Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36772726

RESUMEN

Recently, a circular symmetrical nonlinear stationary 2D differential model for biomedical micropumps, where the amplitude of the electrostatic field is locally proportional to the curvature of the membrane, was studied in detail. Starting from this, in this work, we first introduce a positive and limited function to model the dielectric properties of the material constituting the membrane according to experimental evidence which highlights that electrostatic capacitance variation occurs when the membrane deforms. Therefore, we present and discuss algebraic conditions of existence, uniqueness, and stability, even with the fringing field formulated according to the Pelesko-Driskoll theory, which is known to take these effects into account with terms characterized by reduced computational loads. These conditions, using "gold standard" numerical approaches, allow the optimal numerical recovery of the membrane profile to be achieved under different load conditions and also provide an important criterion for choosing the intended use of the device starting from the choice of the material constituting the membrane and vice versa. Finally, important insights are discussed regarding the pull-in voltage and electrostatic pressure.


Asunto(s)
Dinámicas no Lineales , Electricidad Estática , Capacidad Eléctrica
2.
Neurocomputing (Amst) ; 481: 202-215, 2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35079203

RESUMEN

The Covid-19 pandemic is the defining global health crisis of our time. Chest X-Rays (CXR) have been an important imaging modality for assisting in the diagnosis and management of hospitalised Covid-19 patients. However, their interpretation is time intensive for radiologists. Accurate computer aided systems can facilitate early diagnosis of Covid-19 and effective triaging. In this paper, we propose a fuzzy logic based deep learning (DL) approach to differentiate between CXR images of patients with Covid-19 pneumonia and with interstitial pneumonias not related to Covid-19. The developed model here, referred to as CovNNet, is used to extract some relevant features from CXR images, combined with fuzzy images generated by a fuzzy edge detection algorithm. Experimental results show that using a combination of CXR and fuzzy features, within a deep learning approach by developing a deep network inputed to a Multilayer Perceptron (MLP), results in a higher classification performance (accuracy rate up to 81%), compared to benchmark deep learning approaches. The approach has been validated through additional datasets which are continously generated due to the spread of the virus and would help triage patients in acute settings. A permutation analysis is carried out, and a simple occlusion methodology for explaining decisions is also proposed. The proposed pipeline can be easily embedded into present clinical decision support systems.

3.
Entropy (Basel) ; 24(1)2022 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-35052128

RESUMEN

The differential diagnosis of epileptic seizures (ES) and psychogenic non-epileptic seizures (PNES) may be difficult, due to the lack of distinctive clinical features. The interictal electroencephalographic (EEG) signal may also be normal in patients with ES. Innovative diagnostic tools that exploit non-linear EEG analysis and deep learning (DL) could provide important support to physicians for clinical diagnosis. In this work, 18 patients with new-onset ES (12 males, 6 females) and 18 patients with video-recorded PNES (2 males, 16 females) with normal interictal EEG at visual inspection were enrolled. None of them was taking psychotropic drugs. A convolutional neural network (CNN) scheme using DL classification was designed to classify the two categories of subjects (ES vs. PNES). The proposed architecture performs an EEG time-frequency transformation and a classification step with a CNN. The CNN was able to classify the EEG recordings of subjects with ES vs. subjects with PNES with 94.4% accuracy. CNN provided high performance in the assigned binary classification when compared to standard learning algorithms (multi-layer perceptron, support vector machine, linear discriminant analysis and quadratic discriminant analysis). In order to interpret how the CNN achieved this performance, information theoretical analysis was carried out. Specifically, the permutation entropy (PE) of the feature maps was evaluated and compared in the two classes. The achieved results, although preliminary, encourage the use of these innovative techniques to support neurologists in early diagnoses.

4.
Sensors (Basel) ; 21(15)2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34372474

RESUMEN

In this study, an accurate analytic semi-linear elliptic differential model for a circular membrane MEMS device, which considers the effect of the fringing field on the membrane curvature recovering, is presented. A novel algebraic condition, related to the membrane electromechanical properties, able to govern the uniqueness of the solution, is also demonstrated. Numerical results for the membrane profile, obtained by using the Shooting techniques, the Keller-Box scheme, and the III/IV Stage Lobatto IIIa formulas, have been carried out, and their performances have been compared. The convergence conditions, and the possible presence of ghost solutions, have been evaluated and discussed. Finally, a practical criterion for choosing the membrane material as a function of the MEMS specific application is presented.


Asunto(s)
Sistemas Microelectromecánicos , Modelos Lineales
5.
Sensors (Basel) ; 21(2)2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33477526

RESUMEN

Transcranial magnetic stimulation (TMS) excites neurons in the cortex, and neural activity can be simultaneously recorded using electroencephalography (EEG). However, TMS-evoked EEG potentials (TEPs) do not only reflect transcranial neural stimulation as they can be contaminated by artifacts. Over the last two decades, significant developments in EEG amplifiers, TMS-compatible technology, customized hardware and open source software have enabled researchers to develop approaches which can substantially reduce TMS-induced artifacts. In TMS-EEG experiments, various physiological and external occurrences have been identified and attempts have been made to minimize or remove them using online techniques. Despite these advances, technological issues and methodological constraints prevent straightforward recordings of early TEPs components. To the best of our knowledge, there is no review on both TMS-EEG artifacts and EEG technologies in the literature to-date. Our survey aims to provide an overview of research studies in this field over the last 40 years. We review TMS-EEG artifacts, their sources and their waveforms and present the state-of-the-art in EEG technologies and front-end characteristics. We also propose a synchronization toolbox for TMS-EEG laboratories. We then review subject preparation frameworks and online artifacts reduction maneuvers for improving data acquisition and conclude by outlining open challenges and future research directions in the field.


Asunto(s)
Artefactos , Estimulación Magnética Transcraneal , Electroencefalografía , Potenciales Evocados , Tecnología
6.
Sensors (Basel) ; 22(1)2021 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-35009675

RESUMEN

Until now, clinicians are not able to evaluate the Psychogenic Non-Epileptic Seizures (PNES) from the rest-electroencephalography (EEG) readout. No EEG marker can help differentiate PNES cases from healthy subjects. In this paper, we have investigated the power spectrum density (PSD), in resting-state EEGs, to evaluate the abnormalities in PNES affected brains. Additionally, we have used functional connectivity tools, such as phase lag index (PLI), and graph-derived metrics to better observe the integration of distributed information of regular and synchronized multi-scale communication within and across inter-regional brain areas. We proved the utility of our method after enrolling a cohort study of 20 age- and gender-matched PNES and 19 healthy control (HC) subjects. In this work, three classification models, namely support vector machine (SVM), linear discriminant analysis (LDA), and Multilayer perceptron (MLP), have been employed to model the relationship between the functional connectivity features (rest-HC versus rest-PNES). The best performance for the discrimination of participants was obtained using the MLP classifier, reporting a precision of 85.73%, a recall of 86.57%, an F1-score of 78.98%, and, finally, an accuracy of 91.02%. In conclusion, our results hypothesized two main aspects. The first is an intrinsic organization of functional brain networks that reflects a dysfunctional level of integration across brain regions, which can provide new insights into the pathophysiological mechanisms of PNES. The second is that functional connectivity features and MLP could be a promising method to classify rest-EEG data of PNES form healthy controls subjects.


Asunto(s)
Electroencefalografía , Convulsiones , Estudios de Cohortes , Humanos , Aprendizaje Automático , Descanso
7.
Sensors (Basel) ; 18(12)2018 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-30477168

RESUMEN

Stroke is a critical event that causes the disruption of neural connections. There is increasing evidence that the brain tries to reorganize itself and to replace the damaged circuits, by establishing compensatory pathways. Intra- and extra-cellular currents are involved in the communication between neurons and the macroscopic effects of such currents can be detected at the scalp through electroencephalographic (EEG) sensors. EEG can be used to study the lesions in the brain indirectly, by studying their effects on the brain electrical activity. The primary goal of the present work was to investigate possible asymmetries in the activity of the two hemispheres, in the case one of them is affected by a lesion due to stroke. In particular, the compressibility of High-Density-EEG (HD-EEG) recorded at the two hemispheres was investigated since the presence of the lesion is expected to impact on the regularity of EEG signals. The secondary objective was to evaluate if standard low density EEG is able to provide such information. Eighteen patients with unilateral stroke were recruited and underwent HD-EEG recording. Each EEG signal was compressively sensed, using Block Sparse Bayesian Learning, at increasing compression rate. The two hemispheres showed significant differences in the compressibility of EEG. Signals acquired at the electrode locations of the affected hemisphere showed a better reconstruction quality, quantified by the Structural SIMilarity index (SSIM), than the EEG signals recorded at the healthy hemisphere (p < 0.05), for each compression rate value. The presence of the lesion seems to induce an increased regularity in the electrical activity of the brain, thus an increased compressibility.


Asunto(s)
Electroencefalografía/métodos , Accidente Cerebrovascular/diagnóstico por imagen , Teorema de Bayes , Femenino , Humanos , Masculino , Persona de Mediana Edad
8.
Entropy (Basel) ; 20(2)2018 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-33265170

RESUMEN

The use of a deep neural network scheme is proposed to help clinicians solve a difficult diagnosis problem in neurology. The proposed multilayer architecture includes a feature engineering step (from time-frequency transformation), a double compressing stage trained by unsupervised learning, and a classification stage trained by supervised learning. After fine-tuning, the deep network is able to discriminate well the class of patients from controls with around 90% sensitivity and specificity. This deep model gives better classification performance than some other standard discriminative learning algorithms. As in clinical problems there is a need for explaining decisions, an effort has been carried out to qualitatively justify the classification results. The main novelty of this paper is indeed to give an entropic interpretation of how the deep scheme works and reach the final decision.

9.
Int J Neural Syst ; 34(2): 2350068, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38073546

RESUMEN

In this study, a few-shot transfer learning approach was introduced to decode movement intention from electroencephalographic (EEG) signals, allowing to recognize new tasks with minimal adaptation. To this end, a dataset of EEG signals recorded during the preparation of complex sub-movements was created from a publicly available data collection. The dataset was divided into two parts: the source domain dataset (including 5 classes) and the support (target domain) dataset, (including 2 classes) with no overlap between the two datasets in terms of classes. The proposed methodology consists in projecting EEG signals into the space-frequency-time domain, in processing such projections (rearranged in channels × frequency frames) by means of a custom EEG-based deep neural network (denoted as EEGframeNET5), and then adapting the system to recognize new tasks through a few-shot transfer learning approach. The proposed method achieved an average accuracy of 72.45 ± 4.19% in the 5-way classification of samples from the source domain dataset, outperforming comparable studies in the literature. In the second phase of the study, a few-shot transfer learning approach was proposed to adapt the neural system and make it able to recognize new tasks in the support dataset. The results demonstrated the system's ability to adapt and recognize new tasks with an average accuracy of 80 ± 0.12% in discriminating hand opening/closing preparation and outperforming reported results in the literature. This study suggests the effectiveness of EEG in capturing information related to the motor preparation of complex movements, potentially paving the way for BCI systems based on motion planning decoding. The proposed methodology could be straightforwardly extended to advanced EEG signal processing in other scenarios, such as motor imagery or neural disorder classification.


Asunto(s)
Interfaces Cerebro-Computador , Intención , Electroencefalografía/métodos , Redes Neurales de la Computación , Aprendizaje Automático , Imaginación , Algoritmos
10.
Adv Clin Exp Med ; 33(3): 309-315, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38530317

RESUMEN

Prevention and diagnosis of frailty syndrome (FS) in patients with heart failure (HF) require innovative systems to help medical personnel tailor and optimize their treatment and care. Traditional methods of diagnosing FS in patients could be more satisfactory. Healthcare personnel in clinical settings use a combination of tests and self-reporting to diagnose patients and those at risk of frailty, which is time-consuming and costly. Modern medicine uses artificial intelligence (AI) to study the physical and psychosocial domains of frailty in cardiac patients with HF. This paper aims to present the potential of using the AI approach, emphasizing machine learning (ML) in predicting frailty in patients with HF. Our team reviewed the literature on ML applications for FS and reviewed frailty measurements applied to modern clinical practice. Our approach analysis resulted in recommendations of ML algorithms for predicting frailty in patients. We also present the exemplary application of ML for FS in patients with HF based on the Tilburg Frailty Indicator (TFI) questionnaire, taking into account psychosocial variables.


Asunto(s)
Fragilidad , Insuficiencia Cardíaca , Humanos , Anciano , Fragilidad/diagnóstico , Fragilidad/psicología , Anciano Frágil/psicología , Inteligencia Artificial , Aprendizaje Automático
11.
Clin EEG Neurosci ; 54(1): 51-60, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34889152

RESUMEN

An explainable Artificial Intelligence (xAI) approach is proposed to longitudinally monitor subjects affected by Mild Cognitive Impairment (MCI) by using high-density electroencephalography (HD-EEG). To this end, a group of MCI patients was enrolled at IRCCS Centro Neurolesi Bonino Pulejo of Messina (Italy) within a follow-up protocol that included two evaluations steps: T0 (first evaluation) and T1 (three months later). At T1, four MCI patients converted to Alzheimer's Disease (AD) and were included in the analysis as the goal of this work was to use xAI to detect individual changes in EEGs possibly related to the degeneration from MCI to AD. The proposed methodology consists in mapping segments of HD-EEG into channel-frequency maps by means of the power spectral density. Such maps are used as input to a Convolutional Neural Network (CNN), trained to label the maps as "T0" (MCI state) or "T1" (AD state). Experimental results reported high intra-subject classification performance (accuracy rate up to 98.97% (95% confidence interval: 98.68-99.26)). Subsequently, the explainability of the proposed CNN is explored via a Grad-CAM approach. The procedure detected which EEG-channels (i.e., head region) and range of frequencies (i.e., sub-bands) were more active in the progression to AD. The xAI analysis showed that the main information is included in the delta sub-band and that, limited to the analyzed dataset, the highest relevant areas are: the left-temporal and central-frontal lobe for Sb01, the parietal lobe for Sb02, the left-frontal lobe for Sb03 and the left-frontotemporal region for Sb04.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico , Electroencefalografía/métodos , Inteligencia Artificial , Disfunción Cognitiva/diagnóstico , Redes Neurales de la Computación
12.
IEEE J Biomed Health Inform ; 27(5): 2365-2376, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37022818

RESUMEN

The present paper introduces a novel method, named AutoEncoder-Filter Bank Common Spatial Patterns (AE-FBCSP), to decode imagined movements from electroencephalography (EEG). AE-FBCSP is an extension of the well-established FBCSP and is based on a global (cross-subject) and subsequent transfer learning subject-specific (intra-subject) approach. A multi-way extension of AE-FBCSP is also introduced in this paper. Features are extracted from high-density EEG (64 electrodes), by means of FBCSP, and used to train a custom AE, in an unsupervised way, to project the features into a compressed latent space. Latent features are used to train a supervised classifier (feed forward neural network) to decode the imagined movement. The proposed method was tested using a public dataset of EEGs collected from 109 subjects. The dataset consists of right-hand, left-hand, both hands, both feet motor imagery and resting EEGs. AE-FBCSP was extensively tested in the 3-way classification (right hand vs left hand vs resting) and also in the 2-way, 4-way and 5-way ones, both in cross- and intra-subject analysis. AE-FBCSP outperformed standard FBCSP in a statistically significant way (p > 0.05) and achieved a subject-specific average accuracy of 89.09% in the 3-way classification. The proposed methodology performed subject-specific classification better than other comparable methods in the literature, applied to the same dataset, also in the 2-way, 4-way and 5-way tasks. One of the most interesting outcomes is that AE-FBCSP remarkably increased the number of subjects that responded with a very high accuracy, which is a fundamental requirement for BCI systems to be applied in practice.


Asunto(s)
Algoritmos , Interfaces Cerebro-Computador , Humanos , Procesamiento de Señales Asistido por Computador , Redes Neurales de la Computación , Electroencefalografía/métodos , Imaginación
13.
Int J Neural Syst ; 32(12): 2250054, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36240199

RESUMEN

This paper proposes a generative model and transfer learning powered system for classification of Scanning Electron Microscope (SEM) images of defective nanofibers (D-NF) and nondefective nanofibers (ND-NF) produced by electrospinning (ES) process. Specifically, a conditional-Generative Adversarial Network (c-GAN) is developed to generate synthetic D-NF/ND-NF SEM images. A transfer learning-oriented strategy is also proposed. First, a Convolutional Neural Network (CNN) is pre-trained on real images. The transfer-learned CNN is trained on synthetic SEM images and validated on real ones, reporting accuracy rate up to 95.31%. The achieved encouraging results endorse the use of the proposed generative model in industrial applications as it could reduce the number of needed laboratory ES experiments that are costly and time consuming.


Asunto(s)
Nanofibras , Redes Neurales de la Computación , Aprendizaje Automático , Procesamiento de Imagen Asistido por Computador/métodos
14.
Artículo en Inglés | MEDLINE | ID: mdl-36497808

RESUMEN

Identifying subjects with epileptic seizures or psychogenic non-epileptic seizures from healthy subjects via interictal EEG analysis can be a very challenging issue. Indeed, at visual inspection, EEG can be normal in both cases. This paper proposes an automatic diagnosis approach based on deep learning to differentiate three classes: subjects with epileptic seizures (ES), subjects with non-epileptic psychogenic seizures (PNES) and control subjects (CS), analyzed by non-invasive low-density interictal scalp EEG recordings. The EEGs of 42 patients with new-onset ES, 42 patients with PNES video recorded and 19 patients with CS all with normal interictal EEG on visual inspection, were analyzed in the study; none of them was taking psychotropic drugs before registration. The processing pipeline applies empirical mode decomposition (EMD) to 5s EEG segments of 19 channels in order to extract enhanced features learned automatically from the customized convolutional neural network (CNN). The resulting CNN has been shown to perform well during classification, with an accuracy of 85.7%; these results encourage the use of deep processing systems to assist clinicians in difficult clinical settings.


Asunto(s)
Epilepsia , Convulsiones , Humanos , Electroencefalografía/métodos , Redes Neurales de la Computación , Descanso
15.
Clin Neurol Neurosurg ; 201: 106446, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33383465

RESUMEN

A new EEG-based methodology is presented for differential diagnosis of the Alzheimer's disease (AD), Mild Cognitive Impairment (MCI), and healthy subjects employing the discrete wavelet transform (DWT), dispersion entropy index (DEI), a recently-proposed nonlinear measurement, and a fuzzy logic-based classification algorithm. The effectiveness and usefulness of the proposed methodology are evaluated by employing a database of measured EEG data acquired from 135 subjects, 45 MCI, 45 AD and 45 healthy subjects. The proposed methodology differentiates MCI and AD patients from HC subjects with an accuracy of 82.6-86.9%, sensitivity of 91 %, and specificity of 87 %.


Asunto(s)
Algoritmos , Enfermedad de Alzheimer/diagnóstico , Disfunción Cognitiva/diagnóstico , Demencia/clasificación , Electroencefalografía/métodos , Anciano , Anciano de 80 o más Años , Entropía , Femenino , Lógica Difusa , Humanos , Masculino , Sensibilidad y Especificidad , Procesamiento de Señales Asistido por Computador
16.
Int J Neural Syst ; 31(9): 2150038, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34376121

RESUMEN

In this paper, a hybrid-domain deep learning (DL)-based neural system is proposed to decode hand movement preparation phases from electroencephalographic (EEG) recordings. The system exploits information extracted from the temporal-domain and time-frequency-domain, as part of a hybrid strategy, to discriminate the temporal windows (i.e. EEG epochs) preceding hand sub-movements (open/close) and the resting state. To this end, for each EEG epoch, the associated cortical source signals in the motor cortex and the corresponding time-frequency (TF) maps are estimated via beamforming and Continuous Wavelet Transform (CWT), respectively. Two Convolutional Neural Networks (CNNs) are designed: specifically, the first CNN is trained over a dataset of temporal (T) data (i.e. EEG sources), and is referred to as T-CNN; the second CNN is trained over a dataset of TF data (i.e. TF-maps of EEG sources), and is referred to as TF-CNN. Two sets of features denoted as T-features and TF-features, extracted from T-CNN and TF-CNN, respectively, are concatenated in a single features vector (denoted as TTF-features vector) which is used as input to a standard multi-layer perceptron for classification purposes. Experimental results show a significant performance improvement of our proposed hybrid-domain DL approach as compared to temporal-only and time-frequency-only-based benchmark approaches, achieving an average accuracy of [Formula: see text]%.


Asunto(s)
Interfaces Cerebro-Computador , Aprendizaje Profundo , Algoritmos , Electroencefalografía , Aprendizaje Automático , Redes Neurales de la Computación
17.
Membranes (Basel) ; 10(11)2020 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-33233398

RESUMEN

The evolution of engineering applications is increasingly shifting towards the embedded nature, resulting in low-cost solutions, micro/nano dimensional and actuators being exploited as fundamental components to connect the physical nature of information with the abstract one, which is represented in the logical form in a machine. In this context, the scientific community has gained interest in modeling membrane Micro-Electro-Mechanical-Systems (MEMS), leading to a wide diffusion on an industrial level owing to their ease of modeling and realization. Physically, once the external voltage is applied, an electrostatic field, orthogonal to the tangent line of the membrane, is established inside the device, producing an electrostatic pressure that acts on the membrane, deforming it. Evidently, the greater the amplitude of the electrostatic field is, the greater the curvature of the membrane. Thus, it seems natural to consider the amplitude of the electrostatic field proportional to the curvature of the membrane. Starting with this principle, the authors are actively involved in developing a second-order semi-linear elliptic model in 1D and 2D geometries, obtaining important results regarding the existence, uniqueness and stability of solutions as well as evaluating the particular operating conditions of use of membrane MEMS devices. In this context, the idea of providing a survey matures to discussing the similarities and differences between the analytical and numerical results in detail, thereby supporting the choice of certain membrane MEMS devices according to the industrial application. Finally, some original results about the stability of the membrane in 2D geometry are presented and discussed.

18.
Neural Netw ; 124: 357-372, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32045838

RESUMEN

A system that can detect the intention to move and decode the planned movement could help all those subjects that can plan motion but are unable to implement it. In this paper, motor planning activity is investigated by using electroencephalographic (EEG) signals with the aim to decode motor preparation phases. A publicly available database of 61-channels EEG signals recorded from 15 healthy subjects during the execution of different movements (elbow flexion/extension, forearm pronation/supination, hand open/close) of the right upper limb was employed to generate a dataset of EEG epochs preceding resting and movement's onset. A novel system is introduced for the classification of premovement vs resting and of premovement vs premovement epochs. For every epoch, the proposed system generates a time-frequency (TF) map of every source signal in the motor cortex, through beamforming and Continuous Wavelet Transform (CWT), then all the maps are embedded in a volume and used as input to a deep CNN. The proposed system succeeded in discriminating premovement from resting with an average accuracy of 90.3% (min 74.6%, max 100%), outperforming comparable methods in the literature, and in discriminating premovement vs premovement with an average accuracy of 62.47%. The achieved results encourage to investigate motor planning at source level in the time-frequency domain through deep learning approaches.


Asunto(s)
Ondas Encefálicas , Aprendizaje Profundo , Modelos Neurológicos , Corteza Motora/fisiología , Extremidad Superior/fisiología , Adulto , Interfaces Cerebro-Computador , Humanos , Movimiento , Tiempo de Reacción , Extremidad Superior/inervación
19.
Neural Netw ; 123: 176-190, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31884180

RESUMEN

Electroencephalographic (EEG) recordings generate an electrical map of the human brain that are useful for clinical inspection of patients and in biomedical smart Internet-of-Things (IoT) and Brain-Computer Interface (BCI) applications. From a signal processing perspective, EEGs yield a nonlinear and nonstationary, multivariate representation of the underlying neural circuitry interactions. In this paper, a novel multi-modal Machine Learning (ML) based approach is proposed to integrate EEG engineered features for automatic classification of brain states. EEGs are acquired from neurological patients with Mild Cognitive Impairment (MCI) or Alzheimer's disease (AD) and the aim is to discriminate Healthy Control (HC) subjects from patients. Specifically, in order to effectively cope with nonstationarities, 19-channels EEG signals are projected into the time-frequency (TF) domain by means of the Continuous Wavelet Transform (CWT) and a set of appropriate features (denoted as CWT features) are extracted from δ, θ, α1, α2, ß EEG sub-bands. Furthermore, to exploit nonlinear phase-coupling information of EEG signals, higher order statistics (HOS) are extracted from the bispectrum (BiS) representation. BiS generates a second set of features (denoted as BiS features) which are also evaluated in the five EEG sub-bands. The CWT and BiS features are fed into a number of ML classifiers to perform both 2-way (AD vs. HC, AD vs. MCI, MCI vs. HC) and 3-way (AD vs. MCI vs. HC) classifications. As an experimental benchmark, a balanced EEG dataset that includes 63 AD, 63 MCI and 63 HC is analyzed. Comparative results show that when the concatenation of CWT and BiS features (denoted as multi-modal (CWT+BiS) features) is used as input, the Multi-Layer Perceptron (MLP) classifier outperforms all other models, specifically, the Autoencoder (AE), Logistic Regression (LR) and Support Vector Machine (SVM). Consequently, our proposed multi-modal ML scheme can be considered a viable alternative to state-of-the-art computationally intensive deep learning approaches.


Asunto(s)
Demencia/fisiopatología , Electroencefalografía/métodos , Aprendizaje Automático , Interfaces Cerebro-Computador , Electroencefalografía/clasificación , Humanos , Análisis de Ondículas
20.
Int J Neural Syst ; 34(2): 2402001, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38117159
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA