Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 90(5): e0229023, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38619267

RESUMEN

The linear polymer polyphosphate (poly-P) is present across all three domains of life and serves diverse physiological functions. The enzyme polyphosphate kinase (Ppk) is responsible for poly-P synthesis, whereas poly-P degradation is carried out by the enzyme exopolyphosphatase (Ppx). In many Lactobacillaceae, the Ppk-encoding gene (ppk) is found clustered together with two genes encoding putative exopolyphosphatases (ppx1 and ppx2) each having different domain compositions, with the gene order ppx1-ppk-ppx2. However, the specific function of these ppx genes remains unexplored. An in-frame deletion of ppx1 in Lacticaseibacillus paracasei BL23 resulted in bacteria unable to accumulate poly-P, whereas the disruption of ppx2 did not affect poly-P synthesis. The expression of ppk was not altered in the Δppx1 strain, and poly-P synthesis in this strain was only restored by expressing ppx1 in trans. Moreover, no poly-P synthesis was observed when ppk was expressed from a plasmid in the Δppx1 strain. Purified Ppx2 exhibited in vitro exopolyphosphatase activity, whereas no in vitro enzymatic activity could be demonstrated for Ppx1. This observation corresponds with the absence in Ppx1 of conserved motifs essential for catalysis found in characterized exopolyphosphatases. Furthermore, assays with purified Ppk and Ppx1 evidenced that Ppx1 enhanced Ppk activity. These results demonstrate that Ppx1 is essential for poly-P synthesis in Lc. paracasei and have unveiled, for the first time, an unexpected role of Ppx1 exopolyphosphatase in poly-P synthesis.IMPORTANCEPoly-P is a pivotal molecular player in bacteria, participating in a diverse array of processes ranging from stress resilience to pathogenesis while also serving as a functional component in probiotic bacteria. The synthesis of poly-P is tightly regulated, but the underlying mechanisms remain incompletely elucidated. Our study sheds light on the distinctive role played by the two exopolyphosphatases (Ppx) found in the Lactobacillaceae bacterial group, of relevance in food and health. This particular group is noteworthy for possessing two Ppx enzymes, supposedly involved in poly-P degradation. Remarkably, our investigation uncovers an unprecedented function of Ppx1 in Lacticaseibacillus paracasei, where its absence leads to the total cessation of poly-P synthesis, paralleling the impact observed upon eliminating the poly-P forming enzyme, poly-P kinase. Unlike the anticipated role as a conventional exopolyphosphatase, Ppx1 demonstrates an unexpected function. Our results added a layer of complexity to our understanding of poly-P dynamics in bacteria.


Asunto(s)
Ácido Anhídrido Hidrolasas , Proteínas Bacterianas , Polifosfatos , Ácido Anhídrido Hidrolasas/metabolismo , Ácido Anhídrido Hidrolasas/genética , Polifosfatos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética
2.
Int J Mol Sci ; 25(9)2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38732236

RESUMEN

The use of probiotic lactobacilli has been proposed as a strategy to mitigate damage associated with exposure to toxic metals. Their protective effect against cationic metal ions, such as those of mercury or lead, is believed to stem from their chelating and accumulating potential. However, their retention of anionic toxic metalloids, such as inorganic arsenic, is generally low. Through the construction of mutants in phosphate transporter genes (pst) in Lactiplantibacillus plantarum and Lacticaseibacillus paracasei strains, coupled with arsenate [As(V)] uptake and toxicity assays, we determined that the incorporation of As(V), which structurally resembles phosphate, is likely facilitated by phosphate transporters. Surprisingly, inactivation in Lc. paracasei of PhoP, the transcriptional regulator of the two-component system PhoPR, a signal transducer involved in phosphate sensing, led to an increased resistance to arsenite [As(III)]. In comparison to the wild type, the phoP strain exhibited no differences in the ability to retain As(III), and there were no observed changes in the oxidation of As(III) to the less toxic As(V). These results reinforce the idea that specific transport, and not unspecific cell retention, plays a role in As(V) biosorption by lactobacilli, while they reveal an unexpected phenotype for the lack of the pleiotropic regulator PhoP.


Asunto(s)
Arsénico , Fosfatos , Fosfatos/metabolismo , Arsénico/toxicidad , Arsénico/metabolismo , Lactobacillus/metabolismo , Lactobacillus/efectos de los fármacos , Lactobacillus/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas de Transporte de Fosfato/metabolismo , Proteínas de Transporte de Fosfato/genética , Arseniatos/metabolismo , Arseniatos/toxicidad
3.
Int J Mol Sci ; 24(24)2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38139191

RESUMEN

Rotavirus (RV) is the leading cause of acute gastroenteritis (AGE) in children under 5 years old worldwide, and several studies have demonstrated that histo-blood group antigens (HBGAs) play a role in its infection process. In the present study, human stool filtrates from patients diagnosed with RV diarrhea (genotyped as P[8]) were used to infect differentiated Caco-2 cells (dCaco-2) to determine whether such viral strains of clinical origin had the ability to replicate in cell cultures displaying HBGAs. The cell culture-adapted human RV Wa model strain (P[8] genotype) was used as a control. A time-course analysis of infection was conducted in dCaco-2 at 1, 24, 48, 72, and 96 h. The replication of two selected clinical isolates and Wa was further assayed in MA104, undifferentiated Caco-2 (uCaco-2), HT29, and HT29-M6 cells, as well as in monolayers of differentiated human intestinal enteroids (HIEs). The results showed that the culture-adapted Wa strain replicated more efficiently in MA104 cells than other utilized cell types. In contrast, clinical virus isolates replicated more efficiently in dCaco-2 cells and HIEs. Furthermore, through surface plasmon resonance analysis of the interaction between the RV spike protein (VP8*) and its glycan receptor (the H antigen), the V7 RV clinical isolate showed 45 times better affinity compared to VP8* from the Wa strain. These findings support the hypothesis that the differences in virus tropism between clinical virus isolates and RV Wa could be a consequence of the different HBGA contents on the surface of the cell lines employed. dCaco-2, HT29, and HT29M6 cells and HIEs display HBGAs on their surfaces, whereas MA104 and uCaco-2 cells do not. These results indicate the relevance of using non-cell culture-adapted human RV to investigate the replication of rotavirus in relevant infection models.


Asunto(s)
Antígenos de Grupos Sanguíneos , Gastroenteritis , Infecciones por Rotavirus , Rotavirus , Niño , Humanos , Preescolar , Rotavirus/metabolismo , Infecciones por Rotavirus/genética , Células CACO-2 , Antígenos de Grupos Sanguíneos/metabolismo
4.
Food Chem Toxicol ; 185: 114461, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38253281

RESUMEN

The utilization of lactic acid bacteria has been proposed to mitigate the burden of heavy metal exposure through processes probably involving chelation and reduced metal bioaccessibility. We evaluated the effects of daily intake of two strains of lactobacilli (Lactobacillus intestinalis LE1 or Lactobacillus johnsonii LE2) on intestinal toxicity during methylmercury (MeHg) exposure through drinking water (5 mg/L) for two months in mice. MeHg exposure resulted in inflammation and oxidative stress at the colon, as well as an increase in intestinal permeability accompanied by decreased fecal short-chain fatty acids (SCFA). The administration of the strains resulted in a differential protective effect that, based on their chelation capacity, supported the existence of additional mechanisms of action besides chelation. Both strains reduced IL-1ß levels and oxidative stress, while LE1 lowered TNF-α, diminished MeHg-induced mucus over-secretion triggered by the IL-4/IL-13/STAT6 pathway, reduced intestinal permeability, and ameliorated inflammation and oxidative stress, probably by acting on the Keap1/Nrf2/ARE pathway. Administration of LE1 partially restored SCFA contents, which could be partly responsible for the positive effects of this strain in alleviating MeHg toxicity. These results demonstrate that lactobacilli strains can be useful tools in reducing the intestinal toxicity of MeHg, the main mercurial form conveyed by food.


Asunto(s)
Lactobacillales , Compuestos de Metilmercurio , Ratones , Animales , Compuestos de Metilmercurio/toxicidad , Proteína 1 Asociada A ECH Tipo Kelch , Modelos Animales de Enfermedad , Factor 2 Relacionado con NF-E2 , Administración Oral , Inflamación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA