Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(11): e2321595121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38437551

RESUMEN

Polynyas, areas of open water embedded within sea ice, are a key component of ocean-atmosphere interactions that act as hotspots of sea-ice production, bottom-water formation, and primary productivity. The specific drivers of polynya dynamics remain, however, elusive and coupled climate models struggle to replicate Antarctic polynya activity. Here, we leverage a 44-y time series of Antarctic sea ice to elucidate long-term trends. We identify Antarctic-wide linear increases and a hitherto undescribed cyclical pattern of polynya activity across the Ross Sea region that potentially arises from interactions between the Amundsen Sea Low and Southern Annular Mode. While their specific drivers remain unknown, identifying these emerging patterns augments our capacity to understand the processes that influence sea ice. As we enter a potentially new age of Antarctic sea ice, this advance in understanding will, in turn, lead to more accurate predictions of environmental change, and its implications for Antarctic ecosystems.

2.
Philos Trans A Math Phys Eng Sci ; 380(2235): 20210257, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36088932

RESUMEN

Sea ice is not horizontally homogeneous on large scales. Its morphology is inherently discrete and made of individual floes. In recent years, sea ice models have incorporated this horizontal heterogeneity. The modelling framework considers an evolution equation for the probability density function of the floe size distribution (FSD) with forcing terms that represent the effects of several physical processes. Despite the modelling effort, a key question remains: What is the FSD emerging from the collection of all forcing processes? Field observations have long suggested that the FSD follows a power law, but this result has not been reproduced by models or laboratory experiments. The theoretical framework for FSD dynamics in response to physical forcings is presented. Wave-induced breakup is further examined with an emphasis on how it affects the FSD. Recent modelling results suggesting the consistent emergence of a log-normal distribution as a result of that process are further discussed. Log-normality is also found in a dataset of floe sizes, which was originally analysed under the power law hypothesis. A simple stochastic process of FSD dynamics, based on random fragmentation theory, is further shown to predict log-normality. We therefore conjecture that, in some situations, the emergent FSD follows a log-normal distribution. This article is part of the theme issue 'Theory, modelling and observations of marginal ice zone dynamics: multidisciplinary perspectives and outlooks'.


Asunto(s)
Cubierta de Hielo
3.
J Acoust Soc Am ; 148(6): 3698, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33379912

RESUMEN

The problem of two-dimensional acoustic scattering of time-harmonic plane waves by a multi-ringed cylindrical resonator is considered. The resonator is made up of an arbitrary number of concentric sound-hard split rings with zero thickness. Each ring opening is oriented in any direction. The acoustics pressure field in each layered region enclosed between adjacent rings is described by an eigenfunction expansion in polar coordinates. An integral equation/Galerkin method is used to relate the unknown coefficients of the expansions between adjacent regions separated by a ring. The multiple scattering problem is then formulated as a reflection/transmission problem between the layers, which is solved using an efficient iterative scheme. An exploration of the parameter space is conducted to determine first, the conditions under which the lowest resonant frequency can be minimised, and second, how non-trivial resonances of the multi-ring resonators can be explained from those of simpler arrangements, such as a single-ring resonator. It is found here that increasing the number of rings while alternating the orientation lowers the first resonant frequency, and exhibits a dense and nearly regular resonant structure that is analogous to the rainbow trapping effect.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA