Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Appl Clin Med Phys ; 19(6): 133-139, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30338922

RESUMEN

PURPOSE: To assess the efficiency of combined use of ArcCheck® detector (AC) and portal dosimetry (PDIP) for delivery quality assurance of head and neck and prostate volumetric-modulated arc therapy. MATERIALS AND METHODS: Measurement processes were studied with the Gamma index method according to three analysis protocols. The detection sensitivity to technical errors of each individual or combined measurement processes was studied by inserting collimator, dose and MLC opening error into five head and neck and five prostate initial treatment plans. A total of 220 plans were created and 660 analyses were conducted by comparing measurements to error free planned dose matrix. RESULTS: For head and neck localization, collimator errors could be detected from 2° for AC and 3° for PDIP. Dose and MLC errors could be detected from 2% and 0.5 mm for AC and PDIP. Depending on the analysis protocol, the detection sensitivity of total simulated errors ranged from 54% to 88% for AC vs 40% to 74% for PDIP and 58% to 92% for the combined process. For the prostate localization, collimator errors could be detected from 4° for AC while they could not be detected by PDIP. Dose and MLC errors could be detected from 3% and 0.5 mm for AC and PDIP. The detection sensitivity of total simulated errors ranged from 30% to 56% for AC vs 16% to 38% for PDIP and 30% to 58% for combined process. CONCLUSION: The combined use of the two measurement processes did not statistically improve the detectability of technical errors compared to use of single process.


Asunto(s)
Neoplasias de Cabeza y Cuello/radioterapia , Neoplasias de la Próstata/radioterapia , Garantía de la Calidad de Atención de Salud/normas , Radiometría/normas , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/normas , Humanos , Masculino , Pronóstico , Radiometría/instrumentación , Radiometría/métodos , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/instrumentación
2.
J Appl Clin Med Phys ; 16(6): 164­176, 2015 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-26699568

RESUMEN

Intensity-modulated radiation therapy (IMRT) for total body irradiation (TBI) is practiced in several centers using the TomoTherapy System. In this context the planning target volume (PTV) is the entire body including the skin. A safety margin in the air surrounding the body should be added to take into account setup errors. But using inverse planning, over-fluence peak could be generated in the skin region to insure dose homogeneity. This work proposes to study the performance of the use of a virtual bolus (VB). A VB is a material placed on the skin surface during planning, but absent for the real treatment. The optimal VB that compensates large setup errors without introducing a high-dose increase or hot spots for small setup errors was determined. For two cylindrical phantoms, 20VBs with different densities, thicknesses or designs were tested. Dose coverage of the PTV (V95%) in the presence of simulated setup errors was computed to assess the VB performance. A measure of the dose increase in the phantom center due to the absence of the VB during treatment was also achieved. Finally, the fluence peak at the phantom edge was measured in complete buildup conditions using a large phantom and a detector matrix. Using these VBs, simulated setup errors were compensated to a minimum value of 2.6 and 2.1 cm for small and large phantom, respectively (and only 1.2 and 1.7 cm with no VB). An optimal double-layer VB was found with a density of 0.4 kg.m(-3) and a total thickness of 8mm; an inner layer of 5 mm was declared as the target for the treatment planning system and an additional layer of 3 mm was added to avoid the over-fluence peak. Using this VB, setup errors were compensated up to 2.9 cm. The dose increase was measured to be only +1.5% at the phantom center and over-fluence peak was strongly decreased.


Asunto(s)
Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Irradiación Corporal Total/métodos , Simulación por Computador , Humanos , Fantasmas de Imagen , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/estadística & datos numéricos , Interfaz Usuario-Computador
3.
Diagnostics (Basel) ; 13(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36766553

RESUMEN

BACKGROUND: Despite the development of iterative reconstruction (IR) in diagnostic imaging, CBCT are generally reconstructed with filtered back projection (FBP) in radiotherapy. Varian medical systems, recently released with their latest Halcyon® V2.0 accelerator, a new IR algorithm for CBCT reconstruction. PURPOSE: To assess the image quality of radiotherapy CBCT images reconstructed with FBP and an IR algorithm. METHODS: Three CBCT acquisition modes (head, thorax and pelvis large) available on a Halcyon® were assessed. Five acquisitions were performed for all modes on an image quality phantom and reconstructed with FBP and IR. Task-based image quality assessment was performed with noise power spectrum (NPS), task-based transfer function (TTF) and detectability index (d'). To illustrate the image quality obtained with both reconstruction types, CBCT acquisitions were made on 6 patients. RESULTS: The noise magnitude and the spatial frequency of the NPS peak was lower with IR than with FBP for all modes. For all low and high-contrast inserts, the values for TTF at 50% were higher with IR than with FBP. For all inserts and all modes, the contrast values were similar with FBP and IR. For all low and high-contrast simulated lesions, d' values were higher with IR than with FBP for all modes. These results were also found on the 6 patients where the images were less noisy but smoother with IR-CBCT. CONCLUSIONS: Using the IR algorithm for CBCT images in radiotherapy improve image quality and thus could increase the accuracy of online registration and limit positioning errors during processing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA