Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 173(4): 1031-1044.e13, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29727662

RESUMEN

Full understanding of eukaryotic transcriptomes and how they respond to different conditions requires deep knowledge of all sites of intron excision. Although RNA sequencing (RNA-seq) provides much of this information, the low abundance of many spliced transcripts (often due to their rapid cytoplasmic decay) limits the ability of RNA-seq alone to reveal the full repertoire of spliced species. Here, we present "spliceosome profiling," a strategy based on deep sequencing of RNAs co-purifying with late-stage spliceosomes. Spliceosome profiling allows for unambiguous mapping of intron ends to single-nucleotide resolution and branchpoint identification at unprecedented depths. Our data reveal hundreds of new introns in S. pombe and numerous others that were previously misannotated. By providing a means to directly interrogate sites of spliceosome assembly and catalysis genome-wide, spliceosome profiling promises to transform our understanding of RNA processing in the nucleus, much as ribosome profiling has transformed our understanding mRNA translation in the cytoplasm.


Asunto(s)
Schizosaccharomyces/genética , Empalmosomas/metabolismo , Transcriptoma , Algoritmos , Intrones , Empalme del ARN , ARN de Hongos/metabolismo , Ribonucleoproteínas/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Análisis de Secuencia de ARN , Sitio de Iniciación de la Transcripción
2.
Nat Methods ; 21(4): 723-734, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38504114

RESUMEN

The ENCODE Consortium's efforts to annotate noncoding cis-regulatory elements (CREs) have advanced our understanding of gene regulatory landscapes. Pooled, noncoding CRISPR screens offer a systematic approach to investigate cis-regulatory mechanisms. The ENCODE4 Functional Characterization Centers conducted 108 screens in human cell lines, comprising >540,000 perturbations across 24.85 megabases of the genome. Using 332 functionally confirmed CRE-gene links in K562 cells, we established guidelines for screening endogenous noncoding elements with CRISPR interference (CRISPRi), including accurate detection of CREs that exhibit variable, often low, transcriptional effects. Benchmarking five screen analysis tools, we find that CASA produces the most conservative CRE calls and is robust to artifacts of low-specificity single guide RNAs. We uncover a subtle DNA strand bias for CRISPRi in transcribed regions with implications for screen design and analysis. Together, we provide an accessible data resource, predesigned single guide RNAs for targeting 3,275,697 ENCODE SCREEN candidate CREs with CRISPRi and screening guidelines to accelerate functional characterization of the noncoding genome.


Asunto(s)
Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Humanos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Sistemas CRISPR-Cas/genética , Genoma , Células K562 , ARN Guía de Sistemas CRISPR-Cas
3.
Nature ; 583(7818): 693-698, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32728248

RESUMEN

The Encylopedia of DNA Elements (ENCODE) Project launched in 2003 with the long-term goal of developing a comprehensive map of functional elements in the human genome. These included genes, biochemical regions associated with gene regulation (for example, transcription factor binding sites, open chromatin, and histone marks) and transcript isoforms. The marks serve as sites for candidate cis-regulatory elements (cCREs) that may serve functional roles in regulating gene expression1. The project has been extended to model organisms, particularly the mouse. In the third phase of ENCODE, nearly a million and more than 300,000 cCRE annotations have been generated for human and mouse, respectively, and these have provided a valuable resource for the scientific community.


Asunto(s)
Bases de Datos Genéticas , Genoma/genética , Genómica , Anotación de Secuencia Molecular , Animales , Sitios de Unión , Cromatina/genética , Cromatina/metabolismo , Metilación de ADN , Bases de Datos Genéticas/normas , Bases de Datos Genéticas/tendencias , Regulación de la Expresión Génica/genética , Genoma Humano/genética , Genómica/normas , Genómica/tendencias , Histonas/metabolismo , Humanos , Ratones , Anotación de Secuencia Molecular/normas , Control de Calidad , Secuencias Reguladoras de Ácidos Nucleicos/genética , Factores de Transcripción/metabolismo
4.
Nature ; 583(7818): 699-710, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32728249

RESUMEN

The human and mouse genomes contain instructions that specify RNAs and proteins and govern the timing, magnitude, and cellular context of their production. To better delineate these elements, phase III of the Encyclopedia of DNA Elements (ENCODE) Project has expanded analysis of the cell and tissue repertoires of RNA transcription, chromatin structure and modification, DNA methylation, chromatin looping, and occupancy by transcription factors and RNA-binding proteins. Here we summarize these efforts, which have produced 5,992 new experimental datasets, including systematic determinations across mouse fetal development. All data are available through the ENCODE data portal (https://www.encodeproject.org), including phase II ENCODE1 and Roadmap Epigenomics2 data. We have developed a registry of 926,535 human and 339,815 mouse candidate cis-regulatory elements, covering 7.9 and 3.4% of their respective genomes, by integrating selected datatypes associated with gene regulation, and constructed a web-based server (SCREEN; http://screen.encodeproject.org) to provide flexible, user-defined access to this resource. Collectively, the ENCODE data and registry provide an expansive resource for the scientific community to build a better understanding of the organization and function of the human and mouse genomes.


Asunto(s)
ADN/genética , Bases de Datos Genéticas , Genoma/genética , Genómica , Anotación de Secuencia Molecular , Sistema de Registros , Secuencias Reguladoras de Ácidos Nucleicos/genética , Animales , Cromatina/genética , Cromatina/metabolismo , ADN/química , Huella de ADN , Metilación de ADN/genética , Momento de Replicación del ADN , Desoxirribonucleasa I/metabolismo , Genoma Humano , Histonas/metabolismo , Humanos , Ratones , Ratones Transgénicos , Proteínas de Unión al ARN/genética , Transcripción Genética/genética , Transposasas/metabolismo
5.
Genome Res ; 32(2): 389-402, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34949670

RESUMEN

Accurate transcription start site (TSS) annotations are essential for understanding transcriptional regulation and its role in human disease. Gene collections such as GENCODE contain annotations for tens of thousands of TSSs, but not all of these annotations are experimentally validated nor do they contain information on cell type-specific usage. Therefore, we sought to generate a collection of experimentally validated TSSs by integrating RNA Annotation and Mapping of Promoters for the Analysis of Gene Expression (RAMPAGE) data from 115 cell and tissue types, which resulted in a collection of approximately 50 thousand representative RAMPAGE peaks. These peaks are primarily proximal to GENCODE-annotated TSSs and are concordant with other transcription assays. Because RAMPAGE uses paired-end reads, we were then able to connect peaks to transcripts by analyzing the genomic positions of the 3' ends of read mates. Using this paired-end information, we classified the vast majority (37 thousand) of our RAMPAGE peaks as verified TSSs, updating TSS annotations for 20% of GENCODE genes. We also found that these updated TSS annotations are supported by epigenomic and other transcriptomic data sets. To show the utility of this RAMPAGE rPeak collection, we intersected it with the NHGRI/EBI genome-wide association study (GWAS) catalog and identified new candidate GWAS genes. Overall, our work shows the importance of integrating experimental data to further refine TSS annotations and provides a valuable resource for the biological community.


Asunto(s)
Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Regiones Promotoras Genéticas , Sitio de Iniciación de la Transcripción
6.
Nucleic Acids Res ; 51(D1): D1300-D1311, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36350676

RESUMEN

Large biobank-scale whole genome sequencing (WGS) studies are rapidly identifying a multitude of coding and non-coding variants. They provide an unprecedented resource for illuminating the genetic basis of human diseases. Variant functional annotations play a critical role in WGS analysis, result interpretation, and prioritization of disease- or trait-associated causal variants. Existing functional annotation databases have limited scope to perform online queries and functionally annotate the genotype data of large biobank-scale WGS studies. We develop the Functional Annotation of Variants Online Resources (FAVOR) to meet these pressing needs. FAVOR provides a comprehensive multi-faceted variant functional annotation online portal that summarizes and visualizes findings of all possible nine billion single nucleotide variants (SNVs) across the genome. It allows for rapid variant-, gene- and region-level queries of variant functional annotations. FAVOR integrates variant functional information from multiple sources to describe the functional characteristics of variants and facilitates prioritizing plausible causal variants influencing human phenotypes. Furthermore, we provide a scalable annotation tool, FAVORannotator, to functionally annotate large-scale WGS studies and efficiently store the genotype and their variant functional annotation data in a single file using the annotated Genomic Data Structure (aGDS) format, making downstream analysis more convenient. FAVOR and FAVORannotator are available at https://favor.genohub.org.


Asunto(s)
Genoma Humano , Programas Informáticos , Humanos , Anotación de Secuencia Molecular , Genómica , Genotipo , Variación Genética
7.
Hum Mol Genet ; 31(R1): R114-R122, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36083269

RESUMEN

Every cell in the human body inherits a copy of the same genetic information. The three billion base pairs of DNA in the human genome, and the roughly 50 000 coding and non-coding genes they contain, must thus encode all the complexity of human development and cell and tissue type diversity. Differences in gene regulation, or the modulation of gene expression, enable individual cells to interpret the genome differently to carry out their specific functions. Here we discuss recent and ongoing efforts to build gene regulatory maps, which aim to characterize the regulatory roles of all sequences in a genome. Many researchers and consortia have identified such regulatory elements using functional assays and evolutionary analyses; we discuss the results, strengths and shortcomings of their approaches. We also discuss new techniques the field can leverage and emerging challenges it will face while striving to build gene regulatory maps of ever-increasing resolution and comprehensiveness.


Asunto(s)
Regulación de la Expresión Génica , Secuencias Reguladoras de Ácidos Nucleicos , Humanos , Regulación de la Expresión Génica/genética , Genoma Humano/genética , Mapeo Cromosómico , ADN/genética
8.
J Virol ; 97(2): e0167222, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36651748

RESUMEN

Phenotypic screening has yielded small-molecule inhibitors of prion replication that are effective in vivo against certain prion strains but not others. Here, we sought to test the small molecule anle138b in multiple mouse models of prion disease. In mice inoculated with the RML strain of prions, anle138b doubled survival and durably suppressed astrogliosis measured by live-animal bioluminescence imaging. In knock-in mouse models of the D178N and E200K mutations that cause genetic prion disease, however, we were unable to identify a clear, quantifiable disease endpoint against which to measure therapeutic efficacy. Among untreated animals, the mutations did not impact overall survival, and bioluminescence remained low out to >20 months of age. Vacuolization and PrP deposition were observed in some brain regions in a subset of mutant animals but appeared to be unable to carry the weight of a primary endpoint in a therapeutic study. We conclude that not all animal models of prion disease are suited to well-powered therapeutic efficacy studies, and care should be taken in choosing the models that will support drug development programs. IMPORTANCE There is an urgent need to develop drugs for prion disease, a currently untreatable neurodegenerative disease. In this effort, there is a debate over which animal models can best support a drug development program. While the study of prion disease benefits from excellent animal models because prions naturally afflict many different mammals, different models have different capabilities and limitations. Here, we conducted a therapeutic efficacy study of the drug candidate anle138b in mouse models with two of the most common mutations that cause genetic prion disease. In a more typical model where prions are injected directly into the brain, we found anle138b to be effective. In the genetic models, however, the animals never reached a clear, measurable point of disease onset. We conclude that not all prion disease animal models are ideally suited to drug efficacy studies, and well-defined, quantitative disease metrics should be a priority.


Asunto(s)
Enfermedades por Prión , Pirazoles , Animales , Ratones , Modelos Animales de Enfermedad , Ratones Transgénicos , Enfermedades por Prión/tratamiento farmacológico , Enfermedades por Prión/genética , Priones/genética , Pirazoles/uso terapéutico
9.
Nucleic Acids Res ; 50(D1): D141-D149, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34755879

RESUMEN

The human genome contains ∼2000 transcriptional regulatory proteins, including ∼1600 DNA-binding transcription factors (TFs) recognizing characteristic sequence motifs to exert regulatory effects on gene expression. The binding specificities of these factors have been profiled both in vitro, using techniques such as HT-SELEX, and in vivo, using techniques including ChIP-seq. We previously developed Factorbook, a TF-centric database of annotations, motifs, and integrative analyses based on ChIP-seq data from Phase II of the ENCODE Project. Here we present an update to Factorbook which significantly expands the breadth of cell type and TF coverage. The update includes an expanded motif catalog derived from thousands of ENCODE Phase II and III ChIP-seq experiments and HT-SELEX experiments; this motif catalog is integrated with the ENCODE registry of candidate cis-regulatory elements to annotate a comprehensive collection of genome-wide candidate TF binding sites. The database also offers novel tools for applying the motif models within machine learning frameworks and using these models for integrative analysis, including annotation of variants and disease and trait heritability. Factorbook is publicly available at www.factorbook.org; we will continue to expand the resource as ENCODE Phase IV data are released.


Asunto(s)
Bases de Datos Genéticas , Motivos de Nucleótidos/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Factores de Transcripción/genética , Sitios de Unión/genética , Regulación de la Expresión Génica/genética , Humanos , Factores de Transcripción/clasificación
12.
Nucleic Acids Res ; 49(10): 5705-5725, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-33978759

RESUMEN

Gene expression is controlled by regulatory elements within accessible chromatin. Although most regulatory elements are cell type-specific, a subset is accessible in nearly all the 517 human and 94 mouse cell and tissue types assayed by the ENCODE consortium. We systematically analyzed 9000 human and 8000 mouse ubiquitously-accessible candidate cis-regulatory elements (cCREs) with promoter-like signatures (PLSs) from ENCODE, which we denote ubi-PLSs. These are more CpG-rich than non-ubi-PLSs and correspond to genes with ubiquitously high transcription, including a majority of cell-essential genes. ubi-PLSs are enriched with motifs of ubiquitously-expressed transcription factors and preferentially bound by transcriptional cofactors regulating ubiquitously-expressed genes. They are highly conserved between human and mouse at the synteny level but exhibit frequent turnover of motif sites; accordingly, ubi-PLSs show increased variation at their centers compared with flanking regions among the ∼186 thousand human genomes sequenced by the TOPMed project. Finally, ubi-PLSs are enriched in genes implicated in Mendelian diseases, especially diseases broadly impacting most cell types, such as deficiencies in mitochondrial functions. Thus, a set of roughly 9000 mammalian promoters are actively maintained in an accessible state across cell types by a distinct set of transcription factors and cofactors to ensure the transcriptional programs of cell-essential genes.


Asunto(s)
Cromatina/metabolismo , Epigénesis Genética , Regulación de la Expresión Génica/genética , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/metabolismo , Transcriptoma/genética , Secuencias de Aminoácidos , Animales , Composición de Base , Cromatina/genética , Metilación de ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Bases de Datos Genéticas , Epigenómica , Ontología de Genes , Genes Esenciales , Componentes Genómicos , Genoma Humano , Humanos , Ratones , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Especificidad de Órganos/genética , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , TATA Box , Factores de Transcripción/genética
13.
Nucleic Acids Res ; 48(19): 10615-10631, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-32776089

RESUMEN

Lowering of prion protein (PrP) expression in the brain is a genetically validated therapeutic hypothesis in prion disease. We recently showed that antisense oligonucleotide (ASO)-mediated PrP suppression extends survival and delays disease onset in intracerebrally prion-infected mice in both prophylactic and delayed dosing paradigms. Here, we examine the efficacy of this therapeutic approach across diverse paradigms, varying the dose and dosing regimen, prion strain, treatment timepoint, and examining symptomatic, survival, and biomarker readouts. We recapitulate our previous findings with additional PrP-targeting ASOs, and demonstrate therapeutic benefit against four additional prion strains. We demonstrate that <25% PrP suppression is sufficient to extend survival and delay symptoms in a prophylactic paradigm. Rise in both neuroinflammation and neuronal injury markers can be reversed by a single dose of PrP-lowering ASO administered after the detection of pathological change. Chronic ASO-mediated suppression of PrP beginning at any time up to early signs of neuropathology confers benefit similar to constitutive heterozygous PrP knockout. Remarkably, even after emergence of frank symptoms including weight loss, a single treatment prolongs survival by months in a subset of animals. These results support ASO-mediated PrP lowering, and PrP-lowering therapeutics in general, as a promising path forward against prion disease.


Asunto(s)
Oligonucleótidos Antisentido/uso terapéutico , Enfermedades por Prión/terapia , Proteínas Priónicas/genética , Tratamiento con ARN de Interferencia/métodos , Animales , Encéfalo/metabolismo , Encéfalo/patología , Línea Celular , Ratones , Ratones Endogámicos C57BL , Oligonucleótidos Antisentido/química , Proteínas Priónicas/metabolismo
14.
J Christ Nurs ; 39(2): 98-103, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35255028

RESUMEN

ABSTRACT: Nonsuicidal self-injury has existed since biblical times. It is increasing and gaining acceptance particularly among adolescents. Spiritual discontent or doubt is often a component. Therapeutic interventions include cognitive and behavior practices and developing strong, sustained relationships with patients to encourage healthy transformation.


Asunto(s)
Conducta Autodestructiva , Adolescente , Humanos , Conducta Autodestructiva/psicología
15.
Am J Occup Ther ; 75(1): 7501205100p1-7501205100p9, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33399058

RESUMEN

IMPORTANCE: Populations already experiencing chronic stress, such as families with children who are neurologically atypical, are at particular risk for developing stress-related disease. OBJECTIVE: To establish feasibility of collecting salivary samples from pediatric occupational therapy patients and their parents in a clinical setting and at home and to examine associations among parental attachment style, parent self-reported stress, and physiological stress (i.e., cortisol) in pediatric occupational therapy patients who were neurologically atypical and their parents (N = 10 dyads). DESIGN: Cross-sectional pilot study to test feasibility. SETTING: Sliding-scale university clinic. PARTICIPANTS: Participants were 10 children undergoing occupational therapy treatment and their parent. Families were approached and told the study was voluntary and would not affect their treatment. Families provided informed consent. OUTCOMES AND MEASURES: Parents completed measures to assess their own attachment style, general and parenting stress, and stress in their child. Children and parents provided saliva samples during an occupational therapy clinic visit and collected samples at home to measure cortisol level. RESULTS: Parent attachment avoidance was related to increased parent cortisol levels in the clinic and increased child cortisol levels at home. Parent and child cortisol levels had a strong, positive relationship in the clinic but not at home. We did not observe a difference between cortisol levels in children or parents in the clinic or at home. CONCLUSIONS AND RELEVANCE: We concluded that this protocol is feasible and provide suggestions for future research. WHAT THIS ARTICLE ADDS: Stress physiology in pediatric occupational therapy clients should be considered within the context of the family system. Family-based interventions may be particularly helpful for reducing client stress in this population.


Asunto(s)
Terapia Ocupacional , Niño , Estudios Transversales , Humanos , Responsabilidad Parental , Padres , Proyectos Piloto , Estrés Psicológico
16.
Clin Infect Dis ; 70(10): 2213-2215, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-31588493

RESUMEN

In this prospective study, we examined the pharmacokinetics of 1 and 2 mg/kg liposomal amphotericin B in 16 morbidly obese individuals (104-177 kg). Body size had no effect on clearance. We recommend a fixed dose in patients ≥100 kg (ie, 300 or 500 mg rather than the current dose of 3 and 5 mg/kg, respectively). Clinical Trials Registration NCT02320604.


Asunto(s)
Antifúngicos , Obesidad Mórbida , Anfotericina B , Antifúngicos/uso terapéutico , Humanos , Obesidad Mórbida/complicaciones , Obesidad Mórbida/tratamiento farmacológico , Estudios Prospectivos
17.
Nucleic Acids Res ; 46(21): 11184-11201, 2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30137428

RESUMEN

Enhancers are distal cis-regulatory elements that modulate gene expression. They are depleted of nucleosomes and enriched in specific histone modifications; thus, calling DNase-seq and histone mark ChIP-seq peaks can predict enhancers. We evaluated nine peak-calling algorithms for predicting enhancers validated by transgenic mouse assays. DNase and H3K27ac peaks were consistently more predictive than H3K4me1/2/3 and H3K9ac peaks. DFilter and Hotspot2 were the best DNase peak callers, while HOMER, MUSIC, MACS2, DFilter and F-seq were the best H3K27ac peak callers. We observed that the differential DNase or H3K27ac signals between two distant tissues increased the area under the precision-recall curve (PR-AUC) of DNase peaks by 17.5-166.7% and that of H3K27ac peaks by 7.1-22.2%. We further improved this differential signal method using multiple contrast tissues. Evaluated using a blind test, the differential H3K27ac signal method substantially improved PR-AUC from 0.48 to 0.75 for predicting heart enhancers. We further validated our approach using postnatal retina and cerebral cortex enhancers identified by massively parallel reporter assays, and observed improvements for both tissues. In summary, we compared nine peak callers and devised a superior method for predicting tissue-specific mouse developmental enhancers by reranking the called peaks.


Asunto(s)
Algoritmos , Cromatina/genética , Biología Computacional/métodos , Elementos de Facilitación Genéticos/genética , Código de Histonas/genética , Animales , Sitios de Unión , Cromatina/metabolismo , Histonas/metabolismo , Ratones Transgénicos , Especificidad de Órganos , Procesamiento Proteico-Postraduccional , Factores de Transcripción/metabolismo
18.
Proc Natl Acad Sci U S A ; 114(14): 3648-3653, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28320962

RESUMEN

Genetic lesions that activate KRAS account for ∼30% of the 1.6 million annual cases of lung cancer. Despite clinical need, KRAS is still undruggable using traditional small-molecule drugs/inhibitors. When oncogenic Kras is suppressed by RNA interference, tumors initially regress but eventually recur and proliferate despite suppression of Kras Here, we show that tumor cells can survive knockout of oncogenic Kras, indicating the existence of Kras-independent survival pathways. Thus, even if clinical KRAS inhibitors were available, resistance would remain an obstacle to treatment. Kras-independent cancer cells exhibit decreased colony formation in vitro but retain the ability to form tumors in mice. Comparing the transcriptomes of oncogenic Kras cells and Kras knockout cells, we identified 603 genes that were specifically up-regulated in Kras knockout cells, including the Fas gene, which encodes a cell surface death receptor involved in physiological regulation of apoptosis. Antibodies recognizing Fas receptor efficiently induced apoptosis of Kras knockout cells but not oncogenic Kras-expressing cells. Increased Fas expression in Kras knockout cells was attributed to decreased association of repressive epigenetic marks at the Fas promoter. Concordant with this observation, treating oncogenic Kras cells with histone deacetylase inhibitor and Fas-activating antibody efficiently induced apoptosis, thus bypassing the need to inhibit Kras. Our results suggest that activation of Fas could be exploited as an Achilles' heel in tumors initiated by oncogenic Kras.


Asunto(s)
Anticuerpos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Receptor fas/genética , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Epigénesis Genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Ratones , Mutación , Trasplante de Neoplasias , Regiones Promotoras Genéticas , Regulación hacia Arriba
19.
Clin Infect Dis ; 68(Suppl 4): S260-S274, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31222253

RESUMEN

Since its introduction in the 1990s, liposomal amphotericin B (LAmB) continues to be an important agent for the treatment of invasive fungal diseases caused by a wide variety of yeasts and molds. This liposomal formulation was developed to improve the tolerability of intravenous amphotericin B, while optimizing its clinical efficacy. Since then, numerous clinical studies have been conducted, collecting a comprehensive body of evidence on its efficacy, safety, and tolerability in the preclinical and clinical setting. Nevertheless, insights into the pharmacokinetics and pharmacodynamics of LAmB continue to evolve and can be utilized to develop strategies that optimize efficacy while maintaining the compound's safety. In this article, we review the clinical pharmacokinetics, pharmacodynamics, safety, and efficacy of LAmB in a wide variety of patient populations and in different indications, and provide an assessment of areas with a need for further clinical research.


Asunto(s)
Anfotericina B/farmacocinética , Antifúngicos/farmacocinética , Hongos/efectos de los fármacos , Infecciones Fúngicas Invasoras/tratamiento farmacológico , Animales , Humanos , Infecciones Fúngicas Invasoras/microbiología , Resultado del Tratamiento
20.
Clin Infect Dis ; 68(Suppl 4): S244-S259, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31222254

RESUMEN

The improved safety profile and antifungal efficacy of liposomal amphotericin B (LAmB) compared to conventional amphotericin B deoxycholate (DAmB) is due to several factors including, its chemical composition, rigorous manufacturing standards, and ability to target and transit through the fungal cell wall. Numerous preclinical studies have shown that LAmB administered intravenously distributes to tissues frequently infected by fungi at levels above the minimum inhibitory concentration (MIC) for many fungi. These concentrations can be maintained from one day to a few weeks, depending upon the tissue. Tissue accumulation is dose-dependent with drug clearance occurring most rapidly from the brain and slowest from the liver and spleen. LAmB localizes in lung epithelial lining fluid, within liver and splenic macrophages and in kidney distal tubules. LAmB has been used successfully in therapeutic and prophylactic animal models to treat many different fungal pathogens, significantly increasing survival and reducing tissue fungal burden.


Asunto(s)
Anfotericina B/farmacocinética , Antifúngicos/farmacocinética , Hongos/efectos de los fármacos , Infecciones Fúngicas Invasoras/tratamiento farmacológico , Animales , Relación Dosis-Respuesta a Droga , Humanos , Infecciones Fúngicas Invasoras/microbiología , Riñón/microbiología , Hígado/microbiología , Pruebas de Sensibilidad Microbiana , Bazo/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA