Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cell ; 187(8): 1936-1954.e24, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38490196

RESUMEN

Microglia are brain-resident macrophages that shape neural circuit development and are implicated in neurodevelopmental diseases. Multiple microglial transcriptional states have been defined, but their functional significance is unclear. Here, we identify a type I interferon (IFN-I)-responsive microglial state in the developing somatosensory cortex (postnatal day 5) that is actively engulfing whole neurons. This population expands during cortical remodeling induced by partial whisker deprivation. Global or microglial-specific loss of the IFN-I receptor resulted in microglia with phagolysosomal dysfunction and an accumulation of neurons with nuclear DNA damage. IFN-I gain of function increased neuronal engulfment by microglia in both mouse and zebrafish and restricted the accumulation of DNA-damaged neurons. Finally, IFN-I deficiency resulted in excess cortical excitatory neurons and tactile hypersensitivity. These data define a role for neuron-engulfing microglia during a critical window of brain development and reveal homeostatic functions of a canonical antiviral signaling pathway in the brain.


Asunto(s)
Encéfalo , Interferón Tipo I , Microglía , Animales , Ratones , Interferón Tipo I/metabolismo , Microglía/metabolismo , Neuronas/metabolismo , Pez Cebra , Encéfalo/citología , Encéfalo/crecimiento & desarrollo
2.
Cell ; 182(2): 388-403.e15, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32615087

RESUMEN

Synapse remodeling is essential to encode experiences into neuronal circuits. Here, we define a molecular interaction between neurons and microglia that drives experience-dependent synapse remodeling in the hippocampus. We find that the cytokine interleukin-33 (IL-33) is expressed by adult hippocampal neurons in an experience-dependent manner and defines a neuronal subset primed for synaptic plasticity. Loss of neuronal IL-33 or the microglial IL-33 receptor leads to impaired spine plasticity, reduced newborn neuron integration, and diminished precision of remote fear memories. Memory precision and neuronal IL-33 are decreased in aged mice, and IL-33 gain of function mitigates age-related decreases in spine plasticity. We find that neuronal IL-33 instructs microglial engulfment of the extracellular matrix (ECM) and that its loss leads to impaired ECM engulfment and a concomitant accumulation of ECM proteins in contact with synapses. These data define a cellular mechanism through which microglia regulate experience-dependent synapse remodeling and promote memory consolidation.


Asunto(s)
Matriz Extracelular/metabolismo , Microglía/fisiología , Plasticidad Neuronal/fisiología , Envejecimiento , Animales , Miedo , Regulación de la Expresión Génica , Hipocampo/metabolismo , Proteína 1 Similar al Receptor de Interleucina-1/genética , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Interleucina-33/genética , Interleucina-33/metabolismo , Memoria , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Transducción de Señal
3.
Immunity ; 54(2): 211-224, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33567261

RESUMEN

Astrocytes play both physiological and pathological roles in maintaining central nervous system (CNS) function. Here, we review the varied functions of astrocytes and how these might change in subsets of reactive astrocytes. We review the current understanding of astrocyte interactions with microglia and the vasculature and protective barriers in the central nervous system as well as highlight recent insights into physiologic and reactive astrocyte sub-states identified by transcriptional profiling. Our goal is to stimulate inquiry into how these molecular identifiers link to specific functional changes in astrocytes and to define the implications of these heterogeneous molecular and functional changes in brain function and pathology. Defining these complex interactions has the potential to yield new therapies in CNS injury, infection, and disease.


Asunto(s)
Astrocitos/inmunología , Encéfalo/patología , Enfermedades del Sistema Nervioso Central/inmunología , Infecciones/inmunología , Inflamación/inmunología , Animales , Comunicación Celular , Humanos , Inmunidad Celular , Neuroinmunomodulación
4.
Immunity ; 50(1): 11-13, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30650371

RESUMEN

Microglia actively shape the developing brain, but their transcriptional diversity is not well understood. Complementary studies by Hammond et al. (2018) and Li et al. (2019) characterize the microglial transcriptome at single cell resolution, highlighting their diversity during development, aging, and pathology.


Asunto(s)
Microglía , ARN , Encéfalo , Células Mieloides , Análisis de Secuencia de ARN
5.
Immunity ; 50(3): 707-722.e6, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30824323

RESUMEN

Type 2 lymphocytes promote both physiologic tissue remodeling and allergic pathology, yet their physical tissue niches are poorly described. Here, we used quantitative imaging to define the tissue niches of group 2 innate lymphoid cells (ILC2s), which are critical instigators of type 2 immunity. We identified a dominant adventitial niche around lung bronchi and larger vessels in multiple tissues, where ILC2s localized with subsets of dendritic and regulatory T cells. However, ILC2s were most intimately associated with adventitial stromal cells (ASCs), a mesenchymal fibroblast-like subset that expresses interleukin-33 (IL-33) and thymic stromal lymphopoietin (TSLP). In vitro, ASCs produced TSLP that supported ILC2 accumulation and activation. ILC2s and IL-13 drove reciprocal ASC expansion and IL-33 expression. During helminth infection, ASC depletion impaired lung ILC2 and Th2 cell accumulation and function, which are in part dependent on ASC-derived IL-33. These data indicate that adventitial niches are conserved sites where ASCs regulate type 2 lymphocyte expansion and function.


Asunto(s)
Inmunidad Innata/inmunología , Linfocitos/inmunología , Células del Estroma/inmunología , Animales , Bronquios/inmunología , Citocinas/inmunología , Interleucina-13/inmunología , Interleucina-33/inmunología , Ratones , Linfocitos T Reguladores/inmunología , Células Th2/inmunología , Linfopoyetina del Estroma Tímico
6.
Trends Immunol ; 45(5): 358-370, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38658221

RESUMEN

Microglia are brain-resident macrophages that play key roles in brain development and experience dependent plasticity. In this review we discuss recent findings regarding the molecular mechanisms through which mammalian microglia sense the unique molecular patterns of the homeostatic brain. We propose that microglial function is acutely controlled in response to 'brain-associated molecular patterns' (BAMPs) that function as indicators of neuronal activity and neural circuit remodeling. A further layer of regulation comes from instructive cytokine cues that define unique microglial functional states. A systematic investigation of the receptors and signaling pathways that mediate these two regulatory axes may begin to define a functional code for microglia-neuron interactions.


Asunto(s)
Encéfalo , Microglía , Transducción de Señal , Microglía/inmunología , Microglía/metabolismo , Humanos , Animales , Encéfalo/fisiología , Citocinas/metabolismo , Neuronas/metabolismo , Neuronas/fisiología , Plasticidad Neuronal , Homeostasis
7.
J Neurosci ; 43(50): 8621-8636, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-37845031

RESUMEN

Astrocytes play essential roles in the developing nervous system, including supporting synapse function. These astrocyte support functions emerge coincident with brain maturation and may be tailored in a region-specific manner. For example, gray matter astrocytes have elaborate synapse-associated processes and are morphologically and molecularly distinct from white matter astrocytes. This raises the question of whether there are unique environmental cues that promote gray matter astrocyte identity and synaptogenic function. We previously identified adrenergic receptors as preferentially enriched in developing gray versus white matter astrocytes, suggesting that noradrenergic signaling could be a cue that promotes the functional maturation of gray matter astrocytes. We first characterized noradrenergic projections during postnatal brain development in mouse and human, finding that process density was higher in the gray matter and increased concurrently with astrocyte maturation. RNA sequencing revealed that astrocytes in both species expressed α- and ß-adrenergic receptors. We found that stimulation of ß-adrenergic receptors increased primary branching of rodent astrocytes in vitro Conversely, astrocyte-conditional knockout of the ß1-adrenergic receptor reduced the size of gray matter astrocytes and led to dysregulated sensorimotor integration in female mice. These studies suggest that adrenergic signaling to developing astrocytes impacts their morphology and has implications for adult behavior, particularly in female animals. More broadly, they demonstrate a mechanism through which environmental cues impact astrocyte development. Given the key roles of norepinephrine in brain states, such as arousal, stress, and learning, these findings could prompt further inquiry into how developmental stressors impact astrocyte development and adult brain function.SIGNIFICANCE STATEMENT This study demonstrates a role for noradrenergic signaling in the development of gray matter astrocytes. We provide new evidence that the ß1-adrenergic receptor is robustly expressed by both mouse and human astrocytes, and that conditional KO of the ß1-adrenergic receptor from female mouse astrocytes impairs gray matter astrocyte maturation. Moreover, female conditional KO mice exhibit behavioral deficits in two paradigms that test sensorimotor function. Given the emerging interest in moving beyond RNA sequencing to probe specific pathways that underlie astrocyte heterogeneity, this study provides a foundation for future investigation into the effect of noradrenergic signaling on astrocyte functions in conditions where noradrenergic signaling is altered, such as stress, arousal, and learning.


Asunto(s)
Adrenérgicos , Astrocitos , Humanos , Ratones , Animales , Femenino , Adrenérgicos/metabolismo , Astrocitos/metabolismo , Transducción de Señal , Norepinefrina/metabolismo , Receptores Adrenérgicos beta/metabolismo , Receptores Adrenérgicos
8.
Trends Immunol ; 41(9): 753-755, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32800455

RESUMEN

Huang et al. have found that deletion of astrocyte lineage-specifying transcription factor NFIA from mature astrocytes alters astrocyte morphology, molecular identity, and synaptic-support capacity in a region-specific manner. We discuss the implications of these findings in light of emerging roles for astrocytes in immune cell crosstalk.


Asunto(s)
Astrocitos , Humanos
9.
Annu Rev Physiol ; 80: 143-157, 2018 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-29166242

RESUMEN

Astrocytes are an abundant and evolutionarily conserved central nervous system cell type. Despite decades of evidence that astrocytes are integral to neural circuit function, it seems as though astrocytic and neuronal biology continue to advance in parallel to each other, to the detriment of both. Recent advances in molecular biology and optical imaging are being applied to astrocytes in new and exciting ways but without fully considering their unique biology. From this perspective, we explore the reasons that astrocytes remain enigmatic, arguing that their responses to neuronal and environmental cues shape form and function in dynamic ways. Here, we provide a roadmap for future experiments to explore the nature of astrocytes in situ.


Asunto(s)
Astrocitos/fisiología , Comunicación Celular/fisiología , Linaje de la Célula/fisiología , Animales , Astrocitos/citología , Humanos , Neuronas/citología , Neuronas/fisiología , Sinapsis/fisiología
10.
Nature ; 509(7499): 189-94, 2014 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-24776795

RESUMEN

Astrocytes, the most abundant cells in the central nervous system, promote synapse formation and help to refine neural connectivity. Although they are allocated to spatially distinct regional domains during development, it is unknown whether region-restricted astrocytes are functionally heterogeneous. Here we show that postnatal spinal cord astrocytes express several region-specific genes, and that ventral astrocyte-encoded semaphorin 3a (Sema3a) is required for proper motor neuron and sensory neuron circuit organization. Loss of astrocyte-encoded Sema3a leads to dysregulated α-motor neuron axon initial segment orientation, markedly abnormal synaptic inputs, and selective death of α- but not of adjacent γ-motor neurons. In addition, a subset of TrkA(+) sensory afferents projects to ectopic ventral positions. These findings demonstrate that stable maintenance of a positional cue by developing astrocytes influences multiple aspects of sensorimotor circuit formation. More generally, they suggest that regional astrocyte heterogeneity may help to coordinate postnatal neural circuit refinement.


Asunto(s)
Astrocitos/fisiología , Neuronas Motoras/fisiología , Vías Nerviosas/fisiología , Células Receptoras Sensoriales/fisiología , Animales , Astrocitos/citología , Axones/fisiología , Polaridad Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Ratones , Neuronas Motoras/citología , Neuronas Motoras/efectos de los fármacos , Semaforina-3A/deficiencia , Semaforina-3A/genética , Semaforina-3A/metabolismo , Semaforina-3A/farmacología , Células Receptoras Sensoriales/citología , Médula Espinal/citología , Sinapsis/metabolismo
11.
Genes Dev ; 26(9): 891-907, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22549954

RESUMEN

Astrocytes are no longer seen as a homogenous population of cells. In fact, recent studies indicate that astrocytes are morphologically and functionally diverse and play critical roles in neurodevelopmental diseases such as Rett syndrome and fragile X mental retardation. This review summarizes recent advances in astrocyte development, including the role of neural tube patterning in specification and developmental functions of astrocytes during synaptogenesis. We propose here that a precise understanding of astrocyte development is critical to defining heterogeneity and could lead advances in understanding and treating a variety of neuropsychiatric diseases.


Asunto(s)
Astrocitos/fisiología , Trastornos Heredodegenerativos del Sistema Nervioso/etiología , Trastornos Mentales/etiología , Neurogénesis , Astrocitos/patología , Trastornos Heredodegenerativos del Sistema Nervioso/patología , Humanos , Trastornos Mentales/patología , Células-Madre Neurales/patología , Células-Madre Neurales/fisiología
12.
Development ; 139(14): 2477-87, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22675209

RESUMEN

Expansion of astrocyte populations in the central nervous system is characteristic of evolutionarily more complex organisms. However, regulation of mammalian astrocyte precursor proliferation during development remains poorly understood. Here, we used Aldh1L1-GFP to identify two morphologically distinct types of proliferative astrocyte precursors: radial glia (RG) in the ventricular zone and a second cell type we call an 'intermediate astrocyte precursor' (IAP) located in the mantle region of the spinal cord. Astrogenic RG and IAP cells proliferated in a progressive ventral-to-dorsal fashion in a tight window from embryonic day 13.5 until postnatal day 3, which correlated precisely with the pattern of active ERK signalling. Conditional loss of BRAF function using BLBP-cre resulted in a 20% decrease in astrocyte production, whereas expression of activated BRAFV600E resulted in astrocyte hyperproliferation. Interestingly, BRAFV600E mitogenic effects in astrocytes were restricted, in part, by the function of p16INK4A-p19(ARF), which limited the temporal epoch for proliferation. Together, these findings suggest that astrocyte precursor proliferation involves distinct RG and IAP cells; is subjected to temporal and spatial control; and depends in part on BRAF signalling at early stages of mammalian spinal cord development.


Asunto(s)
Astrocitos/citología , Médula Espinal/citología , Aldehído Deshidrogenasa/metabolismo , Animales , Astrocitos/metabolismo , Proliferación Celular , Células Cultivadas , Citometría de Flujo , Inmunohistoquímica , Ratones , Médula Espinal/embriología
13.
Glia ; 61(9): 1518-32, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23840004

RESUMEN

Developmental regulation of gliogenesis in the mammalian CNS is incompletely understood, in part due to a limited repertoire of lineage-specific genes. We used Aldh1l1-GFP as a marker for gliogenic radial glia and later-stage precursors of developing astrocytes and performed gene expression profiling of these cells. We then used this dataset to identify candidate transcription factors that may serve as glial markers or regulators of glial fate. Our analysis generated a database of developmental stage-related markers of Aldh1l1+ cells between murine embryonic day 13.5-18.5. Using these data we identify the bZIP transcription factor Nfe2l1 and demonstrate that it promotes glial fate under direct Sox9 regulatory control. Thus, this dataset represents a resource for identifying novel regulators of glial development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Isoenzimas/metabolismo , Factor 1 Relacionado con NF-E2/metabolismo , Neuroglía/metabolismo , Retinal-Deshidrogenasa/metabolismo , Factor de Transcripción SOX9/metabolismo , Médula Espinal/citología , Factores de Edad , Familia de Aldehído Deshidrogenasa 1 , Animales , Diferenciación Celular , Células Cultivadas , Pollos , Biología Computacional , Electroporación , Embrión de Mamíferos , Citometría de Flujo , Perfilación de la Expresión Génica , Proteína Ácida Fibrilar de la Glía , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Isoenzimas/genética , Ratones , Ratones Transgénicos , Factor 1 Relacionado con NF-E2/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/clasificación , Neuronas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Retinal-Deshidrogenasa/genética , Factor de Transcripción SOX9/genética , Médula Espinal/embriología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
bioRxiv ; 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36993292

RESUMEN

The innate immune system plays essential roles in brain synaptic development, and immune dysregulation is implicated in neurodevelopmental diseases. Here we show that a subset of innate lymphocytes (group 2 innate lymphoid cells, ILC2s) is required for cortical inhibitory synapse maturation and adult social behavior. ILC2s expanded in the developing meninges and produced a surge of their canonical cytokine Interleukin-13 (IL-13) between postnatal days 5-15. Loss of ILC2s decreased cortical inhibitory synapse numbers in the postnatal period where as ILC2 transplant was sufficient to increase inhibitory synapse numbers. Deletion of the IL-4/IL-13 receptor (Il4ra) from inhibitory neurons phenocopied the reduction inhibitory synapses. Both ILC2 deficient and neuronal Il4ra deficient animals had similar and selective impairments in adult social behavior. These data define a type 2 immune circuit in early life that shapes adult brain function.

15.
bioRxiv ; 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-35233577

RESUMEN

Microglia are brain resident phagocytes that can engulf synaptic components and extracellular matrix as well as whole neurons. However, whether there are unique molecular mechanisms that regulate these distinct phagocytic states is unknown. Here we define a molecularly distinct microglial subset whose function is to engulf neurons in the developing brain. We transcriptomically identified a cluster of Type I interferon (IFN-I) responsive microglia that expanded 20-fold in the postnatal day 5 somatosensory cortex after partial whisker deprivation, a stressor that accelerates neural circuit remodeling. In situ, IFN-I responsive microglia were highly phagocytic and actively engulfed whole neurons. Conditional deletion of IFN-I signaling (Ifnar1fl/fl) in microglia but not neurons resulted in dysmorphic microglia with stalled phagocytosis and an accumulation of neurons with double strand DNA breaks, a marker of cell stress. Conversely, exogenous IFN-I was sufficient to drive neuronal engulfment by microglia and restrict the accumulation of damaged neurons. IFN-I deficient mice had excess excitatory neurons in the developing somatosensory cortex as well as tactile hypersensitivity to whisker stimulation. These data define a molecular mechanism through which microglia engulf neurons during a critical window of brain development. More broadly, they reveal key homeostatic roles of a canonical antiviral signaling pathway in brain development.

16.
J Exp Med ; 220(2)2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36520518

RESUMEN

Microglia are critical regulators of brain development that engulf synaptic proteins during postnatal synapse remodeling. However, the mechanisms through which microglia sense the brain environment are not well defined. Here, we characterized the regulatory program downstream of interleukin-33 (IL-33), a cytokine that promotes microglial synapse remodeling. Exposing the developing brain to a supraphysiological dose of IL-33 altered the microglial enhancer landscape and increased binding of stimulus-dependent transcription factors including AP-1/FOS. This induced a gene expression program enriched for the expression of pattern recognition receptors, including the scavenger receptor MARCO. CNS-specific deletion of IL-33 led to increased excitatory/inhibitory synaptic balance, spontaneous absence-like epileptiform activity in juvenile mice, and increased seizure susceptibility in response to chemoconvulsants. We found that MARCO promoted synapse engulfment, and Marco-deficient animals had excess thalamic excitatory synapses and increased seizure susceptibility. Taken together, these data define coordinated epigenetic and functional changes in microglia and uncover pattern recognition receptors as potential regulators of postnatal synaptic refinement.


Asunto(s)
Interleucina-33 , Microglía , Animales , Ratones , Microglía/metabolismo , Interleucina-33/metabolismo , Sinapsis/metabolismo , Encéfalo/metabolismo , Convulsiones/metabolismo , Ratones Endogámicos C57BL
17.
Nature ; 443(7110): 448-52, 2006 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-16957738

RESUMEN

Mammalian ageing is associated with reduced regenerative capacity in tissues that contain stem cells. It has been proposed that this is at least partially caused by the senescence of progenitors with age; however, it has not yet been tested whether genes associated with senescence functionally contribute to physiological declines in progenitor activity. Here we show that progenitor proliferation in the subventricular zone and neurogenesis in the olfactory bulb, as well as multipotent progenitor frequency and self-renewal potential, all decline with age in the mouse forebrain. These declines in progenitor frequency and function correlate with increased expression of p16INK4a, which encodes a cyclin-dependent kinase inhibitor linked to senescence. Ageing p16INK4a-deficient mice showed a significantly smaller decline in subventricular zone proliferation, olfactory bulb neurogenesis, and the frequency and self-renewal potential of multipotent progenitors. p16INK4a deficiency did not detectably affect progenitor function in the dentate gyrus or enteric nervous system, indicating regional differences in the response of neural progenitors to increased p16INK4a expression during ageing. Declining subventricular zone progenitor function and olfactory bulb neurogenesis during ageing are thus caused partly by increasing p16INK4a expression.


Asunto(s)
Envejecimiento/fisiología , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Neuronas/citología , Prosencéfalo/citología , Regeneración/fisiología , Animales , Proliferación Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina/biosíntesis , Inhibidor p16 de la Quinasa Dependiente de Ciclina/deficiencia , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Ratones , Bulbo Olfatorio/citología , Bulbo Olfatorio/fisiología , Prosencéfalo/metabolismo , Células Madre/citología
18.
Sci Transl Med ; 14(652): eabj4310, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35857628

RESUMEN

Inflammatory processes induced by brain injury are important for recovery; however, when uncontrolled, inflammation can be deleterious, likely explaining why most anti-inflammatory treatments have failed to improve neurological outcomes after brain injury in clinical trials. In the thalamus, chronic activation of glial cells, a proxy of inflammation, has been suggested as an indicator of increased seizure risk and cognitive deficits that develop after cortical injury. Furthermore, lesions in the thalamus, more than other brain regions, have been reported in patients with viral infections associated with neurological deficits, such as SARS-CoV-2. However, the extent to which thalamic inflammation is a driver or by-product of neurological deficits remains unknown. Here, we found that thalamic inflammation in mice was sufficient to phenocopy the cellular and circuit hyperexcitability, enhanced seizure risk, and disruptions in cortical rhythms that develop after cortical injury. In our model, down-regulation of the GABA transporter GAT-3 in thalamic astrocytes mediated this neurological dysfunction. In addition, GAT-3 was decreased in regions of thalamic reactive astrocytes in mouse models of cortical injury. Enhancing GAT-3 in thalamic astrocytes prevented seizure risk, restored cortical states, and was protective against severe chemoconvulsant-induced seizures and mortality in a mouse model of traumatic brain injury, emphasizing the potential of therapeutically targeting this pathway. Together, our results identified a potential therapeutic target for reducing negative outcomes after brain injury.


Asunto(s)
Lesiones Encefálicas , COVID-19 , Animales , Astrocitos/metabolismo , Modelos Animales de Enfermedad , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Inflamación/patología , Ratones , Polímeros , Roedores/metabolismo , SARS-CoV-2 , Convulsiones , Tálamo/metabolismo , Tálamo/patología
19.
Curr Opin Cell Biol ; 16(6): 700-7, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15530784

RESUMEN

To what extent are the pathways that regulate self-renewal conserved between stem cells at different stages of development and in different tissues? Some pathways play a strikingly conserved role in regulating the self-renewal of diverse stem cells, whereas other pathways are specific to stem cells in certain tissues or at certain stages of development. Recent studies have highlighted differences between the self-renewal of embryonic, fetal and adult stem cells. By understanding these similarities and differences we may come to a molecular understanding of how stem cells replicate themselves and why aspects of this process differ between stem cells.


Asunto(s)
Embrión de Mamíferos/citología , Células Madre/citología , Células Madre/fisiología , Animales , Ciclo Celular , Linaje de la Célula , Proliferación Celular , Proteínas de Drosophila/metabolismo , Proteínas Hedgehog , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Complejo Represivo Polycomb 1 , Receptores Notch , Transducción de Señal , Factores de Tiempo , Proteínas Wnt
20.
Nat Commun ; 12(1): 5916, 2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34625548

RESUMEN

Microglia are brain resident macrophages that play vital roles in central nervous system (CNS) development, homeostasis, and pathology. Microglia both remodel synapses and engulf apoptotic cell corpses during development, but whether unique molecular programs regulate these distinct phagocytic functions is unknown. Here we identify a molecularly distinct microglial subset in the synapse rich regions of the zebrafish (Danio rerio) brain. We found that ramified microglia increased in synaptic regions of the midbrain and hindbrain between 7 and 28 days post fertilization. In contrast, microglia in the optic tectum were ameboid and clustered around neurogenic zones. Using single-cell mRNA sequencing combined with metadata from regional bulk sequencing, we identified synaptic-region associated microglia (SAMs) that were highly enriched in the hindbrain and expressed multiple candidate synapse modulating genes, including genes in the complement pathway. In contrast, neurogenic associated microglia (NAMs) were enriched in the optic tectum, had active cathepsin activity, and preferentially engulfed neuronal corpses. These data reveal that molecularly distinct phagocytic programs mediate synaptic remodeling and cell engulfment, and establish the zebrafish hindbrain as a model for investigating microglial-synapse interactions.


Asunto(s)
Mesencéfalo/citología , Microglía/citología , Neurogénesis/genética , Rombencéfalo/citología , Colículos Superiores/citología , Transcriptoma , Proteínas de Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Antígenos de Diferenciación de Linfocitos B/genética , Antígenos de Diferenciación de Linfocitos B/inmunología , Catepsina B/genética , Catepsina B/inmunología , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/inmunología , Mesencéfalo/crecimiento & desarrollo , Mesencéfalo/inmunología , Microglía/inmunología , Neurogénesis/inmunología , Neuronas/citología , Neuronas/inmunología , Fagocitosis , Rombencéfalo/crecimiento & desarrollo , Rombencéfalo/inmunología , Análisis de la Célula Individual , Colículos Superiores/crecimiento & desarrollo , Colículos Superiores/inmunología , Sinapsis/inmunología , Sinapsis/metabolismo , Sinapsis/ultraestructura , Pez Cebra , Proteínas de Pez Cebra/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA