Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Development ; 141(22): 4366-74, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25344076

RESUMEN

During the development of the central nervous system, neural progenitors generate an enormous number of distinct types of neuron and glial cells by asymmetric division. Intrinsic genetic programs define the combinations of transcription factors that determine the fate of each cell, but the precise mechanisms by which all these factors are integrated at the level of individual cells are poorly understood. Here, we analyzed the specification of the neurons in the ventral nerve cord of Drosophila that express Crustacean cardioactive peptide (CCAP). There are two types of CCAP neurons: interneurons and efferent neurons. We found that both are specified during the Hunchback temporal window of neuroblast 3-5, but are not sibling cells. Further, this temporal window generates two ganglion mother cells that give rise to four neurons, which can be identified by the expression of empty spiracles. We show that the expression of Hunchback in the neuroblast increases over time and provide evidence that the absolute levels of Hunchback expression specify the two different CCAP neuronal fates.


Asunto(s)
Diferenciación Celular/fisiología , Sistema Nervioso Central/embriología , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Neuronas/metabolismo , Neuropéptidos/metabolismo , Factores de Transcripción/metabolismo , Animales , Bromodesoxiuridina , Sistema Nervioso Central/citología , Regulación del Desarrollo de la Expresión Génica/genética , Inmunohistoquímica , Microscopía Confocal , Neuronas/citología
2.
Development ; 140(10): 2139-48, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23633511

RESUMEN

Although the Hox genes are the main factors involved in the generation of diversity along the anterior/posterior body axis of segmented organisms, it is still largely unknown how these genes act in single cells to determine specific traits at precise developmental stages. The aim of this study was to understand the mechanisms by which Hox genes of the Bithorax complex (Bx-C) of Drosophila act to define segmental differences in the ventral nerve cord of the central nervous system. To achieve this, we have focused on the specification of the leucokinin-expressing neurons. We find that these neurons are specified from the same progenitor neuroblast at two different developmental stages: embryonic and larval neurogenesis. We show that genes of the Bx-C acted in postmitotic cells to specify the segment-specific appearance of leucokinergic cells in the larval and adult ventral nerve cord.


Asunto(s)
Drosophila melanogaster/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Sistema Nervioso/embriología , Animales , Tipificación del Cuerpo , Linaje de la Célula , Sistema Nervioso Central/embriología , Sistema Nervioso Central/metabolismo , Cruzamientos Genéticos , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Genotipo , Inmunohistoquímica , Neuropéptidos/metabolismo , Fenotipo , Células Madre/citología , Factores de Tiempo
3.
Dev Dyn ; 243(3): 402-14, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24155257

RESUMEN

BACKGROUND: The Drosophila central nervous system contains many types of neurons that are derived from a limited number of progenitors as evidenced in the ventral ganglion. The situation is much more complex in the developing brain. The main neuronal structures in the adult brain are generated in the larval neurogenesis, although the basic neuropil structures are already laid down during embryogenesis. The embryonic factors involved in adult neuron origin are largely unknown. To shed light on how brain cell diversity is achieved, we studied the early temporal and spatial cues involved in the specification of lateral horn leucokinin peptidergic neurons (LHLKs). RESULTS: Our analysis revealed that these neurons have an embryonic origin. We identified their progenitor neuroblast as Pcd6 in the Technau and Urbach terminology. Evidence was obtained that a temporal series involving the transcription factors Kr, Pdm, and Cas participates in the genesis of the LHLK lineage, the Castor window being the one in which the LHLKs neurons are generated. It was also shown that Notch signalling and Dimmed are involved in the specification of the LHLKs. CONCLUSIONS: Serial homologies with the origin and factors involved in specification of the abdominal leucokinergic neurons (ABLKs) have been detected.


Asunto(s)
Encéfalo , Proteínas de Drosophila/biosíntesis , Regulación del Desarrollo de la Expresión Génica/fisiología , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Neurópilo , Factores de Transcripción/biosíntesis , Animales , Encéfalo/citología , Encéfalo/embriología , Proteínas de Drosophila/genética , Drosophila melanogaster , Células-Madre Neurales/citología , Neurópilo/citología , Neurópilo/metabolismo , Factores de Transcripción/genética
4.
Development ; 137(19): 3327-36, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20823069

RESUMEN

Identification of the genetic mechanisms underlying the specification of large numbers of different neuronal cell fates from limited numbers of progenitor cells is at the forefront of developmental neurobiology. In Drosophila, the identities of the different neuronal progenitor cells, the neuroblasts, are specified by a combination of spatial cues. These cues are integrated with temporal competence transitions within each neuroblast to give rise to a specific repertoire of cell types within each lineage. However, the nature of this integration is poorly understood. To begin addressing this issue, we analyze the specification of a small set of peptidergic cells: the abdominal leucokinergic neurons. We identify the progenitors of these neurons, the temporal window in which they are specified and the influence of the Notch signaling pathway on their specification. We also show that the products of the genes klumpfuss, nab and castor play important roles in their specification via a genetic cascade.


Asunto(s)
Sistema Nervioso Central/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Animales , Linaje de la Célula , Sistema Nervioso Central/citología , Sistema Nervioso Central/crecimiento & desarrollo , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Neuropéptidos/metabolismo , Receptores Notch/metabolismo , Proteínas Represoras/genética , Transducción de Señal , Factores de Transcripción/genética
5.
J Comp Neurol ; 525(3): 639-660, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-27506156

RESUMEN

Developmental plasticity allows individuals with the same genotype to show different phenotypes in response to environmental changes. An example of this is how neuronal diversity is protected at the expense of neuronal number under sustained undernourishment during the development of the Drosophila optic lobe. In the development of the Drosophila central nervous system, neuroblasts go through two phases of neurogenesis separated by a period of mitotic quiescence. Although during embryonic development much evidence indicates that both cell number and the cell fates generated by each neuroblast are very precisely controlled in a cell autonomous manner, after quiescence extrinsic factors control the reactivation of neuroblast proliferation in a fashion that has not yet been elucidated. Moreover, there is very little information about whether environmental changes affect lineage progression during postembryonic neurogenesis. Using as a model system the pattern of abdominal leucokinergic neurons (ABLKs), we have analyzed how changes in a set of environmental factors affect the number of ABLKs generated during postembryonic neurogenesis. We describe the variability in ABLK number between individuals and between hemiganglia of the same individual and, by genetic analysis, we identify the bithorax-complex genes and the ecdysone hormone as critical factors in these differences. We also explore the possible adaptive roles involved in this process. J. Comp. Neurol. 525:639-660, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Drosophila melanogaster/citología , Drosophila melanogaster/crecimiento & desarrollo , Neurogénesis , Neuronas/citología , Neuronas/fisiología , Abdomen/anatomía & histología , Abdomen/crecimiento & desarrollo , Abdomen/inervación , Animales , Animales Modificados Genéticamente , Recuento de Células , Línea Celular , Sistema Nervioso Central/citología , Sistema Nervioso Central/crecimiento & desarrollo , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Masculino , Metamorfosis Biológica , Modelos Animales , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Canales de Sodio/genética , Canales de Sodio/metabolismo , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA