced protein, which accounted for around 50% of all DM-protein. Four collagen IV-family members in DM accounted for only 10% of the DM protein. Unlike the retinal vascular BMs, the LC and DM do not undergo significant changes in their protein compositions during diabetes. Nanomechanical measurements showed that the endothelial/epithelial sides of both BMs are stiffer than their respective stromal/anterior-chamber sides, and both endothelial and stromal sides of the DM were stiffer than the epithelial and anterior-chamber sides of the LC. Long-term diabetes did not change the stiffness of the DM and LC. In summary, our analyses show that the protein composition and biomechanical properties of the DM and LC are different, i.e., the LC is softer than DM despite a significantly higher concentration of collagen IV family members. This finding is unexpected, as collagen IV members are presumed to be responsible for BM stiffness. Diabetes had no significant effect on the protein composition and the biomechanical properties of both the DM and LC.


Asunto(s)
Membrana Basal/metabolismo , Córnea/metabolismo , Lámina Limitante Posterior/metabolismo , Proteínas del Ojo/metabolismo , Cápsula del Cristalino/metabolismo , Anciano , Membrana Basal/citología , Cromatografía Liquida , Lámina Limitante Posterior/citología , Elasticidad , Femenino , Humanos , Cápsula del Cristalino/citología , Masculino , Microscopía de Fuerza Atómica , Persona de Mediana Edad , Espectrometría de Masas en Tándem
3.
Proc Natl Acad Sci U S A ; 113(5): 1381-6, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26787912

RESUMEN

Compensatory signaling pathways in tumors confer resistance to targeted therapy, but the pathways and their mechanisms of activation remain largely unknown. We describe a procedure for quantitative proteomics and phosphoproteomics on snap-frozen biopsies of hepatocellular carcinoma (HCC) and matched nontumor liver tissue. We applied this procedure to monitor signaling pathways in serial biopsies taken from an HCC patient before and during treatment with the multikinase inhibitor sorafenib. At diagnosis, the patient had an advanced HCC. At the time of the second biopsy, abdominal imaging revealed progressive disease despite sorafenib treatment. Sorafenib was confirmed to inhibit MAPK signaling in the tumor, as measured by reduced ribosomal protein S6 kinase phosphorylation. Hierarchical clustering and enrichment analysis revealed pathways broadly implicated in tumor progression and resistance, such as epithelial-to-mesenchymal transition and cell adhesion pathways. Thus, we describe a protocol for quantitative analysis of oncogenic pathways in HCC biopsies and obtained first insights into the effect of sorafenib in vivo. This protocol will allow elucidation of mechanisms of resistance and enable precision medicine.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Niacinamida/análogos & derivados , Compuestos de Fenilurea/uso terapéutico , Fosfoproteínas/metabolismo , Proteómica , Biopsia , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Niacinamida/uso terapéutico , Fosforilación , Sorafenib
4.
J Biol Chem ; 288(31): 22576-83, 2013 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-23754276

RESUMEN

A representative of a new class of potent antimalarials with an unknown mode of action was recently described. To identify the molecular target of this class of antimalarials, we employed a photo-reactive affinity capture method to find parasite proteins specifically interacting with the capture compound in living parasitized cells. The capture reagent retained the antimalarial properties of the parent molecule (ACT-213615) and accumulated within parasites. We identified several proteins interacting with the capture compound and established a functional interaction between ACT-213615 and PfMDR1. We surmise that PfMDR1 may play a role in the antimalarial activity of the piperazine-containing compound ACT-213615.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/fisiología , Antimaláricos/farmacología , Plasmodium falciparum/fisiología , Rayos Ultravioleta , Animales
5.
Glycobiology ; 24(7): 592-601, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24688092

RESUMEN

The C-type lectin E-selectin mediates the rolling of circulating leukocytes on vascular endothelial cells during the inflammatory process. In numerous studies, the S128R mutation of the E-selectin was associated with cardiovascular and autoimmune diseases. There is evidence that the S128R E-selectin mutation leads to a loss in ligand specificity, thus increasing leukocyte recruitment. Apart from the natural tetrasaccharide ligand sialyl Lewis(x) (sLe(x)), it has previously been proposed that non-fucosylated carbohydrates also bind to S128R E-selectin. To evaluate the therapeutic potential of the antagonism of the E-selectin mutant, ligand specificity was reinvestigated on a molecular basis. We determined the ligand specificity of wild-type and S128R E-selectin in a target-based competitive assay, a glycan array screen and cell-based binding assays under static and flow conditions. Regarding ligand-specificity, the binding properties of S128R E-selectin were identical to those of wt E-selectin, i.e., no mutant-specific binding of 3'-sialyl-N-acetyllactosamine, heparin, fetuin and K562 cells was observed. Additionally, the binding affinities of glycomimetic E-selectin antagonists were identical for wt and S128R E-selectin. Overall, the previous reports on carbohydrate ligand promiscuity of S128R E-selectin could not be confirmed.


Asunto(s)
Descubrimiento de Drogas/métodos , Selectina E/metabolismo , Mutación Missense , Amino Azúcares/farmacología , Animales , Células CHO , Línea Celular Tumoral , Cricetinae , Cricetulus , Selectina E/genética , Fetuínas/farmacología , Heparina/farmacología , Humanos , Ligandos , Análisis por Micromatrices , Oligosacáridos/farmacología , Unión Proteica , Antígeno Sialil Lewis X
6.
PLoS Pathog ; 7(6): e1002118, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21738475

RESUMEN

C. canimorsus 5 has the capacity to grow at the expenses of glycan moieties from host cells N-glycoproteins. Here, we show that C. canimorsus 5 also has the capacity to deglycosylate human IgG and we analyze the deglycosylation mechanism. We show that deglycosylation is achieved by a large complex spanning the outer membrane and consisting of the Gpd proteins and sialidase SiaC. GpdD, -G, -E and -F are surface-exposed outer membrane lipoproteins. GpdDEF could contribute to the binding of glycoproteins at the bacterial surface while GpdG is a endo-ß-N-acetylglucosaminidase cleaving the N-linked oligosaccharide after the first N-linked GlcNAc residue. GpdC, resembling a TonB-dependent OM transporter is presumed to import the oligosaccharide into the periplasm after its cleavage from the glycoprotein. The terminal sialic acid residue of the oligosaccharide is then removed by SiaC, a periplasm-exposed lipoprotein in direct contact with GpdC. Finally, most likely degradation of the oligosaccharide proceeds sequentially from the desialylated non reducing end by the action of periplasmic exoglycosidases, including ß-galactosidases, ß-N-Acetylhexosaminidases and α-mannosidases.


Asunto(s)
Capnocytophaga/metabolismo , Glicoproteínas/metabolismo , Inmunoglobulina G/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Línea Celular , Glicosilación , Infecciones por Bacterias Gramnegativas , Humanos , Lipoproteínas/metabolismo , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidasa/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Neuraminidasa/metabolismo , Polisacáridos/química , Polisacáridos/metabolismo , alfa-Manosidosis/metabolismo , beta-Galactosidasa/metabolismo , beta-N-Acetilhexosaminidasas/metabolismo
7.
Proc Natl Acad Sci U S A ; 107(31): 13924-9, 2010 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-20643921

RESUMEN

GABAB receptors are the G-protein-coupled receptors for GABA, the main inhibitory neurotransmitter in the brain. GABAB receptors are abundant on dendritic spines, where they dampen postsynaptic excitability and inhibit Ca2+ influx through NMDA receptors when activated by spillover of GABA from neighboring GABAergic terminals. Here, we show that an excitatory signaling cascade enables spines to counteract this GABAB-mediated inhibition. We found that NMDA application to cultured hippocampal neurons promotes dynamin-dependent endocytosis of GABAB receptors. NMDA-dependent internalization of GABAB receptors requires activation of Ca2+/Calmodulin-dependent protein kinase II (CaMKII), which associates with GABAB receptors in vivo and phosphorylates serine 867 (S867) in the intracellular C terminus of the GABAB1 subunit. Blockade of either CaMKII or phosphorylation of S867 renders GABAB receptors refractory to NMDA-mediated internalization. Time-lapse two-photon imaging of organotypic hippocampal slices reveals that activation of NMDA receptors removes GABAB receptors within minutes from the surface of dendritic spines and shafts. NMDA-dependent S867 phosphorylation and internalization is predominantly detectable with the GABAB1b subunit isoform, which is the isoform that clusters with inhibitory effector K+ channels in the spines. Consistent with this, NMDA receptor activation in neurons impairs the ability of GABAB receptors to activate K+ channels. Thus, our data support that NMDA receptor activity endocytoses postsynaptic GABAB receptors through CaMKII-mediated phosphorylation of S867. This provides a means to spare NMDA receptors at individual glutamatergic synapses from reciprocal inhibition through GABAB receptors.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Receptores de GABA-B/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Secuencia de Aminoácidos , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/química , Células Cultivadas , Ratones , Ratones Noqueados , Fosforilación , Ratas , Receptores de GABA-B/deficiencia , Serina/genética , Serina/metabolismo
8.
Foodborne Pathog Dis ; 10(5): 428-34, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23531123

RESUMEN

This article presents the major differences in the exoproteomes of Listeria monocytogenes strains grown at 11°C and 20°C, and their comparison to 37°C, the optimal temperature of growth of this foodborne pathogenic bacteria. A set of four strains previously characterized and representing the genetic diversity of the species was used. Two were virulent, of which one was persistent, and two were low virulent strains. The proteins secreted by the strains grown in minimal medium were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and identified by liquid chromatography tandem mass spectrometry. The heterogeneity among the four strains concerning the 15 major proteins detected was noticed. No clear association of exoproteome with virulence or genotype was found. Cluster analysis of the protein patterns of the strains suggests an increasing differentiation of strain response with low temperatures, highlighting the importance of the study of the exoproteomes. The main finding was the lack of some proteins in the exoproteome of the persistent strain, namely, flagellin (FlaA) and of OppA/oligopeptide ABC transporter, when compared to the other strains. In fact, these two proteins differ in abundance between strains grown at low temperature. Moreover, FlaA was the only glycoprotein identified in the exoproteomes. An attempt is made here to assess the relevance of the major exoproteins differentially detected. The investigation of the exoproteomes of other persistent and sporadic strains will allow identification of proteins involved in adaptation of particular L. monocytogenes strains to low temperatures in use throughout the food chain.


Asunto(s)
Adaptación Fisiológica , Proteínas Bacterianas/metabolismo , Listeria monocytogenes/metabolismo , Proteoma , Proteómica/métodos , Proteínas Portadoras/metabolismo , Cromatografía Liquida , Análisis por Conglomerados , Frío , Electroforesis en Gel de Poliacrilamida , Flagelina/metabolismo , Lipoproteínas/metabolismo , Listeria monocytogenes/patogenicidad , Listeria monocytogenes/fisiología , Microscopía Electrónica de Transmisión , Espectrometría de Masas en Tándem , Virulencia
9.
Mol Microbiol ; 81(4): 1050-60, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21762219

RESUMEN

Capnocytophaga canimorsus are commensal Gram-negative bacteria from dog's mouth that cause rare but dramatic septicaemia in humans. C. canimorsus have the unusual property to feed on cultured mammalian cells, including phagocytes, by harvesting the glycan moiety of cellular glycoproteins. To understand the mechanism behind this unusual property, the genome of strain Cc5 was sequenced and analysed. In addition, Cc5 bacteria were cultivated onto HEK 293 cells and the surface proteome was determined. The genome was found to encode many lipoproteins encoded within 13 polysaccharide utilization loci (PULs) typical of the Flavobacteria-Bacteroides group. PULs encode surface exposed feeding complexes resembling the archetypal starch utilization system (Sus). The products of at least nine PULs were detected among the surface proteome and eight of them represented more than half of the total peptides detected from the surface proteome. Systematic deletions of the 13 PULs revealed that half of these Sus-like complexes contributed to growth on animal cells. The complex encoded by PUL5, one of the most abundant ones, was involved in foraging glycans from glycoproteins. It was essential for growth on cells and contributed to survival in mice. It thus represents a fitness factor during infection.


Asunto(s)
Proteínas Bacterianas/metabolismo , Capnocytophaga/metabolismo , Glicoproteínas/metabolismo , Polisacáridos/metabolismo , Proteoma/metabolismo , Animales , Línea Celular , ADN Bacteriano/química , ADN Bacteriano/genética , Células Epiteliales/microbiología , Genes Bacterianos , Genoma Bacteriano , Humanos , Redes y Vías Metabólicas/genética , Ratones , Datos de Secuencia Molecular , Familia de Multigenes , Análisis de Secuencia de ADN
11.
PLoS Pathog ; 6(2): e1000784, 2010 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-20195509

RESUMEN

The heterochromatic environment and physical clustering of chromosome ends at the nuclear periphery provide a functional and structural framework for antigenic variation and evolution of subtelomeric virulence gene families in the malaria parasite Plasmodium falciparum. While recent studies assigned important roles for reversible histone modifications, silent information regulator 2 and heterochromatin protein 1 (PfHP1) in epigenetic control of variegated expression, factors involved in the recruitment and organization of subtelomeric heterochromatin remain unknown. Here, we describe the purification and characterization of PfSIP2, a member of the ApiAP2 family of putative transcription factors, as the unknown nuclear factor interacting specifically with cis-acting SPE2 motif arrays in subtelomeric domains. Interestingly, SPE2 is not bound by the full-length protein but rather by a 60kDa N-terminal domain, PfSIP2-N, which is released during schizogony. Our experimental re-definition of the SPE2/PfSIP2-N interaction highlights the strict requirement of both adjacent AP2 domains and a conserved bipartite SPE2 consensus motif for high-affinity binding. Genome-wide in silico mapping identified 777 putative binding sites, 94% of which cluster in heterochromatic domains upstream of subtelomeric var genes and in telomere-associated repeat elements. Immunofluorescence and chromatin immunoprecipitation (ChIP) assays revealed co-localization of PfSIP2-N with PfHP1 at chromosome ends. Genome-wide ChIP demonstrated the exclusive binding of PfSIP2-N to subtelomeric SPE2 landmarks in vivo but not to single chromosome-internal sites. Consistent with this specialized distribution pattern, PfSIP2-N over-expression has no effect on global gene transcription. Hence, contrary to the previously proposed role for this factor in gene activation, our results provide strong evidence for the first time for the involvement of an ApiAP2 factor in heterochromatin formation and genome integrity. These findings are highly relevant for our understanding of chromosome end biology and variegated expression in P. falciparum and other eukaryotes, and for the future analysis of the role of ApiAP2-DNA interactions in parasite biology.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Cromosomas/genética , Regulación de la Expresión Génica/genética , Plasmodium falciparum/genética , Proteínas Protozoarias/metabolismo , Factores de Transcripción/metabolismo , Southern Blotting , Western Blotting , Inmunoprecipitación de Cromatina , Homólogo de la Proteína Chromobox 5 , Ensayo de Cambio de Movilidad Electroforética , Técnica del Anticuerpo Fluorescente , Genes Protozoarios , Heterocromatina , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
12.
Plant Physiol ; 157(2): 730-41, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21825107

RESUMEN

The target of rapamycin (TOR) kinase integrates nutritional and stress signals to coordinately control cell growth in all eukaryotes. TOR associates with highly conserved proteins to constitute two distinct signaling complexes termed TORC1 and TORC2. Inactivation of TORC1 by rapamycin negatively regulates protein synthesis in most eukaryotes. Here, we report that down-regulation of TOR signaling by rapamycin in the model green alga Chlamydomonas reinhardtii resulted in pronounced phosphorylation of the endoplasmic reticulum chaperone BiP. Our results indicated that Chlamydomonas TOR regulates BiP phosphorylation through the control of protein synthesis, since rapamycin and cycloheximide have similar effects on BiP modification and protein synthesis inhibition. Modification of BiP by phosphorylation was suppressed under conditions that require the chaperone activity of BiP, such as heat shock stress or tunicamycin treatment, which inhibits N-linked glycosylation of nascent proteins in the endoplasmic reticulum. A phosphopeptide localized in the substrate-binding domain of BiP was identified in Chlamydomonas cells treated with rapamycin. This peptide contains a highly conserved threonine residue that might regulate BiP function, as demonstrated by yeast functional assays. Thus, our study has revealed a regulatory mechanism of BiP in Chlamydomonas by phosphorylation/dephosphorylation events and assigns a role to the TOR pathway in the control of BiP modification.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Proteínas de Choque Térmico/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Sitios de Unión , Chlamydomonas reinhardtii/efectos de los fármacos , Cicloheximida/farmacología , Chaperón BiP del Retículo Endoplásmico , Glicosilación/efectos de los fármacos , Respuesta al Choque Térmico , Fosforilación , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/farmacología , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Treonina , Tunicamicina/farmacología
13.
J Biomed Biotechnol ; 2012: 305964, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22570525

RESUMEN

A current major obstacle is that no reliable screening markers exist to detect pregnancies at risk for preeclampsia. Quantitative proteomic analysis employing isobaric labelling (iTRAQ) has been suggested to be suitable for the detection of potential plasma biomarkers, a feature we recently verified in analysis of pregnancies with Down syndrome foetuses. We have now examined whether this approach could yield biomarkers to screen pregnancies at risk for preeclampsia. In our study, we used maternal plasma samples obtained at 12 weeks of gestation, six from women who subsequently developed preeclampsia and six with uncomplicated deliveries. In our analysis, we observed elevations in 10 proteins out of 64 proteins in the preeclampsia study group when compared to the healthy control group. These proteins included clusterin, fibrinogen, fibronectin, and angiotensinogen, increased levels of which are known to be associated with preeclampsia. An elevation in the immune-modulatory molecule, galectin 3 binding protein, was also noted. Our pilot study, therefore, indicates that quantitative proteomic iTRAQ analysis could be a useful tool for the detection of new preeclampsia screening markers.


Asunto(s)
Preeclampsia/sangre , Primer Trimestre del Embarazo/sangre , Diagnóstico Prenatal/métodos , Bases de Datos de Proteínas , Femenino , Humanos , Fragmentos de Péptidos/sangre , Preeclampsia/metabolismo , Embarazo , Proteoma/metabolismo , Proteómica/métodos , Estudios Retrospectivos , Espectrometría de Masas en Tándem
14.
Appl Environ Microbiol ; 77(13): 4676-80, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21602371

RESUMEN

Selenium-reducing microorganisms produce elemental selenium nanoparticles with particular physicochemical properties due to an associated organic fraction. This study identified high-affinity proteins associated with such bionanominerals and with nonbiogenic elemental selenium. Proteins with an anticipated functional role in selenium reduction, such as a metalloid reductase, were found to be associated with nanoparticles formed by one selenium respirer, Sulfurospirillum barnesii.


Asunto(s)
Proteínas Bacterianas/análisis , Epsilonproteobacteria/metabolismo , Nanopartículas del Metal/química , Selenio/metabolismo , Bacillus/metabolismo , Cromatografía Liquida , Electroforesis en Gel de Poliacrilamida , Oxidación-Reducción , Rhodospirillum rubrum/metabolismo , Espectrometría de Masa por Ionización de Electrospray
15.
Proc Natl Acad Sci U S A ; 105(32): 11299-304, 2008 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-18695223

RESUMEN

Telomere dysfunction limits the proliferative capacity of human cells by activation of DNA damage responses, inducing senescence or apoptosis. In humans, telomere shortening occurs in the vast majority of tissues during aging, and telomere shortening is accelerated in chronic diseases that increase the rate of cell turnover. Yet, the functional role of telomere dysfunction and DNA damage in human aging and diseases remains under debate. Here, we identified marker proteins (i.e., CRAMP, stathmin, EF-1alpha, and chitinase) that are secreted from telomere-dysfunctional bone-marrow cells of late generation telomerase knockout mice (G4mTerc(-/-)). The expression levels of these proteins increase in blood and in various tissues of aging G4mTerc(-/-) mice but not in aging mice with long telomere reserves. Orthologs of these proteins are up-regulated in late-passage presenescent human fibroblasts and in early passage human cells in response to gamma-irradiation. The study shows that the expression level of these marker proteins increases in the blood plasma of aging humans and shows a further increase in geriatric patients with aging-associated diseases. Moreover, there was a significant increase in the expression of the biomarkers in the blood plasma of patients with chronic diseases that are associated with increased rates of cell turnover and telomere shortening, such as cirrhosis and myelodysplastic syndromes (MDS). Analysis of blinded test samples validated the effectiveness of the biomarkers to discriminate between young and old, and between disease groups (MDS, cirrhosis) and healthy controls. These results support the concept that telomere dysfunction and DNA damage are interconnected pathways that are activated during human aging and disease.


Asunto(s)
Envejecimiento/metabolismo , Péptidos Catiónicos Antimicrobianos/biosíntesis , Quitinasas/biosíntesis , Daño del ADN , Fibrosis/metabolismo , Síndromes Mielodisplásicos/metabolismo , Factor 1 de Elongación Peptídica/biosíntesis , Estatmina/biosíntesis , Telómero/metabolismo , Envejecimiento/patología , Envejecimiento/efectos de la radiación , Animales , Apoptosis/efectos de la radiación , Biomarcadores/metabolismo , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Catelicidinas , Senescencia Celular/efectos de la radiación , Daño del ADN/efectos de la radiación , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis/patología , Rayos gamma/efectos adversos , Humanos , Masculino , Ratones , Ratones Noqueados , Síndromes Mielodisplásicos/patología , Telomerasa/genética , Telomerasa/metabolismo , Telómero/patología , Regulación hacia Arriba/efectos de la radiación
16.
J Biomed Biotechnol ; 2010: 952047, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-19902006

RESUMEN

Currently no specific biomarkers exist for the screening of pregnancies at risk for Down syndrome (DS). Since a quantitative proteomic approach with isobaric labelling (iTRAQ) has recently been suggested to be highly suitable for the discovery of novel plasma biomarkers, we have now used this method to examine for potential quantitative changes in the plasma proteome of the pregnancies bearing DS fetuses in comparison to normal healthy babies. In our study, we used plasma from six women with DS pregnancies and six with uncomplicated pregnancies care were taken to match cases and controls for gestational and maternal age, as these could be a confounder. In our quantitative proteomics analysis we were able to detect 178 proteins using iTRAQ labelling in conjunction with 4800 MALDI TOF/TOF. Amongst these we observed changes in betaHCG, a known screening marker for DS, indicating that our assay was functional. We found a number of elevated proteins Ig lambda chain C region, serum amyloid P-component, amyloid beta A4, and under expressed proteins like gamma-actin and titin in DS pregnancies. These proteins are also found in the sera of patients with Alzheimer disease, which share similar pathologies of DS. Our study therefore indicates that the iTRAQ labelling approach may be indeed useful for the detection of novel biomarkers.


Asunto(s)
Síndrome de Down/sangre , Síndrome de Down/diagnóstico , Marcaje Isotópico/métodos , Diagnóstico Prenatal/métodos , Proteómica/métodos , Adulto , Biomarcadores/sangre , Regulación hacia Abajo , Femenino , Enfermedades Fetales/diagnóstico , Humanos , Indicadores y Reactivos , Espectrometría de Masas , Redes y Vías Metabólicas , Embarazo , Proteínas/análisis , Proteínas/química , Programas Informáticos , Regulación hacia Arriba
17.
Proteomics ; 9(20): 4674-85, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19795422

RESUMEN

In this study we combined pulse chase experiments and 2-DE in order to investigate how newly synthesized proteins are processed or modified to yield a functional yeast proteome. This approach allowed us to follow the fate of 560 native yeast proteins from the time they were synthesized up to several hours later. Among these, 81 were observed to vary during the chase, either increasing or decreasing. In addition, 60 were found to be modified immediately after their synthesis. Taking advantage of protein identifications, we characterized a wide variety of post-translational events responsible for these changes, such as protein turnover, protein maturation and different types of PTMs. These events operate over very different time scales, ranging from the brief period required for co-translational modifications to one generation time or more. In light of these results, the functional proteome of exponentially growing cells appears to be the product of a permanent remodelling process that modifies native proteins far beyond the time they have been synthesized. This study also allowed us to obtain information on the half-lives of 260 abundant yeast proteins.


Asunto(s)
Electroforesis en Gel Bidimensional/métodos , Procesamiento Proteico-Postraduccional , Proteoma/análisis , Proteómica/métodos , Proteínas de Saccharomyces cerevisiae/análisis , Saccharomyces cerevisiae/química , Proteoma/química , Proteoma/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Proteomics ; 9(20): 4669-73, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19743426

RESUMEN

The identification of proteins separated on 2-D gels is essential to exploit the full potential of 2-D gel electrophoresis for proteomic investigations. For this purpose we have undertaken the systematic identification of Saccharomyces cerevisiae proteins separated on 2-D gels. We report here the identification by mass spectrometry of 100 novel yeast protein spots that have so far not been tackled due to their scarcity on our standard 2-D gels. These identifications extend the number of protein spots identified on our yeast 2-D proteome map to 716. They correspond to 485 unique proteins. Among these, 154 were resolved into several isoforms. The present data set can now be expanded to report for the first time a map of 363 protein isoforms that significantly deepens our knowledge of the yeast proteome. The reference map and a list of all identified proteins can be accessed on the Yeast Protein Map server (www.ibgc.u-bordeaux2.fr/YPM).


Asunto(s)
Bases de Datos de Proteínas , Electroforesis en Gel Bidimensional/métodos , Espectrometría de Masas/métodos , Proteoma/análisis , Proteínas de Saccharomyces cerevisiae/análisis , Saccharomyces cerevisiae/química , Internet
19.
J Proteome Res ; 8(11): 5305-16, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19780626

RESUMEN

The Saccharomyces cerevisiae nitrogen permease reactivator Npr1 is a hyperphosphorylated protein that belongs to a family of Ser/Thr protein kinases dedicated to the regulation of plasma membrane transporters. Its activity is regulated by the Tor (target of rapamycin) signaling pathway. Inhibition of the Tor proteins by treating yeast cells with the immunosuppressant drug rapamycin promotes rapid dephosphorylation of Npr1. As an alternative to peptide arrays, the substrate requirement of Npr1 was probed with a peptide library that was generated by cleaving yeast cell extracts with CNBr, and after reverse-phase chromatography, the individual fractions were phosphorylated in vitro with recombinant Npr1. In this way, the ribosomal protein Rpl24a was found to be an excellent in vitro substrate for Npr1. Synthetic peptides tailored around the phosphorylation site of Rpl24a show that Npr1 is a Ser/Thr protein kinase with an absolute requirement for a basic residue at the P-3 position and a strong preference for basic P + 1 residues, whereas proline at P + 1 is strongly disfavored. The results obtained with synthetic peptides suggest a (K/R)-X-X-S-(K/R) consensus sequence for Npr1. The availability of a consensus sequence allows a targeted search for physiologically relevant Npr1 substrates involved in the regulation of yeast amino acid permeases.


Asunto(s)
Bioensayo/métodos , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Cromatografía Liquida/métodos , Datos de Secuencia Molecular , Nitrógeno/metabolismo , Biblioteca de Péptidos , Péptidos/síntesis química , Péptidos/química , Péptidos/genética , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Especificidad por Sustrato , Espectrometría de Masas en Tándem/métodos
20.
Sci Rep ; 9(1): 16720, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31723180

RESUMEN

Previous studies in model eukaryotes have demonstrated that phosphorylation of heterochromatin protein 1 (HP1) is important for dynamically regulating its various functions. However, in the malaria parasite Plasmodium falciparum both the function of HP1 phosphorylation and the identity of the protein kinases targeting HP1 are still elusive. In order to functionally analyze phosphorylation of P. falciparum HP1 (PfHP1), we first mapped PfHP1 phosphorylation sites by liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis of native PfHP1, which identified motifs from which potential kinases could be predicted; in particular, several phosphorylated residues were embedded in motifs rich in acidic residues, reminiscent of targets for P. falciparum casein kinase 2 (PfCK2). Secondly, we tested recombinant PfCK2 and a number of additional protein kinases for their ability to phosphorylate PfHP1 in in vitro kinase assays. These experiments validated our prediction that PfHP1 acts as a substrate for PfCK2. Furthermore, LC-MS/MS analysis showed that PfCK2 phosphorylates three clustered serine residues in an acidic motif within the central hinge region of PfHP1. To study the role of PfHP1 phosphorylation in live parasites we used CRISPR/Cas9-mediated genome editing to generate a number of conditional PfHP1 phosphomutants based on the DiCre/LoxP system. Our studies revealed that neither PfCK2-dependent phosphorylation of PfHP1, nor phosphorylation of the hinge domain in general, affect PfHP1's ability to localize to heterochromatin, and that PfHP1 phosphorylation in this region is dispensable for the proliferation of P. falciparum blood stage parasites.


Asunto(s)
Quinasa de la Caseína II/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Heterocromatina/metabolismo , Malaria Falciparum/parasitología , Plasmodium falciparum/aislamiento & purificación , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Secuencia de Aminoácidos , Quinasa de la Caseína II/genética , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/genética , Humanos , Malaria Falciparum/metabolismo , Mutación , Fosforilación , Proteínas Protozoarias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA