Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Plant Mol Biol ; 114(4): 84, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995453

RESUMEN

Expansins are proteins without catalytic activity, but able to break hydrogen bonds between cell wall polysaccharides hemicellulose and cellulose. This proteins were reported for the first time in 1992, describing cell wall extension in cucumber hypocotyls caused particularly by alpha-expansins. Although these proteins have GH45 and CBM63 domains, characteristic of enzymes related with the cleavage of cell wall polysaccharides, demonstrating in vitro that they extend plant cell wall. Its participation has been associated to molecular processes such as development and growing, fruit ripening and softening, tolerance and resistance to biotic and abiotic stress and seed germination. Structural insights, facilitated by bioinformatics approaches, are highlighted, shedding light on the intricate interactions between alpha-expansins and cell wall polysaccharides. After more than thirty years of its discovery, we want to celebrate the knowledge of alpha-expansins and emphasize their importance to understand the phenomena of disassembly and loosening of the cell wall, specifically in the fruit ripening phenomena, with this state-of-the-art dedicated to them.


Asunto(s)
Pared Celular , Frutas , Proteínas de Plantas , Pared Celular/metabolismo , Frutas/metabolismo , Frutas/crecimiento & desarrollo , Frutas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Polisacáridos/metabolismo
2.
Plant Cell Environ ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847336

RESUMEN

Plants share their habitats with a multitude of different microbes. This close vicinity promoted the evolution of interorganismic interactions between plants and many different microorganisms that provide mutual growth benefits both to the plant and the microbial partner. The symbiosis of Arabidopsis thaliana with the beneficial root colonizing endophyte Serendipita indica represents a well-studied system. Colonization of Arabidopsis roots with S. indica promotes plant growth and stress tolerance of the host plant. However, until now, the molecular mechanism by which S. indica reprograms plant growth remains largely unknown. This study used comprehensive transcriptomics, metabolomics, reverse genetics, and life cell imaging to reveal the intricacies of auxin-related processes that affect root growth in the symbiosis between A. thaliana and S. indica. Our experiments revealed the sustained stimulation of auxin signalling in fungus infected Arabidopsis roots and disclosed the essential role of tightly controlled auxin conjugation in the plant-fungus interaction. It particularly highlighted the importance of two GRETCHEN HAGEN 3 (GH3) genes, GH3.5 and GH3.17, for the fungus infection-triggered stimulation of biomass production, thus broadening our knowledge about the function of GH3s in plants. Furthermore, we provide evidence for the transcriptional alteration of the PIN2 auxin transporter gene in roots of Arabidopsis seedlings infected with S. indica and demonstrate that this transcriptional adjustment affects auxin signalling in roots, which results in increased plant growth.

3.
Physiol Plant ; 176(3): e14359, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38797943

RESUMEN

Lipid transfer proteins (LTPs) play crucial roles in various biological processes in plants, such as pollen tube adhesion, phospholipid transfer, cuticle synthesis, and response to abiotic stress. While a few members of the non-specific LTPs (nsLTPs) have been identified, their structural characteristics remain largely unexplored. Given the observed improvement in the performance of Antarctic plants facing water deficit when associated with fungal endophytes, this study aimed to assess the role of these symbiotic organisms in the transcriptional modulation of putative nsLTPs. The study focused on identifying and characterizing two nsLTP in the Antarctic plant Colobanthus quitensis that exhibit responsiveness to drought stress. Furthermore, we investigated the influence of Antarctic endophytic fungi on the expression profiles of these nsLTPs, as these fungi have been known to enhance plant physiological and biochemical performance under water deficit conditions. Through 3D modeling, docking, and molecular dynamics simulations with different substrates, the conducted structural and ligand-protein interaction analyses showed that differentially expressed nsLTPs displayed the ability to interact with various ligands, with a higher affinity towards palmitoyl-CoA. Overall, our findings suggest a regulatory mechanism for the expression of these two nsLTPs in Colobanthus quitensis under drought stress, further modulated by the presence of endophytic fungi.


Asunto(s)
Proteínas Portadoras , Sequías , Endófitos , Proteínas de Plantas , Endófitos/fisiología , Endófitos/metabolismo , Regiones Antárticas , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Hongos/fisiología , Hongos/genética , Estrés Fisiológico , Simulación de Dinámica Molecular
4.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38928287

RESUMEN

Exoglycosidase enzymes hydrolyze the N-glycosylations of cell wall enzymes, releasing N-glycans that act as signal molecules and promote fruit ripening. Vesicular exoglycosidase α-mannosidase enzymes of the GH38 family (EC 3.2.1.24; α-man) hydrolyze N-glycans in non-reduced termini. Strawberry fruit (Fragaria × ananassa) is characterized by rapid softening as a result of cell wall modifications during the fruit ripening process. Enzymes acting on cell wall polysaccharides explain the changes in fruit firmness, but α-man has not yet been described in F. × ananassa, meaning that the indirect effects of N-glycan removal on its fruit ripening process are unknown. The present study identified 10 GH38 α-man sequences in the F. × ananassa genome with characteristic conserved domains and key residues. A phylogenetic tree built with the neighbor-joining method and three groups of α-man established, of which group I was classified into three subgroups and group III contained only Poaceae spp. sequences. The real-time qPCR results demonstrated that FaMAN genes decreased during fruit ripening, a trend mirrored by the total enzyme activity from the white to ripe stages. The analysis of the promoter regions of these FaMAN genes was enriched with ripening and phytohormone response elements, and contained cis-regulatory elements related to stress responses to low temperature, drought, defense, and salt stress. This study discusses the relevance of α-man in fruit ripening and how it can be a useful target to prolong fruit shelf life.


Asunto(s)
Fragaria , Frutas , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas , alfa-Manosidasa , Fragaria/genética , Fragaria/enzimología , Fragaria/crecimiento & desarrollo , Fragaria/metabolismo , Frutas/crecimiento & desarrollo , Frutas/genética , Frutas/enzimología , Frutas/metabolismo , alfa-Manosidasa/metabolismo , alfa-Manosidasa/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Pared Celular/metabolismo
5.
Int J Mol Sci ; 25(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39125594

RESUMEN

Pseudomonas aeruginosa (P. aeruginosa) poses a significant threat as a nosocomial pathogen due to its robust resistance mechanisms and virulence factors. This study integrates subtractive proteomics and ensemble docking to identify and characterize essential proteins in P. aeruginosa, aiming to discover therapeutic targets and repurpose commercial existing drugs. Using subtractive proteomics, we refined the dataset to discard redundant proteins and minimize potential cross-interactions with human proteins and the microbiome proteins. We identified 12 key proteins, including a histidine kinase and members of the RND efflux pump family, known for their roles in antibiotic resistance, virulence, and antigenicity. Predictive modeling of the three-dimensional structures of these RND proteins and subsequent molecular ensemble-docking simulations led to the identification of MK-3207, R-428, and Suramin as promising inhibitor candidates. These compounds demonstrated high binding affinities and effective inhibition across multiple metrics. Further refinement using non-covalent interaction index methods provided deeper insights into the electronic effects in protein-ligand interactions, with Suramin exhibiting superior binding energies, suggesting its broad-spectrum inhibitory potential. Our findings confirm the critical role of RND efflux pumps in antibiotic resistance and suggest that MK-3207, R-428, and Suramin could be effectively repurposed to target these proteins. This approach highlights the potential of drug repurposing as a viable strategy to combat P. aeruginosa infections.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Reposicionamiento de Medicamentos , Simulación del Acoplamiento Molecular , Proteoma , Proteómica , Pseudomonas aeruginosa , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/antagonistas & inhibidores , Proteómica/métodos , Proteoma/metabolismo , Antibacterianos/farmacología , Antibacterianos/química , Suramina/farmacología , Suramina/química , Humanos
6.
Plant Mol Biol ; 112(3): 107-117, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37178231

RESUMEN

Cell wall is a strong and complex net whose function is to provide turgor, pathogens attack protection and to give structural support to the cell. In growing and expanding cells, the cell wall of fruits is changing in space and time, because they are changing according to stage of ripening. Understand which mechanisms to produce significant could help to develop tools to prolong the fruit shelf life. Cell wall proteins (CWPs) with enzymatic activity on cell wall polysaccharides, have been studied widely. Another investigations take place in the study of N-glycosylations of CWPs and enzymes with activity on glycosidic linkages. α-mannosidase (α-Man; EC 3.2.1.24) and ß-D-N-acetylhexosaminidase (ß-Hex; EC 3.2.1.52), are enzymes with activity on mannose and N-acetylglucosamine sugar presents in proteins as part of N-glycosylations. Experimental evidence indicate that both are closely related to loss of fruit firmness, but in the literature, there is still no review of both enzymes involved fruit ripening. This review provides a complete state-of-the-art of α-Man and ß-Hex enzymes related in fruit ripening. Also, we propose a vesicular α-Man (EC 3.2.1.24) name to α-Man involved in N-deglycosylations of CWPs of plants.


Asunto(s)
Frutas , Glicósido Hidrolasas , alfa-Manosidasa/metabolismo , Glicósido Hidrolasas/metabolismo , Frutas/metabolismo , Polisacáridos/metabolismo , Proteínas de Plantas/metabolismo , Pared Celular/metabolismo
7.
Int J Mol Sci ; 23(10)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35628551

RESUMEN

Deschampsia antarctica Desv. (Poaceae) is one of the two vascular plants that have colonized the Antarctic Peninsula, which is usually exposed to extreme environmental conditions. To support these conditions, the plant carries out modifications in its morphology and metabolism, such as modifications to the cell wall. Thus, we performed a comparative study of the changes in the physiological properties of the cell-wall-associated polysaccharide contents of aerial and root tissues of the D. antarctica via thermogravimetric analysis (TGA) combined with a computational approach. The result showed that the thermal stability was lower in aerial tissues with respect to the root samples, while the DTG curve describes four maximum peaks of degradation, which occurred between 282 and 358 °C. The carbohydrate polymers present in the cell wall have been depolymerized showing mainly cellulose and hemicellulose fragments. Additionally, a differentially expressed sequence encoding for an expansin-like (DaEXLA2), which is characterized by possessing cell wall remodeling function, was found in D. antarctica. To gain deep insight into a probable mechanism of action of the expansin protein identified, a comparative model of the structure was carried out. DaEXLA2 protein model displayed two domains with an open groove in the center. Finally, using a cell wall polymer component as a ligand, the protein-ligand interaction was evaluated by molecular dynamic (MD) simulation. The MD simulations showed that DaEXLA2 could interact with cellulose and XXXGXXXG polymers. Finally, the cell wall component description provides the basis for a model for understanding the changes in the cell wall polymers in response to extreme environmental conditions.


Asunto(s)
Pared Celular , Poaceae , Celulosa/química , Ligandos , Simulación de Dinámica Molecular , Poaceae/fisiología
8.
Int J Mol Sci ; 22(23)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34884435

RESUMEN

Plants reorient the growth of affected organs in response to the loss of gravity vector. In trees, this phenomenon has received special attention due to its importance for the forestry industry of conifer species. Sustainable management is a key factor in improving wood quality. It is of paramount importance to understand the molecular and genetic mechanisms underlying wood formation, together with the hormonal and environmental factors that affect wood formation and quality. Hormones are related to the modulation of vertical growth rectification. Many studies have resulted in a model that proposes differential growth in the stem due to unequal auxin and jasmonate allocation. Furthermore, many studies have suggested that in auxin distribution, flavonoids act as molecular controllers. It is well known that flavonoids affect auxin flux, and this is a new area of study to understand the intracellular concentrations and how these compounds can control the gravitropic response. In this review, we focused on different molecular aspects related to the hormonal role in flavonoid homeostasis and what has been done in conifer trees to identify molecular players that could take part during the gravitropic response and reduce low-quality wood formation.


Asunto(s)
Cycadopsida/crecimiento & desarrollo , Flavonoides/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Cycadopsida/metabolismo , Homeostasis , Lignina/biosíntesis
9.
Int J Mol Sci ; 22(12)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34208198

RESUMEN

The role of auxin in the fruit-ripening process during the early developmental stages of commercial strawberry fruits (Fragaria x ananassa) has been previously described, with auxin production occurring in achenes and moving to the receptacle. Additionally, fruit softening is a consequence of the depolymerization and solubilization of cell wall components produced by the action of a group of proteins and enzymes. The aim of this study was to compare the effect of exogenous auxin treatment on the physiological properties of the cell wall-associated polysaccharide contents of strawberry fruits. We combined thermogravimetric (TG) analysis with analyses of the mRNA abundance, enzymatic activity, and physiological characteristics related to the cell wall. The samples did not show a change in fruit firmness at 48 h post-treatment; by contrast, we showed changes in the cell wall stability based on TG and differential thermogravimetric (DTG) analysis curves. Less degradation of the cell wall polymers was observed after auxin treatment at 48 h post-treatment. The results of our study indicate that auxin treatment delays the cell wall disassembly process in strawberries.


Asunto(s)
Biopolímeros/metabolismo , Pared Celular/metabolismo , Fragaria/metabolismo , Frutas/metabolismo , Ácidos Indolacéticos/farmacología , Pared Celular/efectos de los fármacos , Pared Celular/genética , Fragaria/efectos de los fármacos , Fragaria/genética , Frutas/efectos de los fármacos , Frutas/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Temperatura , Termogravimetría , Transcripción Genética/efectos de los fármacos , Ácidos Triyodobenzoicos/farmacología
10.
Int J Mol Sci ; 21(9)2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32403246

RESUMEN

Xyloglucan endotransglycosylase/hydrolases (XTHs) are cell wall enzymes with hydrolase (XEH) and/or endotransglycosylase (XET) activities. As they are involved in the modification of the xyloglucans, a type of hemicellulose present in the cell wall, they are believed to be very important in different processes, including growth, development, and fruit ripening. Previous studies suggest that XTHs might play a key role in development and ripening of Fragaria chiloensis fruit, and its characterization is pending. Therefore, in order to provide a biochemical characterization of the FcXTH2 enzyme to explain its possible role in strawberry development, the molecular cloning and the heterologous expression of FcXTH2 were performed. The recombinant FcXTH2 was active and displayed mainly XEH activity. The optimal pH and temperature are 5.5 and 37 °C, respectively. A KM value of 0.029 mg mL-1 was determined. Additionally, its protein structural model was built through comparative modeling methodology. The model showed a typically ß-jelly-roll type folding in which the catalytic motif was oriented towards the FcXTH2 central cavity. Using molecular docking, protein-ligand interactions were explored, finding better interaction with xyloglucan than with cellulose. The data provided groundwork for understanding, at a molecular level, the enzymatic mechanism of FcXTH2, an important enzyme acting during the development of the Chilean strawberry.


Asunto(s)
Fragaria/enzimología , Frutas/enzimología , Glicosiltransferasas/metabolismo , Hidrolasas/metabolismo , Proteínas de Plantas/metabolismo , Pared Celular/genética , Pared Celular/metabolismo , Chile , Clonación Molecular , Fragaria/genética , Fragaria/crecimiento & desarrollo , Frutas/genética , Frutas/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glucanos/química , Glucanos/metabolismo , Glicosiltransferasas/química , Glicosiltransferasas/genética , Concentración de Iones de Hidrógeno , Hidrolasas/química , Hidrolasas/genética , Cinética , Modelos Moleculares , Proteínas de Plantas/química , Proteínas de Plantas/genética , Unión Proteica , Dominios Proteicos , Temperatura , Xilanos/química , Xilanos/metabolismo
11.
Molecules ; 24(19)2019 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-31561437

RESUMEN

The bacterial resistance to antibiotics has compromised the therapies used for bacterial infections. Nowadays, many strategies are being carried out to address this problem. Among them, the use of natural compounds like cinnamic and p-coumaric acids stands out. Nevertheless, their utilization is limited because of their unfavorable physicochemical properties. Due to the lack of new therapeutic alternatives for bacterial infections, novel strategies have emerged, such as the use of ionic liquids; given that they can show a broad spectrum of antibacterial activity, this is why we herein report the antibacterial and antibiofilm activity of a series of N-alkylimidazolium salts functionalized with p-coumaric and cinnamic acids. The results from this study showed better antibacterial activity against Gram-positive bacteria, with a predominance of the salts derived from coumaric acid and a correlation with the chain length. Additionally, a lower efficacy was observed in the inhibition of biofilm formation, highlighting the antibiofilm activity against Staphylococcus aureus, which decreased the production of the biofilm by 52% over the control. In conclusion, we suggest that the salts derived from p-coumaric acid are good alternatives as antibacterial compounds. Meanwhile, the salt derived from cinnamic acid could be a good alternative as an antibiofilm compound.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Biopelículas/efectos de los fármacos , Cinamatos/química , Imidazoles/química , Imidazoles/farmacología , Propionatos/química , Ácidos Cumáricos , Líquidos Iónicos , Pruebas de Sensibilidad Microbiana , Conformación Molecular , Simulación de Dinámica Molecular , Relación Estructura-Actividad
12.
Gels ; 10(3)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38534603

RESUMEN

The integration of abscisic acid (ABA) into a chitosan-alginate gel blend unveils crucial insights into the formation and stability of these two substances. ABA, a key phytohormone in plant growth and stress responses, is strategically targeted for controlled release within these complexes. This study investigates the design and characterization of this novel controlled-release system, showcasing the potential of alginate-chitosan gel blends in ABA delivery. Computational methods, including molecular dynamics simulations, are employed to analyze the structural effects of microencapsulation, offering valuable insights into complex behavior under varying conditions. This paper focuses on the controlled release of ABA from these complexes, highlighting its strategic importance in drug delivery systems and beyond. This controlled release enables targeted and regulated ABA delivery, with far-reaching implications for pharmaceuticals, agriculture, and plant stress response studies. While acknowledging context dependency, the paper suggests that the liberation or controlled release of ABA holds promise in applications, urging further research and experimentation to validate its utility across diverse fields. Overall, this work significantly contributes to understanding the characteristics and potential applications of chitosan-alginate complexes, marking a noteworthy advancement in the field of controlled-release systems.

13.
Plant Physiol Biochem ; 212: 108668, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823091

RESUMEN

Alcohol acyltransferases (AATs) play a crucial role in catalyzing the transfer of acyl groups, contributing to the diverse aroma of fruits, including strawberries. In this research we identified nine AAT genes in strawberries through a comprehensive analysis involving phylogenetics, gene structure, conserved motifs, and structural protein model examinations. The study used the 'Camarosa' strawberry genome database, and experiments were conducted with fruits harvested at different developmental and ripening stages. The transcriptional analysis revealed differential expression patterns among the AAT genes during fruit ripening, with only four genes (SAAT, FaAAT2, FaAAT7, and FaAAT9) showing increased transcript accumulation correlated with total AAT enzyme activity. Additionally, the study employed in silico methods, including sequence alignment, phylogenetic analysis, and structural modeling, to gain insights into the AAT protein model structures with increase expression pattern during fruit ripening. The four modeled AAT proteins exhibited structural similarities, including conserved catalytic sites and solvent channels. Furthermore, the research investigated the interaction of AAT proteins with different substrates, highlighting the enzymes' promiscuity in substrate preferences. The study contributes with valuable information to unveil AAT gene family members in strawberries, providing scientific background for further exploration of their biological characteristics and their role in aroma biosynthesis during fruit ripening.


Asunto(s)
Fragaria , Frutas , Filogenia , Proteínas de Plantas , Fragaria/genética , Fragaria/enzimología , Fragaria/metabolismo , Fragaria/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/enzimología , Frutas/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Secuencia de Aminoácidos
14.
Plant Physiol Biochem ; 207: 108417, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38354527

RESUMEN

Strawberry is one of the most popular fruits in the world, because their high fruit quality, especially with respect to the combination of aroma, flavor, color, and nutritional compounds. Pyruvate decarboxylase (PDC) is the first of two enzymes specifically required for ethanolic fermentation and catalyzes the decarboxylation of pyruvate to yield acetaldehyde and CO2. The ethanol, an important alcohol which acts as a precursor for the ester and other alcohols formation in strawberry, is produced by the PDC. The objective was found all different PDCs genes present in the strawberry genome and investigate PDC gene expression and ligand-protein interactions in strawberry fruit. Volatile organic compounds were evaluated during the development of the fruit. After this, eight FaPDC were identified with four genes that increase the relative expression during fruit ripening process. Molecular dynamics simulations were performed to analyze the behavior of Pyr and TPP ligands within the catalytic and regulatory sites of the PDC proteins. Results indicated that energy-restrained simulations exhibited minor fluctuations in ligand-protein interactions, while unrestrained simulations revealed crucial insights into ligand affinity. TPP consistently displayed strong interactions with the catalytic site, emphasizing its pivotal role in enzymatic activity. However, FaPDC6 and FaPDC9 exhibited decreased pyruvate affinity initially, suggesting unique binding characteristics requiring further investigation. Finally, the present study contributes significantly to understanding PDC gene expression and the intricate molecular dynamics underlying strawberry fruit ripening, shedding light on potential targets for further research in this critical biological pathway.


Asunto(s)
Fragaria , Piruvato Descarboxilasa , Piruvato Descarboxilasa/genética , Piruvato Descarboxilasa/metabolismo , Fragaria/genética , Fragaria/metabolismo , Frutas/metabolismo , Ligandos , Proteínas de Plantas/metabolismo , Etanol/metabolismo , Piruvatos/metabolismo , Regulación de la Expresión Génica de las Plantas
15.
J Chem Inf Model ; 53(10): 2689-700, 2013 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-24032548

RESUMEN

Aroma in Vasconcellea pubescens fruit is determined by esters, which are the products of catalysis by alcohol acyltransferase (VpAAT1). VpAAT1 protein structure displayed the conserved HxxxD motif facing the solvent channel in the center of the structure. To gain insight into the role of these catalytic residues, kinetic and site-directed mutagenesis studies were carried out in VpAAT1 protein. Based on dead-end inhibition studies, the kinetic could be described in terms of a ternary complex mechanism with the H166 residue as the catalytic base. Kinetic results showed the lowest Km value for hexanoyl-CoA. Additionally, the most favorable predicted substrate orientation was observed for hexanoyl-CoA, showing a coincidence between kinetic studies and molecular docking analysis. Substitutions H166A, D170A, D170N, and D170E were evaluated in silico. The solvent channel in all mutant structures was lost, showing large differences with the native structure. Molecular docking and molecular dynamics simulations were able to describe unfavored energies for the interaction of the mutant proteins with different alcohols and acyl-CoAs. Additionally, in vitro site-directed mutagenesis of H166 and D170 in VpAAT1 induced a loss of activity, confirming the functional role of both residues for the activity, H166 being directly involved in catalysis.


Asunto(s)
Acilcoenzima A/química , Aciltransferasas/química , Caricaceae/enzimología , Frutas/enzimología , Simulación de Dinámica Molecular , Proteínas de Plantas/química , Aciltransferasas/genética , Secuencias de Aminoácidos , Biocatálisis , Caricaceae/química , Dominio Catalítico , Pruebas de Enzimas , Escherichia coli/genética , Escherichia coli/metabolismo , Frutas/química , Cinética , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Proteínas de Plantas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Termodinámica
16.
Polymers (Basel) ; 15(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37571107

RESUMEN

Abscisic acid (ABA) has been proposed to play a significant role in the ripening of nonclimacteric fruit, stomatal opening, and response to abiotic stresses in plants, which can adversely affect crop growth and productivity. The biological effects of ABA are dependent on its concentration and signal transduction pathways. However, due to its susceptibility to the environment, it is essential to find a suitable biotechnological approach to coat ABA for its application. One promising approach is to utilize alginate and chitosan, two natural polysaccharides known for their strong affinity for water and their ability to act as coating agents. In this study, an alginate-chitosan blend was employed to develop an ABA cover. To achieve this, an alginate-chitosan-abscisic acid (ALG-CS-ABA) blend was prepared by forming ionic bonds or complexes with calcium ions, or through dual cross-linking. This was done by dripping a homogeneous solution of alginate-chitosan and ABA into a calcium chloride solution, resulting in the formation of the blend. By combining the unique properties of alginate, chitosan, and ABA, the resulting ALG-CS-ABA blend can potentially offer enhanced stability, controlled release, and improved protection of ABA. These characteristics make it a promising biotechnological approach for various applications, including the targeted delivery of ABA in agricultural practices or in the development of innovative plant-based products. Further evaluation and characterization of the ALG-CS-ABA blend will provide valuable insights into its potential applications in the fields of biomedicine, agriculture, and tissue engineering.

17.
J Mol Graph Model ; 122: 108502, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37116336

RESUMEN

Polygalacturonase (PG) is an important hydrolytic enzyme involved in pectin disassembly and the subsequent textural changes during fruit ripening. Although the interaction of fungal PGs with other proteins has been documented, the interaction of plant PGs with other plant proteins has not yet been studied. In this study, the molecular mechanisms involved in raspberry fruit ripening, particularly the polygalacturonase (RiPG) interaction with polygalacturonase inhibiting protein (RiPGIP) and substrate, were investigated with a structural approach. The 3D model of RiPG2 and RiPGIP3 was built using a comparative modeling strategy and validated using molecular dynamics (MD) simulations. The RiPG2 model structure comprises 11 complete coils of right-handed parallel ß-helix architecture, with an average of 27 amino acid residues per turn. The structural model of the RiPGIP3 displays a typical structure of LRR protein, with the right-handed superhelical fold with an extended parallel ß-sheet. The conformational interaction between the RiPG2 protein and RiPGIP3 showed that RiPGIP3 could bind to the enzyme and thereby leave the active site cleft accessible to the substrate. All this evidence indicates that RiPG2 enzyme could interact with RiPGIP3 protein. It can be a helpful model for evaluating protein-protein interaction as a potential regulator mechanism of hydrolase activity during pectin disassembly in fruit ripening.


Asunto(s)
Poligalacturonasa , Rubus , Poligalacturonasa/química , Poligalacturonasa/metabolismo , Rubus/metabolismo , Simulación de Dinámica Molecular , Frutas/metabolismo , Pectinas/metabolismo , Proteínas de Plantas/metabolismo
18.
Comput Biol Chem ; 106: 107932, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37487249

RESUMEN

Lipopeptides are medicinally essential building blocks with strong hemolytic, antifungal and antibiotic potential. In the present research article, we are presenting our findings regarding the synthesis of N-alkylated lipopeptides via Ugi four-component approach, their antimicrobial potential against pathogenic (Gram-positive and Gram-negative) bacteria, as well as computational studies to investigate the compounds binding affinity and dynamic behavior with MurD antibacterial target. Molecular docking demonstrated the compounds have good binding ability with MurD enzyme. The FT94, FT95 and FT97 compounds revealed binding affinity scores of -8.585 kcal mol- 1, -7.660 kcal mol- 1 and -7.351 kcal mol- 1, respectively. Furthermore, dynamics analysis pointed the systems high structure dynamics. The docking and simulation results were validated by binding free energies, demonstrating solid intermolecular interactions and in the assay in vitro, the Minimal Inhibitory Concentration (MIC) of FT97 to Staphylococcus aureus (S. aureus) was 62.5 µg/mL. In conclusion, a moderate inhibitory response of peptoid FT97 was observed against the Gram-positive bacteria, S. aureus and B. cereus.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus , Simulación del Acoplamiento Molecular , Antibacterianos/farmacología , Lipopéptidos/farmacología
19.
Polymers (Basel) ; 15(14)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37514411

RESUMEN

Pesticides have a significant negative impact on the environment, non-target organisms, and human health. To address these issues, sustainable pest management practices and government regulations are necessary. However, biotechnology can provide additional solutions, such as the use of polyelectrolyte complexes to encapsulate and remove pesticides from water sources. We introduce a computational methodology to evaluate the capture capabilities of Calcium-Alginate-Chitosan (CAC) nanoparticles for a broad range of pesticides. By employing ensemble-docking and molecular dynamics simulations, we investigate the intermolecular interactions and absorption/adsorption characteristics between the CAC nanoparticles and selected pesticides. Our findings reveal that charged pesticide molecules exhibit more than double capture rates compared to neutral counterparts, owing to their stronger affinity for the CAC nanoparticles. Non-covalent interactions, such as van der Waals forces, π-π stacking, and hydrogen bonds, are identified as key factors which stabilized the capture and physisorption of pesticides. Density profile analysis confirms the localization of pesticides adsorbed onto the surface or absorbed into the polymer matrix, depending on their chemical nature. The mobility and diffusion behavior of captured compounds within the nanoparticle matrix is assessed using mean square displacement and diffusion coefficients. Compounds with high capture levels exhibit limited mobility, indicative of effective absorption and adsorption. Intermolecular interaction analysis highlights the significance of hydrogen bonds and electrostatic interactions in the pesticide-polymer association. Notably, two promising candidates, an antibiotic derived from tetracycline and a rodenticide, demonstrate a strong affinity for CAC nanoparticles. This computational methodology offers a reliable and efficient screening approach for identifying effective pesticide capture agents, contributing to the development of eco-friendly strategies for pesticide removal.

20.
Biomed Res Int ; 2022: 5576090, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463991

RESUMEN

Reduced glutathione (GSH) has a high antioxidant capacity and is present in nearly every cell in the body, playing important roles in nutrient metabolism, antioxidant defense, and regulation of cellular events. Conversely, alginate is a macromolecule that has been widely used in the food, pharmaceutical, biomedical, and textile industries due to its biocompatibility, biodegradability, nontoxicity, and nonimmunogenicity as well as for its capabilities of retaining water and stabilizing emulsions. The primary goal of this study was to characterize and optimize the formation of a molecular complex of calcium alginate with GSH using a computational approach. As methods, we evaluated the influence of varying the amount of calcium cations at two different pHs on the structural stability of Ca2+-alginate complexes and thus on GSH liberation from these types of nanostructures. The results showed that complex stabilization depends on pH, with the system having a lower Ca2+ amount that produces the major GSH release. The systems at pH 2.5 retain more molecules within the calcium-alginate complex, which release GSH more slowly when embedded in more acidic media. In conclusions, this study demonstrates the dependence of the amount of calcium and the stabilizing effect of pH on the formation and subsequent maintenance of an alginate nanostructure. The results presented in this study can help to develop better methodological frameworks in industries where the release or capture of compounds, such as GSH in this case, depends on the conditions of the alginate nanoparticle.


Asunto(s)
Alginatos , Polímeros , Alginatos/química , Antioxidantes , Calcio , Ácido Glucurónico/química , Glutatión , Ácidos Hexurónicos/química , Polímeros/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA