RESUMEN
Herein, we report a transdermal patch prepared using an ionic liquid-based solid in oil (IL-S/O) nanodispersion and a pressure-sensitive adhesive (PSA) to deliver the macromolecular antigenic protein, ovalbumin (OVA). The IL-S/O nanodispersion and a PSA were first mixed at an equal weight ratio, then coated onto a release liner, and covered with a support film. To evaluate the effect of the PSA, three types of PSAs, DURO-TAK 87-4098, DURO-TAK 87-4287, and DURO-TAK 87-235A, were used to obtain the corresponding IL-S/O patches SP-4098, SP-4287, and SP-235A, respectively. The prepared IL-S/O patches were characterized for surface morphology, viscoelasticity, and moisture content. In vitro skin penetration and in vivo immunization studies of the IL-S/O patches were performed using Yucatan micropig skin and the C57BL/6NJc1 mice model, respectively. The SP-4098 and SP-4287 delivered 5.49-fold and 5.47-fold higher amounts of drug compared with the aqueous formulation. Although both patches delivered a similar amount of drug, SP-4287 was not detached fully from the release liner after 30 days, indicating low stability. Mice immunized with the OVA-containing SP-4098 produced a 10-fold increase in anti-OVA IgG compared with those treated with an aqueous formulation. These findings suggested that the IL-S/O patch may be a good platform for the transdermal delivery of antigen molecules.
Asunto(s)
Administración Cutánea , Antígenos , Inmunización , Líquidos Iónicos , Ovalbúmina , Parche Transdérmico , Líquidos Iónicos/química , Animales , Ratones , Ovalbúmina/inmunología , Ovalbúmina/administración & dosificación , Antígenos/inmunología , Antígenos/administración & dosificación , Antígenos/química , Porcinos , Piel/metabolismo , Piel/inmunología , Sistemas de Liberación de Medicamentos , Ratones Endogámicos C57BL , Femenino , Absorción CutáneaRESUMEN
An emerging contaminant of concern in aqueous streams is naproxen. Due to its poor solubility, non-biodegradability, and pharmaceutically active nature, the separation is challenging. Conventional solvents employed for naproxen are toxic and harmful. Ionic liquids (ILs) have attracted great attention as greener solubilizing and separating agent for various pharmaceuticals. ILs have found extensive usage as solvents in nanotechnological processes involving enzymatic reactions and whole cells. The employment of ILs can enhance the effectiveness and productivity of such bioprocesses. To avoid cumbersome experimental screening, in this study, conductor like screening model for real solvents (COSMO-RS) was used to screen ILs. Thirty anions and eight cations from various families were chosen. Activity coefficient at infinite dilution, capacity, selectivity, performance index, molecular interactions using σ-profiles and interaction energies were used to make predictions about solubility. According to the findings, quaternary ammonium cations, highly electronegative, and food-grade anions will form excellent ionic liquid combinations for solubilizing naproxen and hence will be better separating agents. This research will contribute easy designing of ionic liquid-based separation technologies for naproxen. In different separation technologies, ionic liquids can be employed as extractants, carriers, adsorbents, and absorbents.
Asunto(s)
Líquidos Iónicos , Humanos , Solventes , Agua , Naproxeno , Cationes , AnionesRESUMEN
Oil spill remediation plays a vital role in mitigating the environmental impacts caused by oil spills. The chemical method is one of the widely recognized approaches in chemical surfactants. However, the most commonly used chemical surfactants are toxic and non-biodegradable. Herein, two biocompatible and biodegradable surfactants were synthesized from orange peel using the ionic liquid 1-butyl-3-methylimidazolium chloride (BMIMCl) and organic solvent dimethylacetamide (CH3CN(CH3)2) as reaction media. The acronyms SOPIL and SOPOS refer to the surfactants prepared with BMIMCl and dimethylacetamide, respectively. The surface tension, dispersant effectiveness, optical microscopy, and emulsion stability test were conducted to examine the comparative performance of the synthesized surfactants. The Baffled flask test (BFT) was carried out to determine the dispersion effectiveness. The toxicity test was performed against zebrafish (Danio rerio), whereas the closed bottle test (CBT) evaluated biodegradability. The results revealed that the critical micelle concentration (CMC) value of SOPIL was lower (8.57 mg/L) than that of SOPOS (9.42 mg/L). The dispersion effectiveness values for SOPIL and SOPOS were 69.78% and 40.30%, respectively. The acute toxicity test demonstrated that SOPIL was 'practically non-toxic' with a median lethal concentration of more than 1000 mg/L after 96 h. The biodegradation rate was recorded as higher than 60% for both surfactants within 28 days, demonstrating their readily biodegradable nature. Considering these attributes, biocompatible and biodegradable surfactants derived from orange peel emerge as a promising and sustainable alternative for oil spill remediation.
Asunto(s)
Citrus sinensis , Contaminación por Petróleo , Contaminantes Químicos del Agua , Animales , Tensoactivos/toxicidad , Tensoactivos/metabolismo , Contaminación por Petróleo/análisis , Citrus sinensis/metabolismo , Pez Cebra/metabolismo , Contaminantes Químicos del Agua/análisisRESUMEN
Ibuprofen (Ibf) is a biologically active drug (BADs) and an emerging contaminant of concern (CECs) in aqueous streams. Due to its adverse effects upon aquatic organisms and humans, the removal and recovery of Ibf are essential. Usually, conventional solvents are employed for the separation and recovery of ibuprofen. Due to environmental limitations, alternative green extracting agents need to be explored. Ionic liquids (ILs), emerging and greener alternatives, can also serve this purpose. It is essential to explore ILs that are effective for recovering ibuprofen, among millions of ILs. The conductor-like screening model for real solvents (COSMO-RS) is an efficient tool that can be used to screen ILs specifically for ibuprofen extraction. The main objective of this work was to identify the best IL for the extraction of ibuprofen. A total of 152 different cation-anion combinations consisting of eight aromatic and non-aromatic cations and nineteen anions were screened. The evaluation was based upon activity coefficients, capacity, and selectivity values. Furthermore, the effect of alkyl chain length was studied. The results suggest that quaternary ammonium (cation) and sulfate (anion) have better extraction ability for ibuprofen than the other combinations tested. An ionic liquid-based green emulsion liquid membrane (ILGELM) was developed using the selected ionic liquid as the extractant, sunflower oil as the diluent, Span 80 as the surfactant, and NaOH as the stripping agent. Experimental verification was carried out using the ILGELM. The experimental results indicated that the predicted COSMO-RS and the experimental results were in good agreement. The proposed IL-based GELM is highly effective for the removal and recovery of ibuprofen.
Asunto(s)
Líquidos Iónicos , Humanos , Ibuprofeno , Emulsiones , Solventes , Aniones , CationesRESUMEN
Transcutaneous vaccination is one of the successful, affordable, and patient-friendly advanced immunization approaches because of the presence of multiple immune-responsive cell types in the skin. However, in the absence of a preferable facilitator, the skin's outer layer is a strong impediment to delivering biologically active foreign particles. Lipid-based biocompatible ionic-liquid-mediated nanodrug carriers represent an expedient and distinct strategy to permit transdermal drug delivery; with acceptable surfactants, the performance of drug formulations might be further enhanced. For this purpose, we formulated a lipid-based nanovaccine using a conventional (cationic/anionic/nonionic) surfactant loaded with an antigenic protein and immunomodulator in its core to promote drug delivery by penetrating the skin and boosting drug delivery and immunogenic cell activity. In a follow-up investigation, a freeze-dry emulsification process was used to prepare the nanovaccine, and its transdermal delivery, pharmacokinetic parameters, and ability to activate autoimmune cells in the tumor microenvironment were studied in a tumor-budding C57BL/6N mouse model. These analyses were performed using ELISA, nuclei and HE staining, flow cytometry, and other biological techniques. The immunomodulator-containing nanovaccine significantly (p < 0.001) increased transdermal drug delivery and anticancer immune responses (IgG, IgG1, IgG2, CD8+, CD207+, and CD103+ expression) without causing cellular or biological toxicity. Using a nanovaccination approach, it is possible to create a more targeted and efficient delivery system for cancer antigens, thereby stimulating a stronger immune response compared with conventional aqueous formulations. This might lead to more effective therapeutic and preventative outcomes for patients with cancer.
Asunto(s)
Tensoactivos , Vacunas , Ratones , Animales , Ratones Endogámicos C57BL , Sistemas de Liberación de Medicamentos , Administración Cutánea , Antígenos , Adyuvantes Inmunológicos/farmacología , LípidosRESUMEN
Ionic liquids (ILs) have attracted growing interest as designer solvents/materials for exploring unrealized functions in many areas of research including drug formulations and delivery owing to their inherent tunable physicochemical and biological properties. The use of ILs in the pharmaceutical industry can address challenges related to the use of conventional organic solvent-based chemical permeation enhancers. Their tunability in forming ion pairs with a diverse range of ions enables the task-specific optimization of ILs at the molecular level. In particular, ILs comprising second- and third-generation cations and anions have been extensively used to design biocompatible drug delivery systems to address the challenges related to conventional topical and transdermal drug delivery, including limited permeability, high cytotoxicity, and skin irritation. This review highlights the progress in IL-related research with particular emphasis on the very recent conceptual developments in transdermal drug delivery. Technological advancement and approaches for the formation of IL-based topical and transdermal delivery systems, as well as their promising application in drug delivery, are also discussed.
Asunto(s)
Líquidos Iónicos , Administración Cutánea , Sistemas de Liberación de Medicamentos , Líquidos Iónicos/química , Líquidos Iónicos/metabolismo , Piel/metabolismo , Absorción Cutánea , SolventesRESUMEN
In the current study, we have synthesized an imidazolium based cross-linked polymer, namely, 1-vinyl-3-ethylimidazolium bis(trifluoromethylsulfonyl)imide (poly[veim][Tf2N]-TRIM) using trimethylolpropane trimethacrylate as cross linker, and demonstrated its efficiency for the removal of two extensively used ionic dyesmethylene blue and orange-IIfrom aqueous systems. The detailed characterization of the synthesized poly[veim][Tf2N]-TRIM was performed with the help of 1H NMR, TGA, FT-IR and FE-SEM analysis. The concentration of dyes in aqueous samples before and after the adsorption process was measured using an UV-vis spectrophotometer. The process parameters were optimised, and highest adsorption was obtained at a solution pH of 7.0, adsorbent dosage of 0.75 g/L, contact time of 7 h and dye concentrations of 100 mg/L and 5.0 mg/L for methylene blue and orange-II, respectively. The adsorption kinetics for orange-II and methylene blue were well described by pseudo-first-order and pseudo−second-order models, respectively. Meanwhile, the process of adsorption was best depicted by Langmuir isotherms for both the dyes. The highest monolayer adsorption capacities for methylene blue and orange-II were found to be 1212 mg/g and 126 mg/g, respectively. Overall, the synthesized cross-linked poly[veim][Tf2N]-TRIM effectively removed the selected ionic dyes from aqueous samples and provided >90% of adsorption efficiency after four cycles of adsorption. A possible adsorption mechanism between the synthesised polymeric adsorbent and proposed dyes is presented. It is further suggested that the proposed ionic liquid polymer adsorbent could effectively remove other ionic dyes and pollutants from contaminated aqueous systems.
Asunto(s)
Líquidos Iónicos , Contaminantes Químicos del Agua , Purificación del Agua , Colorantes/química , Adsorción , Azul de Metileno/química , Cinética , Polímeros , Espectroscopía Infrarroja por Transformada de Fourier , Contaminantes Químicos del Agua/química , AguaRESUMEN
Fish by-product oil and lemon oil have potential applications as active ingredients in many industries, including cosmetics, pharmaceuticals and food. However, the physicochemical properties, especially the poor stability, compromised the usage. Generally, nanoemulsions were used as an approach to stabilize the oils. This study employed an ultrasonication method to form oil-in-water nanoemulsion of lemon and fish by-product oils (NE-FLO). The formulation is produced at a fixed amount of 2 wt% fish by-product oil, 8 wt% lemon oil, 10 wt% surfactant, 27.7 wt% co-surfactants and 42 min of ultrasonication time. The size, polydispersity index (PDI) and zeta potential obtained were 44.40 nm, 0.077, and -5.02 mV, respectively. The biological properties, including antioxidant, antibacterial, cell cytotoxicity, and anti-inflammatory, showed outstanding performance. The antioxidant activity is comparable without any significant difference with ascorbic acid as standard and is superior to pure lemon oil. NE-FLO successfully inhibits seven Gram-positive and seven Gram-negative bacterial strains. NE-FLO's anti-inflammatory activity is 99.72%, comparable to nordihydroguaiaretic acid (NDGA) as the standard. At a high concentration of 10,000 µg·mL-1, NE-FLO is non-toxic to normal skin cells. These findings demonstrate that the NE-FLO produced in this study has significant potential for usage in various industries.
Asunto(s)
Antioxidantes , Aceites de Plantas , Animales , Antibacterianos/química , Antibacterianos/farmacología , Antiinflamatorios , Antioxidantes/farmacología , Ácido Ascórbico , Emulsiones/química , Aceites de Pescado/farmacología , Masoprocol , Aceites de Plantas/farmacología , Tensoactivos/química , Agua/químicaRESUMEN
Coronavirus disease 2019 (COVID-19) has spread across the world, and no specific antiviral drugs have yet been approved to combat this disease. Favipiravir (FAV) is an antiviral drug that is currently in clinical trials for use against COVID-19. However, the delivery of FAV is challenging because of its limited solubility, and its formulation is difficult with common organic solvents and water. To address these issues, four FAV ionic liquids (FAV-ILs) were synthesized as potent antiviral prodrugs and were fully characterized by nuclear magnetic resonance (NMR) spectroscopy, Fourier-transform infrared (FT-IR) spectrometry, powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), derivative thermogravimetry (DTG), and differential scanning calorimetry (DSC). The aqueous solubility and in vivo pharmacokinetic properties of the FAV-ILs were also evaluated. The FAV-ILs exhibited improved aqueous solubility by 78 to 125 orders of magnitude when compared with that of free FAV. Upon oral dosing in mice, the absolute bioavailability of the ß-alanine ethyl ester FAV formulation was increased 1.9-fold compared with that of the control FAV formulation. The peak blood concentration, elimination half-life, and mean absorption time of FAV were also increased by 1.5-, 2.0-, and 1.5-fold, respectively, compared with the control. Furthermore, the FAV in the FAV-ILs exhibited significantly different biodistribution compared with the control FAV formulation. Interestingly, drug accumulation in the lungs and liver was improved 1.5-fold and 1.3-fold, respectively, compared with the control FAV formulation. These results indicate that the use of ILs exhibits potential as a simple, scalable strategy to improve the solubility and oral absorption of hydrophobic drugs, such as FAV.
Asunto(s)
Amidas/administración & dosificación , Antivirales/administración & dosificación , Líquidos Iónicos/química , Pirazinas/administración & dosificación , Administración Oral , Amidas/síntesis química , Amidas/química , Amidas/farmacocinética , Animales , Femenino , Ratones , Ratones Endogámicos BALB C , Pirazinas/síntesis química , Pirazinas/química , Pirazinas/farmacocinética , Solubilidad , Distribución Tisular , Tratamiento Farmacológico de COVID-19RESUMEN
CRISPR/Cas9-mediated gene editing allows manipulation of a gene of interest in its own chromosomal context. When applied to the analysis of protein interactions and in contrast to exogenous expression of a protein, this can be studied maintaining physiological stoichiometry, topology, and context. We have used CRISPR/Cas9-mediated genomic editing to investigate Cluap1/IFT38, a component of the intraflagellar transport complex B (IFT-B). Cluap1 has been implicated in human development as well as in cancer progression. Cluap1 loss of function results in early developmental defects with neural tube closure, sonic hedgehog signaling and left-right defects. Herein, we generated an endogenously tagged Cluap1 for protein complex analysis, which was then correlated to the corresponding interactome determined by ectopic expression. Besides IFT-B complex components, new interacting proteins like Ephrin-B1 and TRIP6, which are known to be involved in cytoskeletal arrangement and protein transport, were identified. With the identification of platelet-derived growth factor A (PDGFA) and coiled-coil domain-containing protein 6 (CCDC6) two new interactions were discovered, which link Cluap1 to ciliogenesis and cancer development. The CRISPR/Cas9-mediated knockout of Cluap1 revealed a new phenotype affecting the actin cytoskeleton. Together, these data provide first evidence for a role of Cluap1 not only for cilia assembly and maintenance but also for cytoskeletal rearrangement and intracellular transport processes.
Asunto(s)
Actinas/metabolismo , Antígenos de Neoplasias/metabolismo , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Edición Génica , Citoesqueleto de Actina/metabolismo , Movimiento Celular , Cilios/metabolismo , Células HEK293 , Humanos , Isoformas de Proteínas/metabolismo , Telomerasa/metabolismoRESUMEN
Phytosynthesis of gold nanoparticles (AuNPs) has achieved an indispensable significance due to the diverse roles played by biomolecules in directing the physiochemical characteristics of biosynthesized nanoparticles. Therefore, the precise identification of key bioactive compounds involved in producing AuNPs is vital to control their tunable characteristics for potential applications. Herein, qualitative and quantitative determination of key biocompounds contributing to the formation of AuNPs using aqueous Elaeis guineensis leaves extract is reported. Moreover, roles of phenolic compounds and flavonoids in reduction of Au3+ and stabilization of AuNPs have been elucidated by establishing a reaction mechanism. Fourier-transform infrared spectroscopy (FTIR) showed shifting of OâH stretching vibrations toward longer wavenumbers and CâO toward shorter wavenumbers due to involvement of polyphenolic compounds in biosynthesis and oxidation of polyphenolic into carboxylic compounds, respectively, which cape nanoparticles to inhibit the aggregation. Congruently, pyrolysis-gas chromatography-mass spectrometry revealed the major contribution of polyphenolic compounds in the synthesis of AuNPs, which was further endorsed by reduction of total phenolic and total flavonoids contents from 48.08 ± 1.98 to 9.59 ± 0.92 mg GAE/g and 32.02 ± 1.31 to 13.8 ± 0.97 mg CE/g within 60 Min, respectively. Based on experimental results, reaction mechanism explained the roles of phenolic compounds and flavonoids in producing spherical-shaped AuNPs.
Asunto(s)
Flavonoides/química , Oro/metabolismo , Tecnología Química Verde , Nanopartículas del Metal/química , Fenoles/química , Extractos Vegetales/química , Hojas de la Planta/química , Arecaceae/química , Flavonoides/aislamiento & purificación , Oro/química , Estructura Molecular , Tamaño de la Partícula , Fenoles/aislamiento & purificación , Procesos Fotoquímicos , Extractos Vegetales/aislamiento & purificación , Estrés Mecánico , Propiedades de Superficie , Agua/química , Agua/metabolismoRESUMEN
Paclitaxel (PTX) injection (i.e., Taxol) has been used as an effective chemotherapeutic treatment for various cancers. However, the current Taxol formulation contains Cremophor EL, which causes hypersensitivity reactions during intravenous administration and precipitation by aqueous dilution. This communication reports the preliminary results on the ionic liquid (IL)-based PTX formulations developed to address the aforementioned issues. The formulations were composed of PTX/cholinium amino acid ILs/ethanol/Tween-80/water. A significant enhancement in the solubility of PTX was observed with considerable correlation with the density and viscosity of the ILs, and with the side chain of the amino acids used as anions in the ILs. Moreover, the formulations were stable for up to 3 months. The driving force for the stability of the formulation was hypothesized to be the involvement of different types of interactions between the IL and PTX. In vitro cytotoxicity and antitumor activity of the IL-based formulations were evaluated on HeLa cells. The IL vehicles without PTX were found to be less cytotoxic than Taxol, while both the IL-based PTX formulation and Taxol exhibited similar antitumor activity. Finally, in vitro hypersensitivity reactions were evaluated on THP-1 cells and found to be significantly lower with the IL-based formulation than Taxol. This study demonstrated that specially designed ILs could provide a potentially safer alternative to Cremophor EL as an effective PTX formulation for cancer treatment giving fewer hypersensitivity reactions.
Asunto(s)
Antineoplásicos Fitogénicos/efectos adversos , Sistemas de Liberación de Medicamentos/métodos , Hipersensibilidad a las Drogas/prevención & control , Líquidos Iónicos/efectos adversos , Paclitaxel/efectos adversos , Antineoplásicos Fitogénicos/química , Composición de Medicamentos/métodos , Sistemas de Liberación de Medicamentos/efectos adversos , Hipersensibilidad a las Drogas/etiología , Excipientes/efectos adversos , Excipientes/química , Glicerol/efectos adversos , Glicerol/análogos & derivados , Glicerol/química , Células HeLa , Humanos , Líquidos Iónicos/química , Neoplasias/tratamiento farmacológico , Paclitaxel/química , SolubilidadRESUMEN
In the present study, a sensitive and fully validated liquid chromatography with mass spectrometry method was developed for the quantification of three potential genotoxic impurities in rabeprazole drug substance. The separation was achieved on Symmetry C18 column (100 × 4.6 mm, 3.5 µm) using 0.1% formic acid in water as mobile phase A and acetonitrile as mobile phase B in gradient elution mode at 0.5 mL/min flow rate. Triple quadrupole mass detection with electrospray ionization was operated in selected ion recording mode for the quantification of impurities. The calibration curves were demonstrated good linearity over the concentration range of 1.0-4.5 ppm for O-phenylenediamine, 1.8-4.5 ppm for 4-nitrolutidine-N-oxide and 1.0-4.5 ppm for benzyltriethylammonium chloride with respect to 10 mg/mL of rabeprazole. The correlation coefficient obtained in each case was >0.998. The recoveries were found satisfactory over the range between 94.22 and 106.84% for all selected impurities. The method validation was carried out following International Conference on Harmonization guidelines, from which the developed method was able to quantitate the impurities at 1.0 ppm for O-phenylenediamine, 1.8 ppm for 4-nitrolutidine-N-oxide and 1.0 ppm for benzyltriethylammonium chloride. Furthermore, the proposed method was successfully evaluated for the determination of selected impurities from bulk drug and formulation samples of rabeprazole within the acceptable limits.
Asunto(s)
Composición de Medicamentos , Contaminación de Medicamentos , Rabeprazol/química , Cromatografía Liquida , Espectrometría de Masas , Rabeprazol/toxicidadRESUMEN
The use of chemical dispersants to remove oil spills in aquatic environments raises serious concerns, including heightened toxicity and limited biodegradability, which diminish their effectiveness. This study aimed to develop an environmentally friendly formulation by combining two nonionic surfactants (Tween 80, Span 80) with two surface-active ionic liquids (SAILs): 1-butyl-3-methylimidazolium lauroyl sarcosinate [Bmim][Lausar] and choline myristate [Cho][Mys], to remediate crude oil spill. The performance of the formulation was evaluated by its emulsion stability, surface tension, interfacial tension (IFT), and effectiveness. The toxicity and biodegradability of the formulation were also assessed to ensure their safe application in aquatic environments. The formulation (F9) exhibited the most stable emulsion, maintaining stability even after 5 h with a critical micelle concentration (CMC) of 3.52 mM. The efficiency of the formulation in dispersing various crude oils (Arab, Ratawi, and Doba) ranged from 70.12 to 93.72%. Acute toxicity tests conducted on zebrafish demonstrated that the formulation, with an LC50 value of 450 mg L-1, exhibited practically nontoxicity after 96 h. The formulation showed rapid biodegradability, exceeding 60% within a 28-day testing period. This research presents a promising approach for synthesizing the green formulation which can contribute to mitigating the environmental impacts of oil spills and enhancing the efficiency of cleanup operations.
RESUMEN
The synthesis of new surfactants helps to mitigate the environmental and financial effects of oil spills by providing efficient cleanup options. Herein, this study provides the development of a binary mixture of Span 80 and Choline myristate [Cho][Mys], a surface-active ionic liquid (SAIL) as green dispersant for oil spill remediation. The synergistic interaction at a 60:40 (w/w) ratio significantly lowered the critical micelle concentration (cmc) to 0.029 mM. Dispersion efficiency tests with Arab crude oil showed optimal performance at a 60:40 ratio of Span 80 and [Cho][Mys] (1:25 dispersant to oil ratio, v/v), achieving 81.16 % dispersion effectiveness in the baffled flask test. The binary mixture demonstrated superior emulsion stability (6 h) and the lowest interfacial tension (1.12 mN/m). Acute toxicity experiments revealed the dispersant's practical non-toxicity with an LC50 value of 600 mg/L. Overall, this environmentally benign surfactant combination shows promise as a safe and effective oil spill dispersant.
Asunto(s)
Restauración y Remediación Ambiental , Líquidos Iónicos , Contaminación por Petróleo , Petróleo , Tensoactivos , Contaminantes Químicos del Agua , Líquidos Iónicos/química , Restauración y Remediación Ambiental/métodos , Contaminantes Químicos del Agua/análisis , HexosasRESUMEN
Herein, we report ethosome (ET) formulations composed of a safe amount of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC)-based ionic liquid with various concentrations of ethanol as a carrier for the transdermal delivery of a high molecular weight drug, insulin. The Insulin-loaded ET vesicles exhibited long-term stability compared to conventional DMPC ETs, showing significantly higher drug encapsulation efficiency and increased skin permeation ability.
Asunto(s)
Líquidos Iónicos , Insulina , Dimiristoilfosfatidilcolina , Administración Cutánea , Piel , Preparaciones Farmacéuticas , LiposomasRESUMEN
The development of effective drug formulations and delivery systems for newly developed or marketed drug molecules remains a significant challenge. These drugs can exhibit polymorphic conversion, poor bioavailability, and systemic toxicity, and can be difficult to formulate with traditional organic solvents due to acute toxicity. Ionic liquids (ILs) are recognized as solvents that can improve the pharmacokinetic and pharmacodynamic properties of drugs. ILs can address the operational/functional challenges associated with traditional organic solvents. However, many ILs are non-biodegradable and inherently toxic, which is the most significant challenge in developing IL-based drug formulations and delivery systems. Biocompatible ILs comprising biocompatible cations and anions mainly derived from bio-renewable sources are considered a green alternative to both conventional ILs and organic/inorganic solvents. This review covers the technologies and strategies developed to design biocompatible ILs, focusing on the design of biocompatible IL-based drug formulations and delivery systems, and discusses the advantages of these ILs in pharmaceutical and biomedical applications. Furthermore, this review will provide guidance on transitioning to biocompatible ILs rather than commonly used toxic ILs and organic solvents in fields ranging from chemical synthesis to pharmaceutics.
RESUMEN
In the present investigation, a total of 108 combinations of ionic liquids (ILs) were screened using the conductor-like screening model for real solvents (COSMO-RS) with the aid of six cations and eighteen anions for the extraction of succinic acid (SA) from aqueous streams through dispersive liquid-liquid microextraction (DLLME). Using the screened ILs, an ionic liquid-based DLLME (IL-DLLME) was developed to extract SA and the role of different reaction parameters in the effectiveness of IL-DLLME approach was investigated. COSMO-RS results suggested that, quaternary ammonium and choline cations form effective IL combinations with [OH¯], [F¯], and [SO42¯] anions due to hydrogen bonding. In view of these results, one of the screened ILs, tetramethylammonium hydroxide [TMAm][OH] was chosen as the extractant in IL-DLLME process and acetonitrile was adopted as the dispersive solvent. The highest SA removal efficiency of 97.8% was achieved using 25â µL of IL [TMAm][OH] as a carrier and 500â µL of acetonitrile as dispersive solvent. The highest amount of SA was extracted with a stir time of 20â min at 300â rpm, followed by centrifugation for 5â min at 4500â rpm. Overall, the findings showed that IL-DLLME is efficient in extracting succinic acid from aqueous environments while adhering to the first-order kinetics.
RESUMEN
Chemical dispersants are extensively used for marine oil spill remediation. However, the increased toxicity and low biodegradability of these dispersants restrict their employment in the marine environment. Hence, in this work, we have developed an eco-friendly formulation composed of an ionic liquid,1-butyl-3-methylimidazolium lauroyl sarcosinate [BMIM][Lausar] and sorbitan monooleate (Span) 80. Micellar and interfacial parameters, dispersion effectiveness, as well as the toxicity and biodegradability of the developed formulation were investigated. Micellar properties confirmed a high degree of synergism among the surfactant molecules and the formation of stable micelle. The dispersion effectiveness, at dispersant-to-oil ratio (DOR) of 1:25 (v/v), against three crude oils (Arab, Ratawi, and Doba) was assessed. We achieved a dispersion effectiveness of 68.49%, 74.05%, and 83.43% for Ratawi, Doba, and Arab crude oil, respectively, using a 70:30 (w/w) ratio of Span 80 to [BMIM][Lausar]. Furthermore, the results obtained from optical microscopy and particle size analysis (PSA) indicated that the oil droplet size decreased with higher DOR. Additionally, acute toxicity experiments were conducted on zebrafish (Danio rerio) using the developed formulation, confirming its non-toxic behavior, with LC50 values of 800 mg/L after 96 h. The formulation also exhibited high biodegradability, with only 25.01% of the original quantity remaining after 28 days. Hence, these results suggest that the new formulation has the potential to be a highly effective and environmentally friendly dispersant for oil spill remediation.
Asunto(s)
Líquidos Iónicos , Contaminación por Petróleo , Petróleo , Contaminantes Químicos del Agua , Animales , Líquidos Iónicos/toxicidad , Contaminación por Petróleo/análisis , Pez Cebra , Tensoactivos/química , Petróleo/toxicidad , Petróleo/análisis , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisisRESUMEN
Flavonoids have diverse beneficial roles that potentiate their application as nutraceutical agents in nutritional supplements and as natural antimicrobial agents in food preservation. To address poor solubility and bioactivity issues, we developed water-soluble micellar formulations loaded with single and multiple flavonoids using the biocompatible surface-active ionic liquid choline oleate. The food preservation performance was investigated using luteolin, naringenin, and quercetin as model bioactive compounds. The micellar formulations formed spherical micelles with particle sizes of <150 nm and exhibited high aqueous solubility (>5.15 mg/mL). Co-delivery of multiple flavonoids (luteolin, naringenin, and quercetin in LNQ-MF) resulted in 84.85% antioxidant activity at 100 µg/mL. The effects on Staphylococcus aureus and Salmonella enterica were synergistic with fractional inhibitory concentration indices of 0.87 and 0.71, respectively. LNQ-MF hindered the growth of S. aureus in milk (0.83-0.89 log scale) compared to the control. Co-delivered encapsulated flavonoids are a promising alternative to chemical preservatives.