Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Arch Biochem Biophys ; 579: 40-6, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26032335

RESUMEN

The mitochondrial peptidyl prolyl isomerase cyclophilin D (CypD) activates permeability transition (PT). To study the role of CypD in this process we compared the functions of brain mitochondria isolated from wild type (BMWT) and CypD knockout (Ppif(-/-)) mice (BMKO) with and without CypD inhibitor Cyclosporin A (CsA) under normal and Ca(2+) stress conditions. Our data demonstrate that BMKO are characterized by higher rates of glutamate/malate-dependent oxidative phosphorylation, higher membrane potential and higher resistance to detrimental Ca(2+) effects than BMWT. Under the elevated Ca(2+) and correspondingly decreased membrane potential the dose response in BMKO shifts to higher Ca(2+) concentrations as compared to BMWT. However, significantly high Ca(2+) levels result in complete loss of membrane potential in BMKO, too. CsA diminishes the loss of membrane potential in BMWT but has no protecting effect in BMKO. The results are in line with the assumption that PT is regulated by CypD under the control of matrix Ca(2+). Due to missing of CypD the BMKO can favor PT only at high Ca(2+) concentrations. It is concluded that CypD sensitizes the brain mitochondria to PT, and its inhibition by CsA or CypD absence improves the complex I-related mitochondrial function and increases mitochondria stability against Ca(2+) stress.


Asunto(s)
Encéfalo/fisiología , Calcio/metabolismo , Ciclofilinas/metabolismo , Mitocondrias/fisiología , Estrés Oxidativo/fisiología , Oxígeno/metabolismo , Animales , Respiración de la Célula/fisiología , Células Cultivadas , Peptidil-Prolil Isomerasa F , Ciclofilinas/genética , Complejo I de Transporte de Electrón/metabolismo , Potencial de la Membrana Mitocondrial/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos
2.
Clin Exp Immunol ; 158(3): 317-24, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19747209

RESUMEN

Transforming growth factor (TGF) beta1) is an immunoregulatory cytokine involved in self-tolerance and lymphocyte homeostasis. Tgfb1 knock-out (KO) mice develop severe multi-focal autoimmune inflammatory lesions due to [Ca(2+)]i deregulation in T cells, and die within 3 weeks after birth. Because the calcineurin inhibitor FK506 inhibits the hyperresponsiveness of Tgfb1(-/-) thymocytes, and because calcineurin Abeta (CNAbeta)-deficient mice do not reject allogenic tumours, we have generated Tgfb1(-/-) Cnab(-/-) mice to address whether CNAbeta deficiency prevents T cell activation and inflammation in Tgfb1(-/-) mice. Here we show that in Tgfb1(-/-) Cnab(-/-) mice inflammation is reduced significantly relative to that in Tgfb1(-/-) mice. However, both CD4(+) and CD8(+) T cells in double knock-out (DKO) mice are activated, as revealed by up-regulation of CD11a lymphocyte function-associated antigen-1 (LFA-1), CD44 and CD69 and down-regulation of CD62L. These data suggest that deficiency of CNAbeta decreases inflammatory lesions but does not prevent activation of autoreactive T cells. Also Tgfb1(-/-) T cells can undergo activation in the absence of CNAbeta, probably by using the other isoform of calcineurin (CNAalpha) in a compensatory manner. CNAbeta-deficient T cells undergo spontaneous activation in vivo and are activated upon anti-T cell receptor stimulation in vitro. Understanding the role of calcineurin in T cell regulation should open up new therapeutic opportunities for inflammation and cancer.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Calcineurina/deficiencia , Inflamación/inmunología , Factor de Crecimiento Transformador beta1/inmunología , Animales , Enfermedades Autoinmunes/patología , Enfermedades Autoinmunes/prevención & control , Calcineurina/inmunología , Diferenciación Celular/inmunología , Células Cultivadas , Inflamación/patología , Inflamación/prevención & control , Activación de Linfocitos/inmunología , Recuento de Linfocitos , Ratones , Ratones Noqueados , Bazo/inmunología , Análisis de Supervivencia , Subgrupos de Linfocitos T/inmunología
3.
J Cell Biol ; 151(1): 117-30, 2000 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-11018058

RESUMEN

Hypertrophy is a basic cellular response to a variety of stressors and growth factors, and has been best characterized in myocytes. Pathologic hypertrophy of cardiac myocytes leads to heart failure, a major cause of death and disability in the developed world. Several cytosolic signaling pathways have been identified that transduce prohypertrophic signals, but to date, little work has focused on signaling pathways that might negatively regulate hypertrophy. Herein, we report that glycogen synthase kinase-3beta (GSK-3beta), a protein kinase previously implicated in processes as diverse as development and tumorigenesis, is inactivated by hypertrophic stimuli via a phosphoinositide 3-kinase-dependent protein kinase that phosphorylates GSK-3beta on ser 9. Using adenovirus-mediated gene transfer of GSK-3beta containing a ser 9 to alanine mutation, which prevents inactivation by hypertrophic stimuli, we demonstrate that inactivation of GSK-3beta is required for cardiomyocytes to undergo hypertrophy. Furthermore, our data suggest that GSK-3beta regulates the hypertrophic response, at least in part, by modulating the nuclear/cytoplasmic partitioning of a member of the nuclear factor of activated T cells family of transcription factors. The identification of GSK-3beta as a transducer of antihypertrophic signals suggests that novel therapeutic strategies to treat hypertrophic diseases of the heart could be designed that target components of the GSK-3 pathway.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Cardiomegalia/metabolismo , Miocardio/metabolismo , Proteínas Nucleares , Animales , Animales Recién Nacidos , Proteínas Quinasas Dependientes de Calcio-Calmodulina/antagonistas & inhibidores , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Células Cultivadas , Proteínas de Unión al ADN/metabolismo , Endotelina-1/metabolismo , Glucógeno Sintasa Quinasa 3 , Glucógeno Sintasa Quinasas , Mutación , Miocardio/citología , Factores de Transcripción NFATC , Fenilefrina/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Ratas , Transducción de Señal , Factores de Transcripción/metabolismo
4.
Science ; 281(5383): 1690-3, 1998 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-9733519

RESUMEN

Hypertrophic cardiomyopathy (HCM) is an inherited form of heart disease that affects 1 in 500 individuals. Here it is shown that calcineurin, a calcium-regulated phosphatase, plays a critical role in the pathogenesis of HCM. Administration of the calcineurin inhibitors cyclosporin and FK506 prevented disease in mice that were genetically predisposed to develop HCM as a result of aberrant expression of tropomodulin, myosin light chain-2, or fetal beta-tropomyosin in the heart. Cyclosporin had a similar effect in a rat model of pressure-overload hypertrophy. These results suggest that calcineurin inhibitors merit investigation as potential therapeutics for certain forms of human heart disease.


Asunto(s)
Inhibidores de la Calcineurina , Miosinas Cardíacas , Cardiomegalia/prevención & control , Cardiomiopatía Dilatada/prevención & control , Cardiomiopatía Hipertrófica/prevención & control , Ciclosporina/farmacología , Proteínas de Microfilamentos , Miocardio/metabolismo , Tacrolimus/farmacología , Animales , Calcineurina/metabolismo , Calcio/metabolismo , Cardiomegalia/metabolismo , Cardiomegalia/patología , Cardiomiopatía Dilatada/patología , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/metabolismo , Cardiomiopatía Hipertrófica/patología , Proteínas Portadoras/genética , Femenino , Ratones , Ratones Transgénicos , Modelos Cardiovasculares , Miocardio/patología , Cadenas Ligeras de Miosina/genética , Cadenas Ligeras de Miosina/metabolismo , Ratas , Transducción de Señal , Tropomodulina , Tropomiosina/genética
5.
Curr Opin Genet Dev ; 6(4): 445-53, 1996 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-8791524

RESUMEN

The formation of skeletal muscle during vertebrate embryogenesis requires commitment of mesodermal precursor cells to the skeletal muscle lineage, withdrawal of myoblasts from the cell cycle, and transcriptional activation of dozens of muscle structural genes. The myogenic basic helix-loop-helix (bHLH) factors - MyoD, myogenin, Myf5, and MRF4 - act at multiple points in the myogenic lineage to establish myoblast identity and to control terminal differentiation. Recent studies have begun to define the inductive mechanisms that regulate myogenic bHLH gene expression and muscle cell determination in the embryo. Myogenic bHLH factors interact with components of the cell cycle machinery to control withdrawal from the cell cycle and act combinatorially with other transcription factors to induce skeletal muscle transcription. Elucidation of these aspects of the myogenic program is leading to a detailed understanding of the regulatory circuits controlling muscle development.


Asunto(s)
Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Secuencias Hélice-Asa-Hélice/genética , Músculos/embriología , Transducción de Señal/genética , Factores de Transcripción/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Ciclo Celular , Proteínas de Unión al ADN/metabolismo , Genes , Secuencias Hélice-Asa-Hélice/fisiología , Factores de Transcripción MEF2 , Ratones , Ratones Noqueados , Factores Reguladores Miogénicos , Factores de Transcripción/metabolismo , Transcripción Genética
6.
Nat Commun ; 9(1): 75, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29311541

RESUMEN

Tissue macrophages in many adult organs originate from yolk sac (YS) progenitors, which invade the developing embryo and persist by means of local self-renewal. However, the route and characteristics of YS macrophage trafficking during embryogenesis are incompletely understood. Here we show the early migration dynamics of YS-derived macrophage progenitors in vivo using fate mapping and intravital microscopy. From embryonic day 8.5 (E8.5) CX3CR1+ pre-macrophages are present in the mouse YS where they rapidly proliferate and gain access to the bloodstream to migrate towards the embryo. Trafficking of pre-macrophages and their progenitors from the YS to tissues peaks around E10.5, dramatically decreases towards E12.5 and is no longer evident from E14.5 onwards. Thus, YS progenitors use the vascular system during a restricted time window of embryogenesis to invade the growing fetus. These findings close an important gap in our understanding of the development of the innate immune system.


Asunto(s)
Movimiento Celular , Células Madre Embrionarias/citología , Macrófagos/citología , Saco Vitelino/citología , Animales , Circulación Sanguínea , Linaje de la Célula , Proliferación Celular , Embrión de Mamíferos/irrigación sanguínea , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Células Madre Hematopoyéticas/citología , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microscopía Confocal , Factores de Tiempo , Saco Vitelino/embriología
7.
Nat Commun ; 9(1): 3699, 2018 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-30194428

RESUMEN

This article contains errors in Figs. 5 and 6, for which we apologize. In Fig. 5f, the image 'E12.5 tail' was inadvertently replaced with a duplicate of the image 'E12.5 trunk' from the same panel. In Figure 6d, the image 'E9.5/OH-TAM E8.5, embryo' was inadvertently replaced with a duplicate of the image 'E10.5/ OH-TAM E8.5, embryo' from Fig. 6b. The corrected versions of these figures appear in the Author Correction associated with this Article.

8.
Mol Cell Biol ; 14(8): 5056-65, 1994 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-8035789

RESUMEN

Cardiac muscle-restricted expression of the alpha-myosin heavy-chain (alpha-MHC) gene is regulated by multiple elements in the proximal enhancer/promoter. Within this region, an M-CAT site and an A-rich site were identified as potential regulatory elements. Site-specific mutations in each site, individually, reduced activity from the wild-type promoter by approximately 85% in the adult rat heart, demonstrating that these sites were positive regulatory elements. alpha-MHC, beta-MHC, and chicken cardiac troponin T (cTnT) M-CAT sites interacted with an M-CAT-binding factor (MCBF) from rat heart nuclear extracts that was immunologically related to transcriptional enhancer factor 1, a factor that binds within the simian virus 40 enhancer. The factor that bound the A-rich region (ARF) was antigenically related to the RSRF family of proteins, ARF was distinct from myocyte-specific enhancer factor 2 (MEF-2) on the basis of DNA-binding specificity and developmental expression. Like MEF-2, ARF DNA-binding activity was present in the heart and brain; however, no ARF activity was detected in extracts from skeletal muscle or C2C12 myotubes. MCBF and ARF DNA-binding activities were developmentally regulated with peak levels in the 1- to 2-day neonatal heart. The activity of both factors increased nearly fivefold in adult rat hearts subjected to a pressure overload. By comparison, the levels of alpha-MHC binding factor 2 did not change during hypertrophy. Binding sites for MCBF and ARF are present in several genes that are upregulated during cardiac hypertrophy. Our results suggest that these factors participate in the alterations in gene expression that occur during cardiac development and hypertrophy.


Asunto(s)
Regulación de la Expresión Génica , Miosinas/genética , Regiones Promotoras Genéticas , Factores de Edad , Animales , Composición de Base , Secuencia de Bases , Sitios de Unión , Cardiomegalia/genética , Proteínas de Unión al ADN/metabolismo , Corazón/embriología , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Miocardio/metabolismo , Proteínas Nucleares/metabolismo , Oligodesoxirribonucleótidos/química , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad , Distribución Tisular
9.
Mol Cell Biol ; 18(1): 69-77, 1998 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-9418854

RESUMEN

Establishment of skeletal muscle lineages is controlled by the MyoD family of basic helix-loop-helix (bHLH) transcription factors. The ability of these factors to initiate myogenesis is dependent on two conserved amino acid residues, alanine and threonine, in the basic domains of these factors. It has been postulated that these two residues may be responsible for the initiation of myogenesis via interaction with an essential myogenic cofactor. The myogenic bHLH proteins cooperatively activate transcription and myogenesis through protein-protein interactions with members of the myocyte enhancer factor 2 (MEF2) family of MADS domain transcription factors. MyoD-E12 heterodimers interact with MEF2 proteins to synergistically activate myogenesis, while homodimers of E12, which lack the conserved alanine and threonine residues in the basic domain, do not interact with MEF2. We have examined whether the myogenic alanine and threonine in the MyoD basic region are required for interaction with MEF2. Here, we show that substitution of the MyoD basic domain with that of E12 does not prevent interaction with MEF2. Instead, the inability of alanine-threonine mutants of MyoD to initiate myogenesis is due to a failure to transmit transcriptional activation signals provided either from the MyoD or the MEF2 activation domain. This defect in transcriptional transmission can be overcome by substitution of the MyoD or the MEF2 activation domain with the VP16 activation domain. These results demonstrate that myogenic bHLH-MEF2 interaction can be uncoupled from transcriptional activation and support the idea that the myogenic residues in myogenic bHLH proteins are essential for transmission of a transcriptional activation signal.


Asunto(s)
Proteínas de Unión al ADN/genética , Músculo Esquelético/metabolismo , Proteína MioD/genética , Factores de Transcripción/genética , Activación Transcripcional , Animales , Diferenciación Celular , Línea Celular , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción MEF2 , Proteína MioD/metabolismo , Factores Reguladores Miogénicos , Transducción de Señal , Factores de Transcripción/metabolismo
10.
Mol Cell Biol ; 14(7): 4947-57, 1994 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-8007990

RESUMEN

The alpha-myosin heavy-chain (alpha-MHC) gene is the major structural protein in the adult rodent myocardium. Its expression is restricted to the heart by a complex interplay of trans-acting factors and their cis-acting sites. However, to date, the factors that have been shown to regulate expression of this gene have also been found in skeletal muscle cells. Recently, transcription factor GATA-4, which has a tissue distribution limited to the heart and endodermally derived tissues, was identified. We recently found two putative GATA-binding sites within the proximal enhancer of the alpha-MHC gene, suggesting that GATA-4 might regulate its expression. In this study, we establish that GATA-4 interacts with the alpha-MHC GATA sites to stimulate cardiac muscle-specific expression. Mutation of the GATA-4-binding sites either individually or together decreased activity by 50 and 88% in the adult myocardium, respectively. GATA-4-dependent enhancement of activity from a heterologous promoter was mediated through the alpha-MHC GATA sites. Coinjection of an alpha-MHC promoter construct with a GATA-4 expression vector permitted ectopic expression in skeletal muscle but not in fibroblasts. Thus, the lack of alpha-MHC expression in skeletal muscle correlates with a lack of GATA-4. GATA-4 DNA binding activity was significantly up-regulated in triiodothyronine- or retinoic acid-treated cardiomyocytes. Putative GATA-4-binding sites are also found in the regulatory regions of other cardiac muscle-expressed structural genes. This indicates a mechanism whereby triiodothyronine and retinoic acid can exert coordinate control of the cardiac phenotype through a trans-acting regulatory factor.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Miocardio/metabolismo , Miosinas/biosíntesis , Miosinas/genética , Factores de Transcripción/metabolismo , Animales , Animales Recién Nacidos , Secuencia de Bases , Sitios de Unión , Línea Celular , Núcleo Celular/metabolismo , Células Cultivadas , Cloranfenicol O-Acetiltransferasa/biosíntesis , Chlorocebus aethiops , Elementos de Facilitación Genéticos , Factor de Transcripción GATA4 , Técnicas de Transferencia de Gen , Riñón , Luciferasas/biosíntesis , Masculino , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Oligodesoxirribonucleótidos , Regiones Promotoras Genéticas , Biosíntesis de Proteínas , Ratas , Ratas Sprague-Dawley , Homología de Secuencia de Ácido Nucleico , Transcripción Genética , Transfección , Dedos de Zinc , beta-Galactosidasa/biosíntesis
11.
Mol Cell Biol ; 16(6): 2627-36, 1996 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-8649370

RESUMEN

There are four members of the myocyte enhancer factor 2 (MEF2) family of transcription factors in vertebrates, MEF2A, -B, -C, and -D, which have homology within a MADS box at their amino termini and an adjacent motif known as the MEF2 domain. These factors activate muscle gene expression by binding as homo- and heterodimers to an A/T-rich DNA sequence in the control regions of muscle-specific genes. To understand the mechanisms of muscle gene activation of MEF2 factors, we generated a series of deletion and site-directed mutants of MEF2C. These mutants demonstrated that the MADS and MEF2 domains mediate DNA binding and dimerization, whereas the carboxyl terminus is required for transcriptional activation. Amino acids that are essential for MEF2 site-dependent transcription but which do not affect DNA binding were also identified in the MEF2 domain. This type of positive-control mutant demonstrates that the transcription activation domain of MEF2C, although separate from the MEF2 domain, is dependent on this domain for transcriptional activation through the MEF2 site. MEF2 mutants that are defective for DNA binding act as dominant negative mutants and can inhibit activation of MEF2-dependent genes by wild-type MEF2C.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Factores Reguladores Miogénicos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Línea Celular , Proteínas de Unión al ADN/química , Factores de Transcripción MEF2 , Datos de Secuencia Molecular , Músculos/metabolismo , Mutagénesis Sitio-Dirigida , Mutación , Unión Proteica , Conformación Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Eliminación de Secuencia , Factores de Transcripción/química , Activación Transcripcional
12.
Mol Cell Biol ; 20(14): 5256-60, 2000 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-10866681

RESUMEN

Members of the GATA family of transcription factors play important roles in cell fate specification, differentiation, and morphogenesis during mammalian development. GATA5, the only one of the six vertebrate GATA factor genes not yet inactivated in mice, is expressed in a pattern that overlaps with but is distinct from that of other GATA factor genes. During mouse embryogenesis, GATA5 is expressed first in the developing heart and subsequently in the lung, vasculature, and genitourinary system. To investigate the function of GATA5 in vivo, we created mice homozygous for a GATA5 null allele. Homozygous mutants were viable and fertile, but females exhibited pronounced genitourinary abnormalities that included vaginal and uterine defects and hypospadias. In contrast, the genitourinary system was unaffected in male GATA5 mutants. These results reveal a specific role of GATA5 in development of the female genitourinary system and suggest that other GATA factors may have functions overlapping those of GATA5 in other tissues.


Asunto(s)
Proteínas de Unión al ADN/genética , Genitales Femeninos/anomalías , Factores de Transcripción/genética , Sistema Urinario/anomalías , Animales , Proteínas de Unión al ADN/metabolismo , Femenino , Factor de Transcripción GATA5 , Ingeniería Genética/métodos , Genitales Femeninos/anatomía & histología , Homocigoto , Hipospadias/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Factores de Transcripción/metabolismo , Sistema Urinario/anatomía & histología , Dedos de Zinc
13.
Mol Cell Biol ; 19(4): 2853-62, 1999 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10082551

RESUMEN

Skeletal muscle gene expression is dependent on combinatorial associations between members of the MyoD family of basic helix-loop-helix (bHLH) transcription factors and the myocyte enhancer factor 2 (MEF2) family of MADS-box transcription factors. The transmembrane receptor Notch interferes with the muscle-inducing activity of myogenic bHLH proteins, and it has been suggested that this inhibitory activity of Notch is directed at an essential cofactor that recognizes the DNA binding domains of the myogenic bHLH proteins. Given that MEF2 proteins interact with the DNA binding domains of myogenic bHLH factors to cooperatively regulate myogenesis, we investigated whether members of the MEF2 family might serve as targets for the inhibitory effects of Notch on myogenesis. We show that a constitutively activated form of Notch specifically blocks DNA binding by MEF2C, as well as its ability to cooperate with MyoD and myogenin to activate myogenesis. Responsiveness to Notch requires a 12-amino-acid region of MEF2C immediately adjacent to the DNA binding domain that is unique to this MEF2 isoform. Two-hybrid assays and coimmunoprecipitations show that this region of MEF2C interacts directly with the ankyrin repeat region of Notch. These findings reveal a novel mechanism for Notch-mediated inhibition of myogenesis and demonstrate that the Notch signaling pathway can discriminate between different members of the MEF2 family.


Asunto(s)
Proteínas de la Membrana/metabolismo , Músculo Esquelético/citología , Factores Reguladores Miogénicos/antagonistas & inhibidores , Receptores de Superficie Celular/metabolismo , Diferenciación Celular , Secuencias Hélice-Asa-Hélice , Factores de Transcripción MEF2 , Modelos Biológicos , Proteína MioD/metabolismo , Miogenina/metabolismo , Unión Proteica , Receptores Notch , Transducción de Señal , Activación Transcripcional
14.
Mol Cell Biol ; 20(17): 6600-11, 2000 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-10938134

RESUMEN

The differentiation and maturation of skeletal muscle cells into functional fibers is coordinated largely by inductive signals which act through discrete intracellular signal transduction pathways. Recently, the calcium-activated phosphatase calcineurin (PP2B) and the family of transcription factors known as NFAT have been implicated in the regulation of myocyte hypertrophy and fiber type specificity. Here we present an analysis of the intracellular mechanisms which underlie myocyte differentiation and fiber type specificity due to an insulinlike growth factor 1 (IGF-1)-calcineurin-NFAT signal transduction pathway. We demonstrate that calcineurin enzymatic activity is transiently increased during the initiation of myogenic differentiation in cultured C2C12 cells and that this increase is associated with NFATc3 nuclear translocation. Adenovirus-mediated gene transfer of an activated calcineurin protein (AdCnA) potentiates C2C12 and Sol8 myocyte differentiation, while adenovirus-mediated gene transfer of noncompetitive calcineurin-inhibitory peptides (cain or DeltaAKAP79) attenuates differentiation. AdCnA infection was also sufficient to rescue myocyte differentiation in an IGF-depleted myoblast cell line. Using 10T1/2 cells, we demonstrate that MyoD-directed myogenesis is dramatically enhanced by either calcineurin or NFATc3 cotransfection, while a calcineurin inhibitory peptide (cain) blocks differentiation. Enhanced myogenic differentiation directed by calcineurin, but not NFATc3, preferentially specifies slow myosin heavy-chain expression, while enhanced differentiation through mitogen-activated protein kinase kinase 6 (MKK6) promotes fast myosin heavy-chain expression. These data indicate that a signaling pathway involving IGF-calcineurin-NFATc3 enhances myogenic differentiation whereas calcineurin acts through other factors to promote the slow fiber type program.


Asunto(s)
Calcineurina/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Músculo Esquelético/citología , Cadenas Pesadas de Miosina/biosíntesis , Proteínas Nucleares , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología , Adenoviridae/genética , Animales , Western Blotting , Células COS , Diferenciación Celular , Línea Celular , Núcleo Celular/metabolismo , Fibroblastos/metabolismo , Humanos , Inmunohistoquímica , Ratones , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares de Contracción Lenta/metabolismo , Proteína MioD/metabolismo , Factores de Transcripción NFATC , Monoéster Fosfórico Hidrolasas/metabolismo , Plásmidos/metabolismo , Ratas , Factores de Tiempo , Transfección
15.
Mol Cell Biol ; 21(21): 7460-9, 2001 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11585926

RESUMEN

The zinc finger-containing transcription factor GATA4 has been implicated as a critical regulator of multiple cardiac-expressed genes as well as a regulator of inducible gene expression in response to hypertrophic stimulation. Here we demonstrate that GATA4 is itself regulated by the mitogen-activated protein kinase signaling cascade through direct phosphorylation. Site-directed mutagenesis and phospho-specific GATA4 antiserum revealed serine 105 as the primary site involved in agonist-induced phosphorylation of GATA4. Infection of cultured cardiomyocytes with an activated MEK1-expressing adenovirus induced robust phosphorylation of serine 105 in GATA4, while a dominant-negative MEK1-expressing adenovirus blocked agonist-induced phosphorylation of serine 105, implicating extracellular signal-regulated kinase (ERK) as a GATA4 kinase. Indeed, bacterially purified ERK2 protein directly phosphorylated purified GATA4 at serine 105 in vitro. Phosphorylation of serine 105 enhanced the transcriptional potency of GATA4, which was sensitive to U0126 (MEK1 inhibitor) but not SB202190 (p38 inhibitor). Phosphorylation of serine 105 also modestly enhanced the DNA binding activity of bacterially purified GATA4. Finally, induction of cardiomyocyte hypertrophy with an activated MEK1-expressing adenovirus was blocked with a dominant-negative GATA4-engrailed-expressing adenovirus. These results suggest a molecular pathway whereby MEK1-ERK1/2 signaling regulates cardiomyocyte hypertrophic growth through the transcription factor GATA4 by direct phosphorylation of serine 105, which enhances DNA binding and transcriptional activation.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Miocardio/citología , Serina/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Adenoviridae/genética , Animales , Animales Recién Nacidos , Western Blotting , Butadienos/farmacología , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Factor de Transcripción GATA4 , Genes Dominantes , Glutatión Transferasa/metabolismo , Imidazoles/farmacología , Inmunohistoquímica , Leucina/metabolismo , Luciferasas/metabolismo , MAP Quinasa Quinasa 1 , Sistema de Señalización de MAP Quinasas , Proteína Quinasa 3 Activada por Mitógenos , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Mutagénesis Sitio-Dirigida , Nitrilos/farmacología , Fosforilación , Plásmidos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Piridinas/farmacología , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes de Fusión/metabolismo , Factores de Tiempo , Activación Transcripcional , Dedos de Zinc
16.
Mol Cell Biol ; 16(7): 3814-24, 1996 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-8668199

RESUMEN

There are four members of the myocyte enhancer binding factor 2 (MEF2) family of transcription factors, MEF2A, -B, -C, and -D, that have homology within an amino-terminal MADS box and an adjacent MEF2 domain that together mediate dimerization and DNA binding. MEF2A, -C, and -D have previously been shown to bind an A/T-rich DNA sequence in the control regions of numerous muscle-specific genes, whereas MEF2B was reported to be unable to bind this sequence unless the carboxyl terminus was deleted. To further define the functions of MEF2B, we analyzed its DNA binding and transcriptional activities. In contrast to previous studies, our results show that MEF2B binds the same DNA sequence as other members of the MEF2 family and acts as a strong transactivator through that sequence. Transcriptional activation by MEF2B is dependent on the carboxyl terminus, which contains two conserved sequence motifs found in all vertebrate MEF2 factors. During mouse embryogenesis, MEF2B transcripts are expressed in the developing cardiac and skeletal muscle lineages in a temporospatial pattern distinct from but overlapping with those of the other Mef2 genes. The mouse Mef2b gene maps to chromosome 8 and is unlinked to other Mef2 genes; its intron-exon organization is similar to that of the other vertebrate Mef2 genes and the single Drosophila Mef2 gene, consistent with the notion that these different Mef2 genes evolved from a common ancestral gene.


Asunto(s)
Proteínas de Unión al ADN/biosíntesis , Regulación del Desarrollo de la Expresión Génica , Músculo Esquelético/metabolismo , Transactivadores/biosíntesis , Factores de Transcripción/biosíntesis , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Línea Celular , Secuencia de Consenso , Cruzamientos Genéticos , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos , Elementos de Facilitación Genéticos , Femenino , Biblioteca Genómica , Corazón/embriología , Factores de Transcripción MEF2 , Masculino , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Muridae , Músculo Esquelético/embriología , Mutagénesis Sitio-Dirigida , Miocardio/metabolismo , Factores Reguladores Miogénicos , Sistemas de Lectura Abierta , Regiones Promotoras Genéticas , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Transcripción Genética , Transfección
17.
Circ Res ; 87(9): 731-8, 2000 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-11055975

RESUMEN

In response to increased ventricular wall tension or neurohumoral stimuli, the myocardium undergoes an adaptive hypertrophy response that temporarily augments pump function. Although initially beneficial, sustained cardiac hypertrophy can lead to decompensation and cardiomyopathy. Recent studies have focused on characterizing the molecular mechanisms that underlie cardiac hypertrophy. An increasing number of signal transduction pathways have been identified as important regulators of the hypertrophic response, including the low-molecular weight GTPases (Ras, RhoA, and Rac), mitogen-activated protein kinases, protein kinase C, and calcineurin. This review will discuss an emerging body of evidence that implicates the calcium-calmodulin-activated protein phosphatase calcineurin as a physiological regulator of the cardiac hypertrophic response. Although the sufficiency of calcineurin to promote cardiomyocyte hypertrophy in vivo and in vitro is established, its overall necessity as a hypertrophic mediator is currently an area of ongoing debate. The use of the calcineurin-inhibitory agents cyclosporine A and FK506 have suggested a necessary role for calcineurin in many, but not all, animal models of hypertrophy or cardiomyopathy. The evidence implicating a role for calcineurin signaling in the heart will be weighed against a growing body of literature suggesting necessary roles for a diverse array of intracellular signaling pathways, highlighting the multifactorial nature of the hypertrophic program.


Asunto(s)
Calcineurina/metabolismo , Cardiomegalia/metabolismo , Proteínas Nucleares , Secuencia de Aminoácidos , Animales , Calcineurina/genética , Inhibidores de la Calcineurina , Cardiomegalia/inmunología , Cardiomegalia/patología , Núcleo Celular/metabolismo , Ciclosporina/farmacología , Ciclosporina/uso terapéutico , Citoplasma/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Inmunosupresores/farmacología , Inmunosupresores/uso terapéutico , Ratones , Ratones Transgénicos , Modelos Animales , Datos de Secuencia Molecular , Factores de Transcripción NFATC , Transducción de Señal , Linfocitos T/metabolismo , Tacrolimus/farmacología , Tacrolimus/uso terapéutico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
18.
Circ Res ; 88(1): 88-96, 2001 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-11139479

RESUMEN

Mitogen-activated protein kinase (MAPK) signaling pathways are important regulators of cell growth, proliferation, and stress responsiveness. A family of dual-specificity MAP kinase phosphatases (MKPs) act as critical counteracting factors that directly regulate the magnitude and duration of p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK) activation. Here we show that constitutive expression of MKP-1 in cultured primary cardiomyocytes using adenovirus-mediated gene transfer blocked the activation of p38, JNK1/2, and ERK1/2 and prevented agonist-induced hypertrophy. Transgenic mice expressing physiological levels of MKP-1 in the heart showed (1) no activation of p38, JNK1/2, or ERK1/2; (2) diminished developmental myocardial growth; and (3) attenuated hypertrophy in response to aortic banding and catecholamine infusion. These results provide further evidence implicating MAPK signaling factors as obligate regulators of cardiac growth and hypertrophy and demonstrate the importance of dual-specificity phosphatases as counterbalancing regulatory factors in the heart.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Cardiomegalia/enzimología , Miocardio/enzimología , Proteínas Tirosina Fosfatasas/metabolismo , Adenoviridae/genética , Animales , Animales Recién Nacidos , Factor Natriurético Atrial/efectos de los fármacos , Factor Natriurético Atrial/genética , Factor Natriurético Atrial/metabolismo , Western Blotting , Proteínas Quinasas Dependientes de Calcio-Calmodulina/efectos de los fármacos , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Cardiomegalia/inducido químicamente , Cardiomegalia/genética , Catecolaminas/farmacología , Células Cultivadas , ADN Recombinante , Endotelina-1/farmacología , Femenino , Expresión Génica , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Ratones , Ratones Transgénicos , Miocardio/citología , Miocardio/metabolismo , Fenilefrina/farmacología , Fosforilación/efectos de los fármacos , Proteínas Tirosina Fosfatasas/genética , ARN Mensajero/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas
19.
Circ Res ; 89(1): 20-5, 2001 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-11440973

RESUMEN

The advent of conditional and tissue-specific recombination systems in gene-targeted or transgenic mice has permitted an assessment of single gene function in a temporally regulated and cell-specific manner. Here we generated transgenic mice expressing a tamoxifen-inducible Cre recombinase protein fused to two mutant estrogen-receptor ligand-binding domains (MerCreMer) under the control of the alpha-myosin heavy chain promoter. These transgenic mice were crossed with the ROSA26 lacZ-flox-targeted mice to examine Cre recombinase activity and the fidelity of the system. The data demonstrate essentially no Cre-mediated recombination in the embryonic, neonatal, or adult heart in the absence of inducing agent but >80% recombination after only four tamoxifen injections. Expression of the MerCreMer fusion protein within the adult heart did not affect cardiac performance, cellular architecture, or expression of hypertrophic marker genes, demonstrating that the transgene-encoded protein is relatively innocuous. In summary, MerCreMer transgenic mice represent a tool for temporally regulated inactivation of any loxP-targeted gene within the developing and adult heart or for specifically directing recombination and expression of a loxP-inactivated cardiac transgene in the heart.


Asunto(s)
Corazón/embriología , Integrasas/genética , Miocardio/metabolismo , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Tamoxifeno/farmacología , Proteínas Virales/genética , Animales , Regulación de la Expresión Génica , Integrasas/metabolismo , Cinética , Ratones , Ratones Transgénicos , Miocardio/citología , ARN Mensajero/biosíntesis , Receptores de Estrógenos/genética , Proteínas Recombinantes de Fusión , Recombinación Genética , Transgenes , Proteínas Virales/metabolismo
20.
Circ Res ; 86(3): 255-63, 2000 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-10679475

RESUMEN

We have previously shown that the calcium-calmodulin-regulated phosphatase calcineurin (PP2B) is sufficient to induce cardiac hypertrophy that transitions to heart failure in transgenic mice. Given the rapid onset of heart failure in these mice, we hypothesized that calcineurin signaling would stimulate myocardial cell apoptosis. However, utilizing multiple approaches, we determined that calcineurin-mediated hypertrophy protected cardiac myocytes from apoptosis, suggesting a model of heart failure that is independent of apoptosis. Adenovirally mediated gene transfer of a constitutively active calcineurin cDNA (AdCnA) was performed in cultured neonatal rat cardiomyocytes to elucidate the mechanism whereby calcineurin affected myocardial cell viability. AdCnA infection, which induced myocyte hypertrophy and atrial natriuretic factor expression, protected against apoptosis induced by 2-deoxyglucose or staurosporine, as assessed by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) labeling, caspase-3 activation, DNA laddering, and cellular morphology. The level of protection conferred by AdCnA was similar to that of adenoviral Bcl-x(L) gene transfer or hypertrophy induced by phenylephrine. In vivo, failing hearts from calcineurin-transgenic mice did not demonstrate increased TUNEL labeling and, in fact, demonstrated a resistance to ischemia/reperfusion-induced apoptosis. We determined that the mechanism whereby calcineurin afforded protection from apoptosis was partially mediated by nuclear factor of activated T cells (NFAT3) signaling and partially by Akt/protein kinase B (PKB) signaling. Although calcineurin activation protected myocytes from apoptosis, inhibition of calcineurin with cyclosporine was not sufficient to induce TUNEL labeling in Gqalpha-transgenic mice or in cultured cardiomyocytes. Collectively, these data identify a calcineurin-dependent mouse model of dilated heart failure that is independent of apoptosis.


Asunto(s)
Apoptosis , Calcineurina/fisiología , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Corazón/fisiopatología , Miocardio/patología , Adenoviridae/genética , Adenoviridae/fisiología , Animales , Animales Recién Nacidos , Calcineurina/genética , Calcineurina/metabolismo , Gasto Cardíaco Bajo/metabolismo , Cardiomegalia/diagnóstico por imagen , Células Cultivadas , Ciclosporina/farmacología , Subunidades alfa de la Proteína de Unión al GTP Gq-G11 , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/fisiología , Técnicas de Transferencia de Gen , Humanos , Ratones , Ratones Transgénicos/genética , Isquemia Miocárdica/fisiopatología , Daño por Reperfusión Miocárdica/fisiopatología , Ratas , Ultrasonografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA