Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38874616

RESUMEN

Aging is associated with a significant decline in exercise fitness assessed by maximal exercise oxygen consumption (VO2-max). The specific VO2-max components driving this decline, namely cardiac output (CO) and arteriovenous oxygen difference (A-V) O2, remain unclear. We examined this issue by analyzing data from 99 community-dwelling participants (baseline age 21-96 years; average follow-up 12.6 years) from the Baltimore Longitudinal Study of Aging, free of clinical cardiovascular disease. VO2-peak, a surrogate of VO2-max, was used to assess aerobic capacity during upright cycle exercise. Peak exercise left ventricular (LV) volumes, heart rate, and cardiac output were estimated using repeated gated cardiac blood pool scans. The Fick equation was used to calculate (A-V) O2-peak from CO-peak and VO2-peak. In unadjusted models, VO2-peak, (A-V) O2-peak, and CO-peakdeclined longitudinally over time at steady rates with advancing age. In multiple linear regression models adjusting for baseline values and peak workload, however, steeper declines in VO2-peak and (A-V) O2 peak were observed with advanced entry age but not in CO-peak. The association between the declines in VO2-peak and (A-V) O2-peakwas stronger among those >=50 years compared to their younger counterparts but the difference between the two age groups did not reach statistical significance. These findings suggest that age-associated impairment of peripheral oxygen utilization during maximal exercise poses a stronger limitation on peak VO2 than that of CO. Future studies examining interventions targeting the structure and function of peripheral muscles and their vasculature to mitigate age-associated declines in (A-V) O2 are warranted.

2.
Lasers Surg Med ; 55(3): 278-293, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36821717

RESUMEN

BACKGROUND: Photobiomodulation (PBM) therapy, a form of low-dose light therapy, has been noted to be effective in several age-associated chronic diseases such as hypertension and atherosclerosis. Here, we examined the effects of PBM therapy on age-associated cardiovascular changes in a mouse model of accelerated cardiac aging. METHODS: Fourteen months old Adenylyl cyclase type VIII (AC8) overexpressing transgenic mice (n = 8) and their wild-type (WT) littermates (n = 8) were treated with daily exposure to Near-Infrared Light (850 nm) at 25 mW/cm2 for 2 min each weekday for a total dose of 1 Einstein (4.5 p.J/cm2 or fluence 3 J/cm2 ) and compared to untreated controls over an 8-month period. PBM therapy was administered for 3.5 months (Early Treatment period), paused, due to Covid-19 restrictions for the following 3 months, and restarted again for 1.5 months. Serial echocardiography and gait analyses were performed at monthly intervals, and serum TGF-ß1 levels were assessed following sacrifice. RESULTS: During the Early Treatment period PBM treatments: reduced the age-associated increases in left ventricular (LV) mass in both genotypes (p = 0.0003), reduced the LV end-diastolic volume (EDV) in AC8 (p = 0.04); and reduced the left atrial dimension in both genotypes (p = 0.02). PBM treatments substantially increased the LV ejection fraction (p = 0.03), reduced the aortic wall stiffness (p = 0.001), and improved gait symmetry, an index of neuro-muscular coordination (p = 0.005). The effects of PBM treatments, measured following the pause, persisted. Total TGF-ß1 levels were significantly increased in circulation (serum) in AC8 following PBM treatments (p = 0.01). We observed a striking increase in cumulative survival in PBM-treated AC8 mice (100%; p = 0.01) compared to untreated AC8 mice (43%). CONCLUSION: PBM treatment mitigated age-associated cardiovascular remodeling and reduced cardiac function, improved neuromuscular coordination, and increased longevity in an experimental animal model. These responses correlate with increased TGF-ß1 in circulation. Future mechanistic and dose optimization studies are necessary to assess these anti-aging effects of PBM, and validation in future controlled human studies is required for effective clinical translation.


Asunto(s)
COVID-19 , Terapia por Luz de Baja Intensidad , Humanos , Ratones , Animales , Lactante , Factor de Crecimiento Transformador beta1 , Terapia por Luz de Baja Intensidad/métodos , Envejecimiento , Corazón
3.
Int J Mol Sci ; 23(9)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35562955

RESUMEN

The hypertensive response in Dahl salt-sensitive (DSS) rats on a high-salt (HS) diet is accompanied by central arterial stiffening (CAS), a risk factor for dementia, and heightened levels of a prohypertensive and profibrotic factor, the endogenous Na/K-ATPase inhibitor marinobufagenin (MBG). We studied the effect of the in vivo administration of MBG or HS diet on blood pressure (BP), CAS, and behavioral function in young DSS rats and normotensive Sprague-Dawley rats (SD), the genetic background for DSS rats. Eight-week-old male SD and DSS rats were given an HS diet (8% NaCl, n = 18/group) or a low-salt diet (LS; 0.1% NaCl, n = 14-18/group) for 8 weeks or MBG (50 µg/kg/day, n = 15-18/group) administered via osmotic minipumps for 4 weeks in the presence of the LS diet. The MBG-treated groups received the LS diet. The systolic BP (SBP); the aortic pulse wave velocity (aPWV), a marker of CAS; MBG levels; spatial memory, measured by a water maze task; and tissue collection for the histochemical analysis were assessed at the end of the experiment. DSS-LS rats had higher SBP, higher aPWV, and poorer spatial memory than SD-LS rats. The administration of stressors HS and MBG increased aPWV, SBP, and aortic wall collagen abundance in both strains vs. their LS controls. In SD rats, HS or MBG administration did not affect heart parameters, as assessed by ECHO vs. the SD-LS control. In DSS rats, impaired whole-heart structure and function were observed after HS diet administration in DSS-HS vs. DSS-LS rats. MBG treatment did not affect the ECHO parameters in DSS-MBG vs. DSS-LS rats. The HS diet led to an increase in endogenous plasma and urine MBG levels in both SD and DSS groups. Thus, the prohypertensive and profibrotic effect of HS diet might be partially attributed to an increase in MBG. The prohypertensive and profibrotic functions of MBG were pronounced in both DSS and SD rats, although quantitative PCR revealed that different profiles of profibrotic genes in DSS and SD rats was activated after MBG or HS administration. Spatial memory was not affected by HS diet or MBG treatment in either SD or DSS rats. Impaired cognitive function was associated with higher BP, CAS, and cardiovascular remodeling in young DSS-LS rats, as compared to young SD-LS rats. MBG and HS had similar effects on the cardiovascular system and its function in DSS and SD rats, although the rate of change in SD rats was lower than in DSS rats. The absence of a cumulative effect of increased aPWV and BP on spatial memory can be explained by the cerebrovascular and brain plasticity in young rats, which help the animals to tolerate CAS elevated by HS and MBG and to counterbalance the profibrotic effect of heightened MBG.


Asunto(s)
Glicósidos Cardíacos , Disfunción Cognitiva , Hipertensión , Animales , Presión Sanguínea , Bufanólidos , Glicósidos Cardíacos/farmacología , Disfunción Cognitiva/etiología , Masculino , Análisis de la Onda del Pulso , Ratas , Ratas Endogámicas Dahl , Ratas Sprague-Dawley , Cloruro de Sodio/farmacología , Cloruro de Sodio Dietético/efectos adversos , Remodelación Vascular
4.
Nurs Outlook ; 70(6 Suppl 2): S136-S145, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36585060

RESUMEN

BACKGROUND: Low back pain (LBP) is an urgent military health concern with implications for fitness, quality of life (QoL) and disability. PURPOSE: This secondary outcome analysis from a randomized controlled trial (RCT) was to determine if the addition of neuromuscular electrical stimulation core strength training (NMES) or progressive exercise (PEP)in conjunction with primary care management (PCM) was more effective than PCM alone. METHODS: This randomized controlled trial (RCT assigned 128 service members to the three intervention groups. The outcomes included changes in perceived disability (Oswestry Disability Index), health-related quality of life (SF-12v2), pain during activity (Clinical Back Pain Questionnaire), and daily steps walked in service members with subacute LBP. FINDINGS: Over a 9-week intervention, perceived disability, SF-12v2 physical component summary, and activity associated with pain improved in all groups. Home therapies were helpful to reduce perceived disability, QoL and pain during activity in service members with subacute LBP. DISCUSSION: These non-pharmacological options provide other home-managed approaches for those in the subacute LBP phase.


Asunto(s)
Personas con Discapacidad , Dolor de la Región Lumbar , Personal Militar , Humanos , Dolor de la Región Lumbar/terapia , Calidad de Vida , Ejercicio Físico , Resultado del Tratamiento
5.
J Mol Cell Cardiol ; 77: 1-10, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25257916

RESUMEN

Recent evidence indicates that the spontaneous action potential (AP) of isolated sinoatrial node cells (SANCs) is regulated by a system of stochastic mechanisms embodied within two clocks: ryanodine receptors of the "Ca(2+) clock" within the sarcoplasmic reticulum, spontaneously activate during diastole and discharge local Ca(2+) releases (LCRs) beneath the cell surface membrane; clock crosstalk occurs as LCRs activate an inward Na(+)/Ca(2+) exchanger current (INCX), which together with If and decay of K(+) channels prompts the "M clock," the ensemble of sarcolemmal-electrogenic molecules, to generate APs. Prolongation of the average LCR period accompanies prolongation of the average AP beating interval (BI). Moreover, the prolongation of the average AP BI accompanies increased AP BI variability. We hypothesized that both the average AP BI and AP BI variability are dependent upon stochasticity of clock mechanisms reported by the variability of LCR period. We perturbed the coupled-clock system by directly inhibiting the M clock by ivabradine (IVA) or the Ca(2+) clock by cyclopiazonic acid (CPA). When either clock is perturbed by IVA (3, 10 and 30 µM), which has no direct effect on Ca(2+) cycling, or CPA (0.5 and 5 µM), which has no direct effect on the M clock ion channels, the clock system failed to achieve the basal AP BI and both AP BI and AP BI variability increased. The changes in average LCR period and its variability in response to perturbations of the coupled-clock system were correlated with changes in AP beating interval and AP beating interval variability. We conclude that the stochasticity within the coupled-clock system affects and is affected by the AP BI firing rate and rhythm via modulation of the effectiveness of clock coupling.


Asunto(s)
Potenciales de Acción , Nodo Sinoatrial/fisiología , Animales , Benzazepinas/farmacología , Relojes Biológicos , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Señalización del Calcio , Indoles/farmacología , Ivabradina , Contracción Miocárdica , Conejos , Retículo Sarcoplasmático/metabolismo , Análisis de la Célula Individual , Nodo Sinoatrial/citología , Procesos Estocásticos
6.
Acta Diabetol ; 61(1): 127-130, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37741911

RESUMEN

AIMS: High glucose levels and Glucose-6-Phosphate Dehydrogenase deficiency (G6PDd) have both tissue inflammatory effects. Here we determined whether G6PDd accelerates arterial aging (information linked stiffening) in diabetes. METHODS: Plasma glucose, interleukin 6 (IL6), and arterial stiffness (indexed as carotid-femoral Pulse Wave Velocity, PWV) and red blood cell G6PD activity were assessed in a large (4448) Sardinian population. RESULTS: Although high plasma glucose in diabetics, did not differ by G6DP status (178.2 ± 55.1 vs 169.0 ± 50.1 mg/dl) in G6DPd versus non-G6PDd subjects, respectively, IL6, and PWV (adjusted for age and glucose) were significantly increased in G6PDd vs non-G6PDd subjects (PWV, 8.0 ± 0.4 vs 7.2 ± 0.2 m/sec) and (IL6, 6.9 ± 5.0 vs 4.2 ± 3.0 pg/ml). In non-diabetics, neither fasting plasma glucose, nor IL6, nor PWV were impacted by G6PDd. CONCLUSION: G6PDd in diabetics is associated with increased inflammatory markers and accelerated arterial aging.


Asunto(s)
Diabetes Mellitus , Deficiencia de Glucosafosfato Deshidrogenasa , Rigidez Vascular , Humanos , Envejecimiento , Glucemia , Diabetes Mellitus/epidemiología , Deficiencia de Glucosafosfato Deshidrogenasa/epidemiología , Interleucina-6 , Análisis de la Onda del Pulso
7.
Geroscience ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689157

RESUMEN

Aging per se is a major risk factor for cardiovascular diseases and is associated with progressive changes in cardiac structure and function. Rodent models are commonly used to study cardiac aging, but do not closely mirror differences as they occur in humans. Therefore, we performed a 2D echocardiographic study in non-human primates (NHP) to establish age- and sex-associated differences in cardiac function and morphometry in this animal model. M mode and 2D echocardiography and Doppler analyses were performed cross-sectionally in 38 healthy rhesus monkeys (20 females and 18 males), both young (age 7-12 years; n = 20) and old (age 19-30 years; n = 18). The diameters of the cardiac chambers did not differ significantly by age group, but males had larger left ventricular diameters (2.43 vs 2.06 cm in diastole and 1.91 vs 1.49 cm in systole, p = 0.0004 and p = 0.0001, respectively) and left atrial diameter (1.981 vs 1.732 cm; p = 0.0101). Left ventricular mass/body surface area did not vary significantly with age and sex. Ejection fraction did not differ by age and females presented a higher ejection fraction than males (54.0 vs 50.8%, p = 0.0237). Diastolic function, defined by early to late mitral peak flow velocity ratio (E/A), was significantly lower in old rhesus monkeys (2.31 vs 1.43, p = 0.0020) and was lower in females compared to males (1.595 vs 2.230, p = 0.0406). Right ventricular function, evaluated by measuring the Tricuspid Annular Plane Systolic Excursion, did not differ by age or sex, and Right Ventricular Free Wall Longitudinal Strain, did not differ with age but was lower in males than in females (-22.21 vs -17.95%, p = 0.0059). This is the first echocardiographic study to evaluate age- and sex-associated changes of cardiac morphometry and function in young and old NHP. The findings of this work will provide a reference to examine the effect of age and sex on cardiac diseases in NHP.

8.
Mil Med ; 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38345098

RESUMEN

INTRODUCTION: Musculoskeletal (MSK) injury is an inherent risk for military personnel that can potentially impact job performance, productivity, and military readiness. Evidence is needed to show the efficacy of nonpharmacological, self-managed therapies to reduce MSK symptoms at common injury sites that are feasible for use during expeditionary operations and home stations. This systematic review and meta-analysis identified, summarized, and synthesized available evidence from randomized and non-randomized trials on the effectiveness of self-managed, home-use therapies to improve pain, muscle strength, and physical performance in military personnel with MSK injuries, when compared to controls. METHODS: The electronic databases of MEDLINE ALL Ovid, Embase.com, Cochrane Library, Scopus, Clinicaltrial.gov, and CINAHL Complete via EBSCO were systematically searched for relevant reports published in English. Utilizing the Covidence platform and consistent with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, multiple reviewers, using pre-determined data fields, screened for eligibility, assessed risk of bias (RoB), and performed data extraction. Evaluation of treatment effectiveness was determined using multilevel mixed-effects meta-analysis. RESULTS: The database and register search yielded 1,643 reports that were screened for eligibility. After screening of titles/abstracts and full texts, 21 reports were identified for evidence synthesis. Of these, two reports were excluded and two described the same study, resulting in a final list of 18 studies (19 reports). For quality assessment, the overall RoB for the 18 studies was categorized as 33.3% low risk, 55.6% with some concerns, and 11.1% high risk. Across the five domains of bias, 70% of the reports were classified as low risk. This systematic review found that the differences in interventions, outcome measures, and design between the studies were associated with a substantial degree of heterogeneity (I2 = 60.74%), with a small overall improvement in outcomes of the interventions relative to their specific control (standard mean difference 0.28; 95% CI, 0.12 to 0.45). There were varying degrees of heterogeneity for individual body regions. This was due, in part, to a small number of studies per bodily location and differences in the study designs. For the neck/shoulder, heterogeneity was moderate, with the clearest positive effect being for physical performance outcomes via other medical devices. For the back, there was substantial heterogeneity between studies, with modest evidence that pain was favorably improved by other medical devices and exercise interventions. For the leg, one study showed a clear large effect for other medical devices (shockwave treatment) on pain with substantial heterogeneity. The best evidence for positive effects was for the knee, with mainly negligible heterogeneity and some benefits from bracing, electrotherapy, and exercise. CONCLUSION: Evidence showed small beneficial effects in pain, strength, and physical performance by individual body regions for some interventions, compared to controls. The best evidence for a positive effect was for the knee. The findings suggest that some benefit may be obtained by including several treatments during deployment in austere environments and prolonged casualty care scenarios of military personnel with MSK injuries. Further research is warranted to better assess the potential benefits of using these treatments during deployments in austere environments as part of an individualized, multimodal approach for MSK injuries.

9.
Mil Med ; 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36807977

RESUMEN

INTRODUCTION: The high prevalence of patellofemoral pain in military service members results in strength loss, pain, and functional limitations during required physical performance tasks. Knee pain is often the limiting factor during high-intensity exercise for strengthening and functional improvement, thus limiting certain therapies. Blood flow restriction (BFR) improves muscle strength when combined with resistance or aerobic exercise and may serve as a possible alternative to high-intensity training during recovery. In our previous work, we showed that Neuromuscular electrical stimulation (NMES) improves pain, strength, and function in patellofemoral pain syndrome (PFPS), which led us to ask whether the addition of BFR to NMES would result in further improvements. This randomized controlled trial compared knee and hip muscle strength, pain, and physical performance of service members with PFPS who received BFR-NMES (80% limb occlusion pressure [LOP]) or BFR-NMES set at 20 mmHg (active control/sham) over 9 weeks. METHODS: This randomized controlled trial randomly assigned 84 service members with PFPS to one of the two intervention groups. In-clinic BFR-NMES was performed two times per week, while at-home NMES with exercise and at-home exercise alone were performed on alternating days and omitted on in-clinic days. The outcome measures included strength testing of knee extensor/flexor and hip posterolateral stabilizers, 30-second chair stand, forward step-down, timed stair climb, and 6-minute walk. RESULTS: Improvement was observed in knee extensor (treated limb, P < .001) and hip strength (treated hip, P = .007) but not flexor over 9 weeks of treatment; however, there was no difference between high BFR (80% LOP) and BFR-sham. Physical performance and pain measures showed similar improvements over time with no differences between groups. In analyzing the relationship between the number of BFR-NMES sessions and the primary outcomes, we found significant relationships with improvements in treated knee extensor strength (0.87 kg/session, P < .0001), treated hip strength (0.23 kg/session, P = .04), and pain (-0.11/session, P < .0001). A similar set of relationships was observed for the time of NMES usage for treated knee extensor strength (0.02/min, P < .0001) and pain (-0.002/min, P = .002). CONCLUSION: NMES strength training offers moderate improvements in strength, pain, and performance; however, BFR did not provide an additive effect to NMES plus exercise. Improvements were positively related to the number of BFR-NMES treatments and NMES usage.

10.
Mil Med ; 188(1-2): 12-19, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34510214

RESUMEN

INTRODUCTION: Low back pain (LBP) is a major cause of visits to ambulatory care, missed duty time, and disability discharge. The subacute phase of LBP presents an opportune time to prevent chronicity and lessen recurrence. The goal of this randomized controlled trial (RCT) was to determine the relative effectiveness of neuromuscular electrical stimulation (NMES) training and a progressive exercise program (PEP) on improving physical performance, pain, and torso strength in U.S. service members with subacute LBP, compared to standard primary care management (PCM) alone. METHODS: This is an Institutional Review Board-approved protocol for an RCT conducted with active duty military personnel (n = 128) at Fort Campbell, Kentucky, between April 2018 and March 2020. Participants were randomized to receive NMES (n = 43), PEP (n = 42), or PCM (n = 43) for 9 weeks. Outcome measures of physical performance (sit-ups, push-ups, walking, and torso endurance), torso muscle strength (flexion and extension), and pain were assessed at baseline and after 3, 6, and 9 weeks. Analysis was intent-to-treat using linear mixed effects models. A sensitivity analysis was performed to address the protocol deviations that occurred in response to coronavirus disease 2019 pandemic, which required rescheduling 17 in-person study visits to home assessments at 9-week testing. RESULTS: Evidence was found for group differences in physical performance for sit-ups and push-ups, with NMES showing greater improvement than PCM. The two groups showed similar improvements in torso muscle strength, although the NMES groups may show better improvement during early treatment. No group differences in pain levels were observed during the intervention, and all groups improved during the course of the study period. The amount of NMES muscle stimulation was directly related to the level of improvement, which was not the case for the hours reported for PEP exercise. CONCLUSION: In an active duty population with subacute LBP, integrating NMES strength training into the rehabilitation therapy may offer a modest benefit for increasing sit-ups and push-ups and improving torso strength.


Asunto(s)
COVID-19 , Dolor de la Región Lumbar , Personal Militar , Humanos , Dolor de la Región Lumbar/terapia , Torso , Músculo Esquelético
11.
Geroscience ; 45(2): 1001-1013, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36520341

RESUMEN

Hypertrophic carotid geometric phenotypes (h-CGP) are predictors of incident cardiovascular disease (CVD). While arterial aging is hypothesized as a contributor to this associated risk, the association of CGPs with chronological age is not clear. In this manuscript we examine whether hypertrophic CGPs represent accelerated biological, rather than chronological, aging by examining their association with carotid-femoral pulse wave velocity (PWV), the hallmark of arterial aging. We analyzed data from 5516 participants of the SardiNIA study with a wide range of age at baseline (20-101 years), and a median follow-up time of 13 years (mean 11.5 years; maximum 17.9 years). Baseline CGPs were defined based on the common carotid lumen diameter, wall thickness, and their ratio. Subject-specific rates of change of PWV, blood pressure parameters, body mass index, glucose, and lipids were estimated using linear mixed effects models. Compared to those with typical(t-) CGP, those with dilated hypertrophy (dh-) CGP had a greater longitudinal increase in PWV; this increase was significantly greater among older individuals and men. The greater PWV longitudinal increase in dh-CGP remained significant after adjusting for baseline values and rates of change of covariates. Dilated hypertrophic CGP is independently associated with accelerated increase in age-associated arterial stiffening over time, with a strong association in men than in women. Future studies are needed to examine if this association mediates the increased risk for CVD observed in individuals with hypertrophic cardiac remodelling and the role of retarding it to reduce this risk. HIGHLIGHTS: • Individuals with dilated hypertrophic geometric phenotypes of the common carotid artery (increased age- and sex-specific wall thickness and lumen diameter) have greater future central arterial stiffening, independently of other determinants of arterial stiffening. • The dilated hypertrophic phenotype group has a greater age-specific arterial dilation, wall thickening, and stiffness (the arterial aging triad). This suggests that this phenotype is a form of accelerated aging that might explain the worse clinic outcomes observed in this group. • Understanding the natural history of the carotid geometric phenotype across the lifespan and the determinants of the deleterious progression towards the dilated hypertrophic phenotype are needed to develop interventions that reduce the adverse clinical outcomes associated with it.


Asunto(s)
Enfermedades Cardiovasculares , Análisis de la Onda del Pulso , Masculino , Femenino , Humanos , Arterias Carótidas/fisiología , Arteria Carótida Común , Hipertrofia , Fenotipo
12.
Cell Metab ; 35(7): 1179-1194.e5, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37437544

RESUMEN

Emerging new evidence highlights the importance of prolonged daily fasting periods for the health and survival benefits of calorie restriction (CR) and time-restricted feeding (TRF) in male mice; however, little is known about the impact of these feeding regimens in females. We placed 14-month-old female mice on five different dietary regimens, either CR or TRF with different feeding windows, and determined the effects of these regimens on physiological responses, progression of neoplasms and inflammatory diseases, serum metabolite levels, and lifespan. Compared with TRF feeding, CR elicited a robust systemic response, as it relates to energetics and healthspan metrics, a unique serum metabolomics signature in overnight fasted animals, and was associated with an increase in lifespan. These results indicate that daytime (rest-phase) feeding with prolonged fasting periods initiated late in life confer greater benefits when combined with imposed lower energy intake.


Asunto(s)
Restricción Calórica , Ayuno , Femenino , Masculino , Animales , Ratones , Ingestión de Energía , Ayuno Intermitente , Longevidad
13.
Sci Rep ; 13(1): 18875, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37914708

RESUMEN

Average beat interval (BI) and beat interval variability (BIV) are primarily determined by mutual entrainment between the autonomic-nervous system (ANS) and intrinsic mechanisms that govern sinoatrial node (SAN) cell function. While basal heart rate is not affected by age in humans, age-dependent reductions in intrinsic heart rate have been documented even in so-called healthy individuals. The relative contributions of the ANS and intrinsic mechanisms to age-dependent deterioration of SAN function in humans are not clear. We recorded ECG on patients (n = 16 < 21 years and n = 23 41-78 years) in the basal state and after ANS blockade (propranolol and atropine) in the presence of propofol and dexmedetomidine anesthesia. Average BI and BIV were analyzed. A set of BIV features were tested to designated the "signatures" of the ANS and intrinsic mechanisms and also the anesthesia "signature". In young patients, the intrinsic mechanisms and ANS mainly contributed to long- and short-term BIV, respectively. In adults, both ANS and intrinsic mechanisms contributed to short-term BIV, while the latter also contributed to long-term BIV. Furthermore, anesthesia affected ANS function in young patients and both mechanisms in adult. The work also showed that intrinsic mechanism features can be calculated from BIs, without intervention.


Asunto(s)
Atropina , Nodo Sinoatrial , Adulto , Humanos , Propranolol , Frecuencia Cardíaca/fisiología , Sistema Nervioso Autónomo/fisiología , Electrocardiografía
14.
J Am Heart Assoc ; 11(6): e019014, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35253449

RESUMEN

Background Lower ankle-brachial index (ABI) values within the 0.90 to 1.40 range are associated with poorer mitochondrial oxidative capacity of thigh muscles in cross-sectional analyses. Whether ABI decline is associated with greater declines in thigh muscle oxidative capacity with aging is unknown. Method and Results We analyzed data from 228 participants (100 men) of the BLSA (Baltimore Longitudinal Study of Aging), aged 39 to 97 years, with an ABI between 0.9 and 1.40 at baseline and at follow-up (mean follow-up period of 2.8 years). We examined mitochondrial oxidative capacity of the left thigh muscle, by measuring the postexercise phosphocreatine recovery rate constant (kPCr) from phosphorus-31 magnetic resonance spectroscopy. Greater kPCr indicated higher mitochondrial oxidative capacity. Although kPCr was available on the left leg only, ABI was measured in both legs. Longitudinal rates of change (Change) of left and right ABI and kPCr of the left thigh muscle were estimated using linear mixed effects models, and their association was analyzed by standardized multiple linear regressions. In multivariate analysis including sex, age, baseline kPCr, both left and right baseline ABI, and ABI change in both legs, (kPCr)Change was directly associated with ipsilateral (left) (ABI)Change (standardized [STD]-ß=0.14; P=0.0168) but not with contralateral (right) (ABI)Change (P=0.22). Adjusting for traditional cardiovascular risk factors, this association remained significant (STD-ß=0.18; P=0.0051). (kPCr)Change was steeper in White race participants (STD-ß=0.16; P=0.0122) and body mass index (STD-ß=0.13; P=0.0479). There was no significant association with current smoking status (P=0.63), fasting glucose (P=0.28), heart rate (P=0.67), mean blood pressure (P=0.78), and low-density lipoprotein (P=0.75), high-density lipoprotein (P=0.82), or triglycerides (P=0.15). Conclusions In people without peripheral arterial disease, greater decline in ABI over time, but not baseline ABI, was associated with faster decline in thigh mitochondrial oxidative capacity in the ipsilateral leg. Further studies are needed to examine whether early interventions that improve lower extremity muscle perfusion can improve and prevent the decline of muscle energetics.


Asunto(s)
Enfermedad Arterial Periférica , Enfermedades de Transmisión Sexual , Adulto , Anciano , Anciano de 80 o más Años , Índice Tobillo Braquial , Estudios Transversales , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Enfermedad Arterial Periférica/diagnóstico , Factores de Riesgo
15.
Geroscience ; 44(6): 2801-2830, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35759167

RESUMEN

The combined influences of sinoatrial nodal (SAN) pacemaker cell automaticity and its response to autonomic input determine the heart's beating interval variability and mean beating rate. To determine the intrinsic SAN and autonomic signatures buried within EKG RR interval time series change in advanced age, we measured RR interval variability before and during double autonomic blockade at 3-month intervals from 6 months of age until the end of life in long-lived (those that achieved the total cohort median life span of 24 months and beyond) C57/BL6 mice. Prior to 21 months of age, time-dependent changes in intrinsic RR interval variability and mean RR interval were relatively minor. Between 21 and 30 months of age, however, marked changes emerged in intrinsic SAN RR interval variability signatures, pointing to a reduction in the kinetics of pacemaker clock mechanisms, leading to reduced synchronization of molecular functions within and among SAN cells. This loss of high-frequency signal processing within intrinsic SAN signatures resulted in a marked increase in the mean intrinsic RR interval. The impact of autonomic signatures on RR interval variability were net sympathetic and partially compensated for the reduced kinetics of the intrinsic SAN RR interval variability signatures, and partially, but not completely, shifted the EKG RR time series intervals to a more youthful pattern. Cross-sectional analyses of other subsets of C57/BL6 ages indicated that at or beyond the median life span of our longitudinal cohort, noncardiac, constitutional, whole-body frailty was increased, energetic efficiency was reduced, and the respiratory exchange ratio increased. We interpret the progressive reduction in kinetics in intrinsic SAN RR interval variability signatures in this context of whole-body frailty beyond 21 months of age to be a manifestation of "heartbeat frailty."


Asunto(s)
Fragilidad , Animales , Ratones , Frecuencia Cardíaca/fisiología , Estudios Transversales , Nodo Sinoatrial/fisiología , Electrocardiografía
16.
J Am Heart Assoc ; 11(17): e022574, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36000422

RESUMEN

Background Age-associated aortic remodeling includes a marked increase in intimal medial thickness (IMT), associated with signs of inflammation. Although aortic wall milk fat globule-epidermal growth factor VIII (MFG-E8) increases with age, and is associated with aortic inflammation, it is not known whether MFG-E8 is required for the age-associated increase in aortic IMT. Here, we tested whether MFG-E8 is required for the age-associated increase in aortic IMT. Methods and Results To determine the role of MFG-E8 in the age-associated increase of IMT, we compared aortic remodeling in adult (20-week) and aged (96-week) MFG-E8 (-/-) knockout and age matched wild-type (WT) littermate mice. The average aortic IMT increased with age in the WT from 50±10 to 70±20 µm (P<0.0001) but did not significantly increase with age in MFG-E8 knockout mice. Because angiotensin II signaling is implicated as a driver of age-associated increase in IMT, we infused 30-week-old MFG-E8 knockout and age-matched littermate WT mice with angiotensin II or saline via osmotic mini-pumps to determine whether MFG-E8 is required for angiotensin II-induced aortic remodeling. (1) In WT mice, angiotensin II infusion substantially increased IMT, elastic lamina degradation, collagen deposition, and the proliferation of vascular smooth muscle cells; in contrast, these effects were significantly reduced in MFG-E8 KO mice; (2) On a molecular level, angiotensin II treatment significantly increased the activation and expression of matrix metalloproteinase type 2, transforming growth factor beta 1, and its downstream signaling molecule phosphorylated mother against decapentaplegic homolog 2, and collagen type I production in WT mice; however, in the MFG-E8 knockout mice, these molecular effects were significantly reduced; and (3) in WT mice, angiotensin II increased levels of aortic inflammatory markers phosphorylated nuclear factor-kappa beta p65, monocyte chemoattractant protein 1, tumor necrosis factor alpha, intercellular adhesion molecule 1, and vascular cell adhesion molecule 1 molecular expression, while in contrast, these inflammatory markers did not change in knockout mice. Conclusions Thus, MFG-E8 is required for both age-associated proinflammatory aortic remodeling and also for the angiotensin II-dependent induction in younger mice of an aortic inflammatory phenotype observed in advanced age. Targeting MFG-E8 would be a novel molecular approach to curb adverse arterial remodeling.


Asunto(s)
Angiotensina II , Factor de Crecimiento Epidérmico , Angiotensina II/farmacología , Animales , Glucolípidos , Glicoproteínas , Inflamación/metabolismo , Gotas Lipídicas , Ratones , Ratones Noqueados , Proteínas de la Leche/genética , Proteínas de la Leche/metabolismo
17.
Nutr Diabetes ; 12(1): 48, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36456550

RESUMEN

BACKGROUND: Nutrition research is relying more on artificial intelligence and machine learning models to understand, diagnose, predict, and explain data. While artificial intelligence and machine learning models provide powerful modeling tools, failure to use careful and well-thought-out modeling processes can lead to misleading conclusions and concerns surrounding ethics and bias. METHODS: Based on our experience as reviewers and journal editors in nutrition and obesity, we identified the most frequently omitted best practices from statistical modeling and how these same practices extend to machine learning models. We next addressed areas required for implementation of machine learning that are not included in commercial software packages. RESULTS: Here, we provide a tutorial on best artificial intelligence and machine learning modeling practices that can reduce potential ethical problems with a checklist and guiding principles to aid nutrition researchers in developing, evaluating, and implementing artificial intelligence and machine learning models in nutrition research. CONCLUSION: The quality of AI/ML modeling in nutrition research requires iterative and tailored processes to mitigate against potential ethical problems or to predict conclusions that are free of bias.


Asunto(s)
Inteligencia Artificial , Aprendizaje Automático , Humanos , Estado Nutricional , Obesidad
18.
Front Cardiovasc Med ; 9: 1096887, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36741836

RESUMEN

Background: Aging is associated with increased levels of reactive oxygen species and inflammation that disrupt proteostasis and mitochondrial function and leads to organism-wide frailty later in life. ARA290 (cibinetide), an 11-aa non-hematopoietic peptide sequence within the cardioprotective domain of erythropoietin, mediates tissue protection by reducing inflammation and fibrosis. Age-associated cardiac inflammation is linked to structural and functional changes in the heart, including mitochondrial dysfunction, impaired proteostasis, hypertrophic cardiac remodeling, and contractile dysfunction. Can ARA290 ameliorate these age-associated cardiac changes and the severity of frailty in advanced age? Methods: We conducted an integrated longitudinal (n = 48) and cross-sectional (n = 144) 15 months randomized controlled trial in which 18-month-old Fischer 344 x Brown Norway rats were randomly assigned to either receive chronic ARA290 treatment or saline. Serial echocardiography, tail blood pressure and body weight were evaluated repeatedly at 4-month intervals. A frailty index was calculated at the final timepoint (33 months of age). Tissues were harvested at 4-month intervals to define inflammatory markers and left ventricular tissue remodeling. Mitochondrial and myocardial cell health was assessed in isolated left ventricular myocytes. Kaplan-Meier survival curves were established. Mixed ANOVA tests and linear mixed regression analysis were employed to determine the effects of age, treatment, and age-treatment interactions. Results: Chronic ARA290 treatment mitigated age-related increases in the cardiac non-myocyte to myocyte ratio, infiltrating leukocytes and monocytes, pro-inflammatory cytokines, total NF-κB, and p-NF-κB. Additionally, ARA290 treatment enhanced cardiomyocyte autophagy flux and reduced cellular accumulation of lipofuscin. The cardiomyocyte mitochondrial permeability transition pore response to oxidant stress was desensitized following chronic ARA290 treatment. Concurrently, ARA290 significantly blunted the age-associated elevation in blood pressure and preserved the LV ejection fraction. Finally, ARA290 preserved body weight and significantly reduced other markers of organism-wide frailty at the end of life. Conclusion: Administration of ARA290 reduces cell and tissue inflammation, mitigates structural and functional changes within the cardiovascular system leading to amelioration of frailty and preserved healthspan.

19.
Elife ; 112022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36515265

RESUMEN

Adult (3 month) mice with cardiac-specific overexpression of adenylyl cyclase (AC) type VIII (TGAC8) adapt to an increased cAMP-induced cardiac workload (~30% increases in heart rate, ejection fraction and cardiac output) for up to a year without signs of heart failure or excessive mortality. Here, we show classical cardiac hypertrophy markers were absent in TGAC8, and that total left ventricular (LV) mass was not increased: a reduced LV cavity volume in TGAC8 was encased by thicker LV walls harboring an increased number of small cardiac myocytes, and a network of small interstitial proliferative non-cardiac myocytes compared to wild type (WT) littermates; Protein synthesis, proteosome activity, and autophagy were enhanced in TGAC8 vs WT, and Nrf-2, Hsp90α, and ACC2 protein levels were increased. Despite increased energy demands in vivo LV ATP and phosphocreatine levels in TGAC8 did not differ from WT. Unbiased omics analyses identified more than 2,000 transcripts and proteins, comprising a broad array of biological processes across multiple cellular compartments, which differed by genotype; compared to WT, in TGAC8 there was a shift from fatty acid oxidation to aerobic glycolysis in the context of increased utilization of the pentose phosphate shunt and nucleotide synthesis. Thus, marked overexpression of AC8 engages complex, coordinate adaptation "circuity" that has evolved in mammalian cells to defend against stress that threatens health or life (elements of which have already been shown to be central to cardiac ischemic pre-conditioning and exercise endurance cardiac conditioning) that may be of biological significance to allow for proper healing in disease states such as infarction or failure of the heart.


Asunto(s)
Adaptación Fisiológica , Miocitos Cardíacos , Estrés Fisiológico , Animales , Ratones , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/fisiopatología , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Hipertrofia/fisiopatología , Ratones Transgénicos , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Humanos
20.
Ann Neurol ; 67(1): 41-52, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20186857

RESUMEN

OBJECTIVE: Age and excessive energy intake/obesity are risk factors for cerebrovascular disease, but it is not known if and how these factors affect the extent of brain damage and outcome in ischemic stroke. We therefore determined the interactions of age and energy intake on the outcome of ischemic brain injury, and elucidated the underlying mechanisms. METHODS: We utilized a novel microchip-based immunoaffinity capillary electrophoresis technology to measure a panel of neurotrophic factors, cytokines, and cellular stress resistance proteins in brain tissue samples from young, middle-aged, and old mice that had been maintained on control or energy-restricted diets prior to middle cerebral artery occlusion and reperfusion. RESULTS: Mortality from focal ischemic stroke was increased with advancing age and reduced by an intermittent fasting (IF) diet. Brain damage and functional impairment were reduced by IF in young and middle-aged mice, but not in old mice. The basal and poststroke levels of neurotrophic factors (brain-derived neurotrophic factor and basic fibroblast growth factor), protein chaperones (heat shock protein 70 and glucose regulated protein 78), and the antioxidant enzyme heme oxygenase-1 were decreased, whereas levels of inflammatory cytokines were increased in the cerebral cortex and striatum of old mice compared with younger mice. IF coordinately increased levels of protective proteins and decreased inflammatory cytokines in young, but not in old mice. INTERPRETATION: Reduction in dietary energy intake differentially modulates neurotrophic and inflammatory pathways to protect neurons against ischemic injury, and these beneficial effects of IF are compromised during aging, resulting in increased brain damage and poorer functional outcome.


Asunto(s)
Envejecimiento/metabolismo , Encéfalo/metabolismo , Ayuno/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Accidente Cerebrovascular/metabolismo , Factores de Edad , Envejecimiento/patología , Animales , Encéfalo/patología , Muerte Celular , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Dieta Reductora , Electroforesis por Microchip , Infarto de la Arteria Cerebral Media/mortalidad , Infarto de la Arteria Cerebral Media/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Pruebas Neuropsicológicas , Distribución Aleatoria , Daño por Reperfusión/metabolismo , Daño por Reperfusión/mortalidad , Daño por Reperfusión/patología , Accidente Cerebrovascular/mortalidad , Accidente Cerebrovascular/patología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA