Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nat Immunol ; 25(3): 462-470, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38278966

RESUMEN

The persistence of CD4+ T cells carrying latent human immunodeficiency virus-1 (HIV-1) proviruses is the main barrier to a cure. New therapeutics to enhance HIV-1-specific immune responses and clear infected cells will probably be necessary to achieve reduction of the latent reservoir. In the present study, we report two single-chain diabodies (scDbs) that target the HIV-1 envelope protein (Env) and the human type III Fcγ receptor (CD16). We show that the scDbs promoted robust and HIV-1-specific natural killer (NK) cell activation and NK cell-mediated lysis of infected cells. Cocultures of CD4+ T cells from people with HIV-1 on antiretroviral therapy (ART) with autologous NK cells and the scDbs resulted in marked elimination of reservoir cells that was dependent on latency reversal. Treatment of human interleukin-15 transgenic NSG mice with one of the scDbs after ART initiation enhanced NK cell activity and reduced reservoir size. Thus, HIV-1-specific scDbs merit further evaluation as potential therapeutics for clearance of the latent reservoir.


Asunto(s)
Anticuerpos Biespecíficos , VIH-1 , Animales , Ratones , Humanos , Células Asesinas Naturales , Citotoxicidad Inmunológica , Muerte Celular , Ratones Transgénicos
2.
Nat Immunol ; 24(2): 359-370, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36536105

RESUMEN

Understanding the complexity of the long-lived HIV reservoir during antiretroviral therapy (ART) remains a considerable impediment in research towards a cure for HIV. To address this, we developed a single-cell strategy to precisely define the unperturbed peripheral blood HIV-infected memory CD4+ T cell reservoir from ART-treated people living with HIV (ART-PLWH) via the presence of integrated accessible proviral DNA in concert with epigenetic and cell surface protein profiling. We identified profound reservoir heterogeneity within and between ART-PLWH, characterized by new and known surface markers within total and individual memory CD4+ T cell subsets. We further uncovered new epigenetic profiles and transcription factor motifs enriched in HIV-infected cells that suggest infected cells with accessible provirus, irrespective of reservoir distribution, are poised for reactivation during ART treatment. Together, our findings reveal the extensive inter- and intrapersonal cellular heterogeneity of the HIV reservoir, and establish an initial multiomic atlas to develop targeted reservoir elimination strategies.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , VIH-1/fisiología , Linfocitos T CD4-Positivos , Latencia del Virus/genética , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/genética , Epigénesis Genética , Carga Viral , Antirretrovirales/uso terapéutico
3.
Immunity ; 55(6): 1013-1031.e7, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35320704

RESUMEN

Understanding the drivers and markers of clonally expanding HIV-1-infected CD4+ T cells is essential for HIV-1 eradication. We used single-cell ECCITE-seq, which captures surface protein expression, cellular transcriptome, HIV-1 RNA, and TCR sequences within the same single cell to track clonal expansion dynamics in longitudinally archived samples from six HIV-1-infected individuals (during viremia and after suppressive antiretroviral therapy) and two uninfected individuals, in unstimulated conditions and after CMV and HIV-1 antigen stimulation. Despite antiretroviral therapy, persistent antigen and TNF responses shaped T cell clonal expansion. HIV-1 resided in Th1-polarized, antigen-responding T cells expressing BCL2 and SERPINB9 that may resist cell death. HIV-1 RNA+ T cell clones were larger in clone size, established during viremia, persistent after viral suppression, and enriched in GZMB+ cytotoxic effector memory Th1 cells. Targeting HIV-1-infected cytotoxic CD4+ T cells and drivers of clonal expansion provides another direction for HIV-1 eradication.


Asunto(s)
Infecciones por VIH , VIH-1 , Linfocitos T CD4-Positivos , Células Clonales , Humanos , ARN , Viremia
4.
Bioorg Med Chem Lett ; 102: 129679, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38423371

RESUMEN

Seven furanochromene-quinoline derivatives containing a hydrazone linker were synthesized by condensing a furanochromene hydrazide with quinoline 2-, 3-, 4-, 5-, 6-, and 8-carbaldehydes, including 8-hydroxyquinoline-2-carbaldehye. Structure-activity correlations were investigated to determine the influence of the location of the hydrazone linker on the quinoline unit on SARS-CoV-2 Mpro enzyme inhibition. The 3-, 5-, 6- and 8-substituted derivatives showed moderate inhibition of SARS-CoV-2 Mpro with IC50 values ranging from 16 to 44 µM. Additionally, all of the derivatives showed strong interaction with the SARS-CoV-2 Mpro substrate binding pocket, with docking energy scores ranging from -8.0 to -8.5 kcal/mol. These values are comparable to that of N3 peptide (-8.1 kcal/mol) and more favorable than GC-373 (-7.6 kcal/mol) and ML-188 (-7.5 kcal/mol), all of which are known SARS-CoV-2 Mpro inhibitors. Furthermore, in silico absorption, distribution, metabolism, and excretion (ADME) profiles indicate that the derivatives have good drug-likeness properties. Overall, this study highlights the potential of the furanochromene-quinoline hydrazone scaffold as a SARS-CoV-2 Mpro inhibitor.


Asunto(s)
COVID-19 , Proteasas 3C de Coronavirus , Quinolinas , Humanos , Hidrazonas/farmacología , Simulación del Acoplamiento Molecular , SARS-CoV-2 , Quinolinas/farmacología , Inhibidores de Proteasas/farmacología , Simulación de Dinámica Molecular
5.
J Immunol ; 208(2): 197-202, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-35017208

RESUMEN

Minority groups face barriers in accessing quality health care, professional advancement, and representation in immunology research efforts as a result of institutional racism that if unaddressed can perpetuate a lack of diversity. In 2021, the AAI Minority Affairs Committee convened a cross section of academic and industry scientists from underrepresented groups at various stages of their professions to discuss how best to address the toll racism takes on study design and scientific careers. Panelists drew directly from their own experiences as scientists to share perspectives and strategies for countering a lack of representation in clinical research, responding to microaggressions, navigating academic advancement, and providing effective mentorship. The session reinforced the need for minority scientists to take an active role in advocating for diversity, engaging mentors, and taking responsibility to face rather than avoid institutional obstacles. Overall, increased dialogue and institutional awareness of the experience of scientists from underrepresented groups in research remain the best tools to ensure a health equity mindset and advancement of their careers.


Asunto(s)
Éxito Académico , Movilidad Laboral , Grupos Minoritarios/estadística & datos numéricos , Investigadores/estadística & datos numéricos , Racismo Sistemático/estadística & datos numéricos , Investigación Biomédica , Diversidad Cultural , Humanos , Tutoría , Mentores , Microagresión , Minorías Sexuales y de Género/estadística & datos numéricos
6.
J Nat Prod ; 87(6): 1513-1520, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38781491

RESUMEN

Current small-molecule-based SARS-CoV-2 treatments have limited global accessibility and pose the risk of inducing viral resistance. Therefore, a marine algae and cyanobacteria extract library was screened for natural products that could inhibit two well-defined and validated COVID-19 drug targets, disruption of the spike protein/ACE-2 interaction and the main protease (Mpro) of SARS-CoV-2. Following initial screening of 86 extracts, we performed an untargeted metabolomic analysis of 16 cyanobacterial extracts. This approach led to the isolation of an unusual saturated fatty acid, jobosic acid (2,5-dimethyltetradecanoic acid, 1). We confirmed that 1 demonstrated selective inhibitory activity toward both viral targets while retaining some activity against the spike-RBD/ACE-2 interaction of the SARS-CoV-2 omicron variant. To initially explore its structure-activity relationship (SAR), the methyl and benzyl ester derivatives of 1 were semisynthetically accessed and demonstrated acute loss of bioactivity in both SARS-CoV-2 biochemical assays. Our efforts have provided copious amounts of a fatty acid natural product that warrants further investigation in terms of SAR, unambiguous determination of its absolute configuration, and understanding of its specific mechanisms of action and binding site toward new therapeutic avenues for SARS-CoV-2 drug development.


Asunto(s)
Antivirales , Metabolómica , SARS-CoV-2 , SARS-CoV-2/efectos de los fármacos , Antivirales/farmacología , Antivirales/química , Antivirales/aislamiento & purificación , Humanos , Cianobacterias/química , Relación Estructura-Actividad , Ácidos Grasos/química , Ácidos Grasos/farmacología , COVID-19 , Estructura Molecular , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/metabolismo
7.
Chem Zvesti ; 78(6): 3431-3441, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38685970

RESUMEN

Chemical prototypes with broad-spectrum antiviral activity are important toward developing new therapies that can act on both existing and emerging viruses. Binding of the SARS-CoV-2 spike protein to the host angiotensin-converting enzyme 2 (ACE2) receptor is required for cellular entry of SARS-CoV-2. Toward identifying new chemical leads that can disrupt this interaction, including in the presence of SARS-CoV-2 adaptive mutations found in variants like omicron that can circumvent vaccine, immune, and therapeutic antibody responses, we synthesized 5-chloro-3-(2-(2,4-dinitrophenyl)hydrazono)indolin-2-one (H2L) from the condensation reaction of 5-chloroisatin and 2,4-dinitrophenylhydrazine in good yield. H2L was characterised by elemental and spectral (IR, electronic, Mass) analyses. The NMR spectrum of H2L indicated a keto-enol tautomerism, with the keto form being more abundant in solution. H2L was found to selectively interfere with binding of the SARS-CoV-2 spike receptor-binding domain (RBD) to the host angiotensin-converting enzyme 2 receptor with a 50% inhibitory concentration (IC50) of 0.26 µM, compared to an unrelated PD-1/PD-L1 ligand-receptor-binding pair with an IC50 of 2.06 µM in vitro (Selectivity index = 7.9). Molecular docking studies revealed that the synthesized ligand preferentially binds within the ACE2 receptor-binding site in a region distinct from where spike mutations in SARS-CoV-2 variants occur. Consistent with these models, H2L was able to disrupt ACE2 interactions with the RBDs from beta, delta, lambda, and omicron variants with similar activities. These studies indicate that H2L-derived compounds are potential inhibitors of multiple SARS-CoV-2 variants, including those capable of circumventing vaccine and immune responses. Supplementary Information: The online version contains supplementary material available at 10.1007/s11696-023-03274-5.

8.
Antimicrob Agents Chemother ; 67(4): e0160022, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36975214

RESUMEN

Despite effective combination antiretroviral therapy (cART), people living with HIV (PLWH) continue to harbor replication-competent and transcriptionally active virus in infected cells, which in turn can lead to ongoing viral antigen production, chronic inflammation, and increased risk of age-related comorbidities. To identify new agents that may inhibit postintegration HIV beyond cART, we screened a library of 512 pure compounds derived from natural products and identified (-)-hopeaphenol as an inhibitor of HIV postintegration transcription at low to submicromolar concentrations without cytotoxicity. Using a combination of global RNA sequencing, plasmid-based reporter assays, and enzyme activity studies, we document that hopeaphenol inhibits protein kinase C (PKC)- and downstream NF-κB-dependent HIV transcription as well as a subset of PKC-dependent T-cell activation markers, including interleukin-2 (IL-2) cytokine and CD25 and HLA-DRB1 RNA production. In contrast, it does not substantially inhibit the early PKC-mediated T-cell activation marker CD69 production of IL-6 or NF-κB signaling induced by tumor necrosis factor alpha (TNF-α). We further show that hopeaphenol can inhibit cyclin-dependent kinase 9 (CDK9) enzymatic activity required for HIV transcription. Finally, it inhibits HIV replication in peripheral blood mononuclear cells (PBMCs) infected in vitro and dampens viral reactivation in CD4+ cells from PLWH. Our study identifies hopeaphenol as a novel inhibitor that targets a subset of PKC-mediated T-cell activation pathways in addition to CDK9 to block HIV expression. Hopeaphenol-based therapies could complement current antiretroviral therapy otherwise not targeting cell-associated HIV RNA and residual antigen production in PLWH.


Asunto(s)
Infecciones por VIH , Estilbenos , Humanos , FN-kappa B/genética , FN-kappa B/metabolismo , Proteína Quinasa C/genética , Quinasa 9 Dependiente de la Ciclina/metabolismo , Leucocitos Mononucleares/metabolismo , Replicación Viral , Latencia del Virus , Estilbenos/farmacología , Infecciones por VIH/metabolismo , ARN
9.
J Virol ; 96(13): e0057722, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35730977

RESUMEN

Despite effective antiretroviral therapy, HIV-1 persistence in latent reservoirs remains a major obstacle to a cure. We postulate that HIV-1 silencing factors suppress HIV-1 reactivation and that inhibition of these factors will increase HIV-1 reactivation. To identify HIV-1 silencing factors, we conducted a genome-wide CRISPR inhibition (CRISPRi) screen using four CRISPRi-ready, HIV-1-d6-GFP-infected Jurkat T cell clones with distinct integration sites. We sorted cells with increased green fluorescent protein (GFP) expression and captured single guide RNAs (sgRNAs) via targeted deep sequencing. We identified 18 HIV-1 silencing factors that were significantly enriched in HIV-1-d6-GFPhigh cells. Among them, SLTM (scaffold attachment factor B-like transcription modulator) is an epigenetic and transcriptional modulator having both DNA and RNA binding capacities not previously known to affect HIV-1 transcription. Knocking down SLTM by CRISPRi significantly increased HIV-1-d6-GFP expression (by 1.9- to 4.2-fold) in three HIV-1-d6-GFP-Jurkat T cell clones. Furthermore, SLTM knockdown increased the chromatin accessibility of HIV-1 and the gene in which HIV-1 is integrated but not the housekeeping gene POLR2A. To test whether SLTM inhibition can reactivate HIV-1 and further induce cell death of HIV-1-infected cells ex vivo, we established a small interfering RNA (siRNA) knockdown method that reduced SLTM expression in CD4+ T cells from 10 antiretroviral therapy (ART)-treated, virally suppressed, HIV-1-infected individuals ex vivo. Using limiting dilution culture, we found that SLTM knockdown significantly reduced the frequency of HIV-1-infected cells harboring inducible HIV-1 by 62.2% (0.56/106 versus 1.48/106 CD4+ T cells [P = 0.029]). Overall, our study indicates that SLTM inhibition reactivates HIV-1 in vitro and induces cell death of HIV-1-infected cells ex vivo. Our study identified SLTM as a novel therapeutic target. IMPORTANCE HIV-1-infected cells, which can survive drug treatment and immune cell killing, prevent an HIV-1 cure. Immune recognition of infected cells requires HIV-1 protein expression; however, HIV-1 protein expression is limited in infected cells after long-term therapy. The ways in which the HIV-1 provirus is blocked from producing protein are unknown. We identified a new host protein that regulates HIV-1 gene expression. We also provided a new method of studying HIV-1-host factor interactions in cells from infected individuals. These improvements may enable future strategies to reactivate HIV-1 in infected individuals so that infected cells can be killed by immune cells, drug treatment, or the virus itself.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Activación Viral , Terapia Antirretroviral Altamente Activa , Linfocitos T CD4-Positivos , Cromatina/genética , Cromatina/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Técnicas de Silenciamiento del Gen , Infecciones por VIH/fisiopatología , Seropositividad para VIH/genética , VIH-1/fisiología , Humanos , Células Jurkat , Proteínas de Unión a la Región de Fijación a la Matriz/antagonistas & inhibidores , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Activación Viral/genética
10.
J Nat Prod ; 86(3): 557-565, 2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36799121

RESUMEN

The known Eremophila microtheca-derived diterpenoid 3,7,8-trihydroxyserrulat-14-en-19-oic acid (1) was targeted for large-scale purification, as this bioactive plant compound has proven to be an attractive scaffold for semisynthetic studies and subsequent library generation. Compound 1 was converted to a selectively protected trimethyl derivative, 3-hydroxy-7,8-dimethoxyserrulat-14-en-19-oic acid methyl ester (2), using simple and rapid methylation conditions. The resulting scaffold 2 was reacted with a diverse series of commercially available isocyanates to generate an 11-membered carbamate-based library. The chemical structures of the 11 new semisynthetic analogues were fully characterized by spectroscopic and spectrometric analysis. All natural products and semisynthetic compounds were evaluated for their anthelmintic, antimalarial, and anti-HIV activities. Compound 3 was shown to elicit the greatest antiplasmodial activity of all compounds tested, with IC50 values of 4.6 and 11.6 µM against Plasmodium falciparum 3D7 and Dd2, respectively. Compound 11 showed the greatest inhibition of development to fourth-stage Haemonchus contortus larvae (L4) and induction of a skinny (Ski) phenotype (67.5% of nematodes) at 50 µM. Compound 7, which inhibited 59.0% of HIV production at 100 µg/mL, was the carbamate analogue that displayed the best antiviral activity.


Asunto(s)
Antiinfecciosos , Antimaláricos , Productos Biológicos , Carbamatos , Extractos Vegetales/química , Antimaláricos/farmacología , Antimaláricos/química , Productos Biológicos/química , Plasmodium falciparum
11.
J Nat Prod ; 86(3): 582-588, 2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36657039

RESUMEN

Thorectidiols isolated from the marine sponge Dactylospongia elegans (family Thorectidae, order Dictyoceratida) collected in Papua New Guinea are a family of symmetrical and unsymmetrical dimeric biphenyl meroterpenoid stereoisomers presumed to be products of oxidative phenol coupling of a co-occurring racemic monomer, thorectidol (3). One member of the family, thorectidiol A (1), has been isolated in its natural form, and its structure has been elucidated by analysis of NMR, MS, and ECD data. Acetylation of the sponge extract facilitated isolation of additional thorectidiol diacetate stereoisomers and the isolation of the racemic monomer thorectidol acetate (6). Racemic thorectidiol A (1) showed selective inhibition of the SARS-CoV-2 spike receptor binding domain (RBD) interaction with the host ACE2 receptor with an IC50 = 1.0 ± 0.7 µM.


Asunto(s)
COVID-19 , Poríferos , Animales , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/metabolismo , Unión Proteica , Poríferos/metabolismo
12.
Proc Natl Acad Sci U S A ; 117(31): 18692-18700, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32690683

RESUMEN

A scalable approach for quantifying intact HIV-1 proviruses is critical for basic research and clinical trials directed at HIV-1 cure. The intact proviral DNA assay (IPDA) is a novel approach to characterizing the HIV-1 reservoir, focusing on the genetic integrity of individual proviruses independent of transcriptional status. It uses multiplex digital droplet PCR to distinguish and separately quantify intact proviruses, defined by a lack of overt fatal defects such as large deletions and APOBEC3G-mediated hypermutation, from the majority of proviruses that have such defects. This distinction is important because only intact proviruses cause viral rebound on ART interruption. To evaluate IPDA performance and provide benchmark data to support its implementation, we analyzed peripheral blood samples from 400 HIV-1+ adults on ART from several diverse cohorts, representing a robust sample of treated HIV-1 infection in the United States. We provide direct quantitative evidence that defective proviruses greatly outnumber intact proviruses (by >12.5 fold). However, intact proviruses are present at substantially higher frequencies (median, 54/106 CD4+ T cells) than proviruses detected by the quantitative viral outgrowth assay, which requires induction and in vitro growth (∼1/106 CD4+ T cells). IPDA amplicon signal issues resulting from sequence polymorphisms were observed in only 6.3% of individuals and were readily apparent and easily distinguished from low proviral frequency, an advantage of the IPDA over standard PCR assays which generate false-negative results in such situations. The large IPDA dataset provided here gives the clearest quantitative picture to date of HIV-1 proviral persistence on ART.


Asunto(s)
ADN Viral/sangre , Infecciones por VIH , Provirus/genética , Latencia del Virus/genética , Adulto , Femenino , Infecciones por VIH/sangre , Infecciones por VIH/epidemiología , Infecciones por VIH/virología , Humanos , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa/métodos
13.
Proc Natl Acad Sci U S A ; 117(50): 32066-32077, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33239444

RESUMEN

In untreated HIV-1 infection, rapid viral evolution allows escape from immune responses. Viral replication can be blocked by antiretroviral therapy. However, HIV-1 persists in a latent reservoir in resting CD4+ T cells, and rebound viremia occurs following treatment interruption. The reservoir, which is maintained in part by clonal expansion, can be measured using quantitative viral outgrowth assays (QVOAs) in which latency is reversed with T cell activation to allow viral outgrowth. Recent studies have shown that viruses detected in QVOAs prior to treatment interruption often differ from rebound viruses. We hypothesized that autologous neutralizing antibodies directed at the HIV-1 envelope (Env) protein might block outgrowth of some reservoir viruses. We modified the QVOA to reflect pressure from low concentrations of autologous antibodies and showed that outgrowth of a substantial but variable fraction of reservoir viruses is blocked by autologous contemporaneous immunoglobulin G (IgG). A reduction in outgrowth of >80% was seen in 6 of 15 individuals. This effect was due to direct neutralization. We established a phylogenetic relationship between rebound viruses and viruses growing out in vitro in the presence of autologous antibodies. Some large infected cell clones detected by QVOA carried neutralization-sensitive viruses, providing a cogent explanation for differences between rebound virus and viruses detected in standard QVOAs. Measurement of the frequency of reservoir viruses capable of outgrowth in the presence of autologous IgG might allow more accurate prediction of time to viral rebound. Ultimately, therapeutic immunization targeting the subset of variants resistant to autologous IgG might contribute to a functional cure.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/terapia , VIH-1/inmunología , Replicación Viral/inmunología , Adulto , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/uso terapéutico , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Neutralizantes/uso terapéutico , Transfusión de Sangre Autóloga/métodos , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Células Cultivadas , Terapia Combinada/métodos , Femenino , Anticuerpos Anti-VIH/sangre , Anticuerpos Anti-VIH/aislamiento & purificación , Anticuerpos Anti-VIH/uso terapéutico , Infecciones por VIH/sangre , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Inmunoglobulina G/aislamiento & purificación , Inmunoglobulina G/uso terapéutico , Leucaféresis , Masculino , Persona de Mediana Edad , Cultivo Primario de Células , Latencia del Virus/efectos de los fármacos , Latencia del Virus/inmunología , Replicación Viral/efectos de los fármacos , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología
14.
Eur J Immunol ; 51(8): 2051-2061, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34086344

RESUMEN

The potential of immunotherapy strategies utilizing broadly neutralizing antibodies (BNAbs), such as 3BNC117 and 10-1074, to limit viral replication while also facilitating clearance of HIV infected cells has heightened interest in identifying the predominant NK effector subset(s) capable of mediating antibody dependent cellular cytotoxicity (ADCC). Utilizing advanced polychromatic flow cytometry, we identified that CD57 positive NK cells from ART-suppressed in People Living With HIV (PLWH) expressed significantly higher levels of the CD16 FcγR receptor, 2B4 ADCC coreceptor, and HLA-DR activation marker while NKG2C positive NK cells expressed significantly higher levels of the CD2 ADCC coreceptor (p < 0.001, n = 32). Functionally, CD57 positive NK cells from ART-suppressed PLWH with either high or low NKG2C expansion exhibited significantly enhanced degranulation and IFN-γ production against heterologous gp120-coated ADCC targets coated with HIV reference plasma compared to CD57 negative NK cells (p = 0.0029, n = 11). CD57 positive NK cells from control donors lacking NKG2C expansion also exhibited significantly more degranulation and IFN-γ production at every timepoint tested against both heterologous ADCC targets (p = 0.019, n = 9) and HIV-1 infected autologous CD4+ primary T cells coated with BNAbs. Together, our data support CD57 positive and NKG2C positive NK cells as the predominant ADCC effector subsets capable of targeting HIV-infected CD4+ cells in the presence of 3BNC117 and 10-1074 immunotherapy.


Asunto(s)
Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Anticuerpos ampliamente neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/inmunología , Células Asesinas Naturales/inmunología , Subgrupos Linfocitarios/inmunología , Humanos
15.
Eur J Immunol ; 51(10): 2441-2451, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34287839

RESUMEN

Inhibition of the BCL6 BTB domain results in killing Diffuse Large B-cell Lymphoma (DLBL) cells, reducing the T-cell dependent germinal center (GC) reaction in mice, and reversing GC hyperplasia in nonhuman primates. The available BCL6 BTB-specific inhibitors are poorly water soluble, thus, limiting their absorption in vivo and our understanding of therapeutic strategy targeting GC. We synthesized a prodrug (AP-4-287) from a potent BCL6 BTB inhibitor (FX1) with improved aqueous solubility and pharmacokinetics (PK) in mice. We also evaluated its in vivo biological activity on humoral immune responses using the sheep red blood cells (SRBC)-vaccination mouse model. AP-4-287 had a significant higher aqueous solubility and was readily converted to FX1 in vivo after intraperitoneally (i.p.) administration, but a shorter half-life in vivo. Importantly, AP-4-287 treatment led to a reversible effect on (1) the reduction in the frequency of splenic Ki67+ CD4+ T cells, Tfh cells, and GC B cells; (2) lower GC formation following vaccination; and (3) a decrease in the titers of antigen-specific IgG and IgM antibodies. Our study advances the preclinical development of drug targeting BCL6 BTB domain for the treatment of diseases that are associated with abnormal BCL6 elevation.


Asunto(s)
Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-6/antagonistas & inhibidores , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T/metabolismo , Animales , Formación de Anticuerpos/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/inmunología , Técnicas de Química Sintética , Centro Germinal/efectos de los fármacos , Centro Germinal/inmunología , Centro Germinal/metabolismo , Inmunidad Humoral/efectos de los fármacos , Inmunomodulación/efectos de los fármacos , Indoles/administración & dosificación , Indoles/síntesis química , Indoles/farmacocinética , Ratones , Profármacos/administración & dosificación , Profármacos/síntesis química , Profármacos/farmacocinética , Proteínas Proto-Oncogénicas c-bcl-6/química , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Subgrupos de Linfocitos T/efectos de los fármacos , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Tiazolidinedionas/administración & dosificación , Tiazolidinedionas/síntesis química , Tiazolidinedionas/farmacocinética
16.
J Virol ; 95(6)2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33408173

RESUMEN

The human immunodeficiency virus (HIV) reservoir is responsible for persistent viral infection, and a small number of mosaic latent cellular reservoirs promote viral rebound upon antiretroviral therapy interruption, which is the major obstacle to a cure. However, markers that determine effective therapy and viral rebound posttreatment interruption remain unclear. In this study, we comprehensively and longitudinally tracked dynamic decay of cell-associated viral RNA/DNA in systemic and lymphoid tissues in simian immunodeficiency virus (SIV)-infected rhesus macaques on prolonged combined antiretroviral therapy (cART) and evaluated predictors of viral rebound after treatment cessation. The results showed that suppressive ART substantially reduced plasma SIV RNA, cell-associated unspliced, and multiply spliced SIV RNA to undetectable levels, yet viral DNA remained detectable in systemic tissues and lymphoid compartments throughout cART. Intriguingly, a rapid increase of integrated proviral DNA in peripheral mononuclear cells was detected once treatment was withdrawn, accompanied by the emergence of detectable plasma viral load. Notably, the increase of peripheral proviral DNA after treatment interruption correlated with the emergence and degree of viral rebound. These findings suggest that measuring total viral DNA in SIV infection may be a relatively simple surrogate marker of reservoir size and may predict viral rebound after treatment interruption and inform treatment strategies.IMPORTANCE Viral reservoirs are involved in persistent HIV infection, and a small number of mosaic latent cellular reservoirs promote viral rebound upon analytical treatment interruption, which is the major obstacle to a cure. However, early indicators that can predict resurgence of viremia after treatment interruption may aid treatment decisions in people living with HIV. Utilizing the rhesus macaque model, we demonstrated that increased proviral DNA in peripheral cells after treatment interruption, rather than levels of proviral DNA, was a useful marker to predict the emergence and degree of viral rebound after treatment interruption, providing a rapid approach for monitoring HIV rebound and informing decisions.


Asunto(s)
ADN Viral/metabolismo , Provirus/fisiología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/fisiología , Activación Viral , Animales , Antirretrovirales/uso terapéutico , Biomarcadores/metabolismo , Linfocitos T CD4-Positivos/virología , ADN Viral/efectos de los fármacos , Leucocitos Mononucleares/virología , Ganglios Linfáticos/virología , Macaca mulatta , Provirus/efectos de los fármacos , ARN Viral/sangre , ARN Viral/efectos de los fármacos , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Virus de la Inmunodeficiencia de los Simios/efectos de los fármacos , Carga Viral/efectos de los fármacos , Viremia/tratamiento farmacológico , Viremia/virología
17.
Anal Bioanal Chem ; 414(13): 3971-3985, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35419694

RESUMEN

SARS-CoV-2, the causative agent of COVID-19, continues to cause global morbidity and mortality despite the increasing availability of vaccines. Alongside vaccines, antivirals are urgently needed to combat SARS-CoV-2 infection and spread, particularly in resource-limited regions which lack access to existing therapeutics. Small molecules isolated from medicinal plants may be able to block cellular entry by SARS-CoV-2 by antagonising the interaction of the viral spike glycoprotein receptor-binding domain (RBD) with the host angiotensin-converting enzyme II (ACE2) receptor. As the medicinal plant Gunnera perpensa L. is being used by some South African traditional healers for SARS-CoV-2/COVID-19 management, we hypothesised that it may contain chemical constituents that inhibit the RBD-ACE2 interaction. Using a previously described AlphaScreen-based protein interaction assay, we show here that the DCM:MeOH extract of G. perpensa readily disrupts RBD (USA-WA1/2020)-ACE2 interactions with a half-maximal inhibition concentration (IC50) of < 0.001 µg/mL, compared to an IC50 of 0.025 µg/mL for the control neutralising antibody REGN10987. Employing hyphenated analytical techniques like UPLC-IMS-HRMS (method developed and validated as per the International Conference on Harmonization guidelines), we identified two ellagitannins, punicalin (2.12% w/w) and punicalagin (1.51% w/w), as plant constituents in the DCM:MeOH extract of G. perpensa which antagonised RBD-ACE2 binding with respective IC50s of 9 and 29 nM. This good potency makes both compounds promising leads for development of future entry-based SARS-CoV-2 antivirals. The results also highlight the advantages of combining reverse pharmacology (based on medicinal plant use) with hyphenated analytical techniques to expedite identification of urgently needed antivirals.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Plantas Medicinales , Enzima Convertidora de Angiotensina 2 , Antivirales/química , Antivirales/farmacología , Extractos Vegetales/farmacología , SARS-CoV-2 , Sudáfrica , Glicoproteína de la Espiga del Coronavirus/química
18.
J Nat Prod ; 85(5): 1274-1281, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35522580

RESUMEN

Five new minor sesterterpenoids, ansellones H (4), I (5), J (6), and K (7) and phorone C (8), have been isolated from a Phorbas sp. marine sponge collected in British Columbia. Their structures have been elucidated by detailed analysis of NMR and MS data. Ansellone J (6) and phorone C (8) are potent in vitro HIV-1 latency reversal agents that are more potent than the reference compound and control protein kinase C activator prostratin (3). The most potent Phorbas sesterterpenoid, ansellone J (6), was evaluated for HIV latency reversal in a primary cell context using CD4+ T cells obtained directly from four combination antiretroviral therapy-suppressed donors with HIV. To a first approximation, ansellone J (6) induced HIV latency reversal at levels similar to prostratin (3) ex vivo, but at a 10-fold lower concentration.


Asunto(s)
Infecciones por VIH , VIH-1 , Poríferos , Animales , Colombia Británica , Linfocitos T CD4-Positivos , Poríferos/química , Sesterterpenos/química , Latencia del Virus
19.
J Biol Chem ; 295(41): 14084-14099, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-32788215

RESUMEN

A sterilizing or functional cure for HIV is currently precluded by resting CD4+ T cells that harbor latent but replication-competent provirus. The "shock-and-kill" pharmacological ap-proach aims to reactivate provirus expression in the presence of antiretroviral therapy and target virus-expressing cells for elimination. However, no latency reversal agent (LRA) to date effectively clears viral reservoirs in humans, suggesting a need for new LRAs and LRA combinations. Here, we screened 216 compounds from the pan-African Natural Product Library and identified knipholone anthrone (KA) and its basic building block anthralin (dithranol) as novel LRAs that reverse viral latency at low micromolar concentrations in multiple cell lines. Neither agent's activity depends on protein kinase C; nor do they inhibit class I/II histone deacetylases. However, they are differentially modulated by oxidative stress and metal ions and induce distinct patterns of global gene expression from established LRAs. When applied in combination, both KA and anthralin synergize with LRAs representing multiple functional classes. Finally, KA induces both HIV RNA and protein in primary cells from HIV-infected donors. Taken together, we describe two novel LRAs that enhance the activities of multiple "shock-and-kill" agents, which in turn may inform ongoing LRA combination therapy efforts.


Asunto(s)
Antracenos/farmacología , Antralina/farmacología , Infecciones por VIH/tratamiento farmacológico , VIH-1/fisiología , Latencia del Virus/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Infecciones por VIH/metabolismo , Infecciones por VIH/patología , Humanos , Células Jurkat
20.
Clin Infect Dis ; 72(3): 495-498, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33527127

RESUMEN

Accurate characterization of the human immunodeficiency virus (HIV) reservoir is imperative to develop an effective cure. HIV was measured in antiretroviral therapy-suppressed individuals using the intact proviral DNA assay (IPDA), along with assays for total or integrated HIV DNA, and inducible HIV RNA or p24. Intact provirus correlated with total and integrated HIV.


Asunto(s)
Infecciones por VIH , VIH-1 , Linfocitos T CD4-Positivos , ADN Viral/genética , Infecciones por VIH/tratamiento farmacológico , VIH-1/genética , Humanos , Provirus/genética , Latencia del Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA