Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Bioorg Med Chem Lett ; 30(14): 127214, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32527538

RESUMEN

A strategy to conformationally restrain a series of GlyT1 inhibitors identified potent analogs that exhibited slowly interconverting rotational isomers. Further studies to address this concern led to a series of azetidine-based inhibitors. Compound 26 was able to elevate CSF glycine levels in vivo and demonstrated potency comparable to Bitopertin in an in vivo rat receptor occupancy study. Compound 26 was subsequently shown to enhance memory in a Novel Object Recognition (NOR) behavioral study after a single dose of 0.03 mg/kg, and in a contextual fear conditioning (cFC) study after four QD doses of 0.01-0.03 mg/kg.


Asunto(s)
Azetidinas/farmacología , Proteínas de Transporte de Glicina en la Membrana Plasmática/antagonistas & inhibidores , Memoria/efectos de los fármacos , Azetidinas/síntesis química , Azetidinas/química , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Estructura Molecular , Relación Estructura-Actividad
2.
Proc Natl Acad Sci U S A ; 114(1): 119-124, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-27994145

RESUMEN

Zika, a mosquito-borne viral disease that emerged in South America in 2015, was declared a Public Health Emergency of International Concern by the WHO in February of 2016. We developed a climate-driven R0 mathematical model for the transmission risk of Zika virus (ZIKV) that explicitly includes two key mosquito vector species: Aedes aegypti and Aedes albopictus The model was parameterized and calibrated using the most up to date information from the available literature. It was then driven by observed gridded temperature and rainfall datasets for the period 1950-2015. We find that the transmission risk in South America in 2015 was the highest since 1950. This maximum is related to favoring temperature conditions that caused the simulated biting rates to be largest and mosquito mortality rates and extrinsic incubation periods to be smallest in 2015. This event followed the suspected introduction of ZIKV in Brazil in 2013. The ZIKV outbreak in Latin America has very likely been fueled by the 2015-2016 El Niño climate phenomenon affecting the region. The highest transmission risk globally is in South America and tropical countries where Ae. aegypti is abundant. Transmission risk is strongly seasonal in temperate regions where Ae. albopictus is present, with significant risk of ZIKV transmission in the southeastern states of the United States, in southern China, and to a lesser extent, over southern Europe during the boreal summer season.


Asunto(s)
El Niño Oscilación del Sur , Modelos Estadísticos , Infección por el Virus Zika/epidemiología , Infección por el Virus Zika/transmisión , Virus Zika , Aedes , Animales , Haplorrinos , Humanos , Mosquitos Vectores , Riesgo , Uganda , Infección por el Virus Zika/mortalidad
3.
J Pharmacol Exp Ther ; 370(3): 399-407, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31253692

RESUMEN

Inhibition of phosphodiesterase 2A (PDE2A) has been proposed as a potential approach to enhance cognitive functioning and memory through boosting intracellular cGMP/cAMP and enhancing neuroplasticity in memory-related neural circuitry. Previous preclinical studies demonstrated that PDE2A inhibitors could reverse N-methyl-D-aspartate receptor antagonist (5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine or ketamine-induced memory deficit. Here, we report that the potent and selective PDE2A inhibitor 4-(1-azetidinyl)-7-methyl-5-[1-methyl-5-[5-(trifluoromethyl)-2-pyridinyl]-1H-pyrazol-4-yl]-imidazo[5,1-f][1,2,4]triazine (PF-05180999) enhances long-term memory in a contextual fear conditioning model in the rat at the oral dose of 0.3 mg/kg. Target engagement at this efficacious dose was explored using in vivo autoradiography. Converse to the results of a decrease of PDE2A binding (target occupancy) by the PDE2A inhibitor, a paradoxical increase (up to 40%) in PDE2A binding was detected. However, a typical target occupancy curve could be generated by PF-05180999 at much higher doses. In vitro experiments using recombinant PDE2A protein or rat brain homogenate that contains native PDE2A protein demonstrated that increased cGMP after initial PDE2A inhibition could be responsible for the activation of PDE2A enzyme via allosteric binding to the GAF-B domain, leading to positive cooperativity of the dormant PDE2A enzymes. Our results suggest that when evaluating target engagement of PDE2A inhibitors for memory disorder in clinical setting with occupancy assays, the efficacious dose may not fall on the typical receptor/target curve. On the contrary, an increase in PDE2A tracer binding is likely seen. Our results also suggest that when evaluating target occupancy of enzymes, potential regulation of enzyme activities should be considered.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/metabolismo , Memoria a Largo Plazo/efectos de los fármacos , Inhibidores de Fosfodiesterasa/farmacología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/fisiología , Relación Dosis-Respuesta a Droga , Ligandos , Masculino , Ratas
4.
Malar J ; 18(1): 61, 2019 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-30845998

RESUMEN

BACKGROUND: Malaria is among the top causes of mortality and morbidity in Zambia. Efforts to control, prevent, and eliminate it have been intensified in the past two decades which has contributed to reductions in malaria prevalence and under-five mortality. However, there was a 21% upsurge in malaria prevalence between 2010 and 2015. Zambia is one of the only 13 countries to record an increase in malaria among 91 countries monitored by the World Health Organization in 2015. This study investigated the upsurge by decomposition of drivers of malaria. METHODS: The study used secondary data from three waves of nationally representative cross-sectional surveys on key malaria indicators conducted in 2010, 2012 and 2015. Using multivariable logistic regression, determinants of malaria prevalence were identified and then marginal effects of each determinant were derived. The marginal effects were then combined with changes in coverage rates of determinants between 2010 and 2015 to obtain the magnitude of how much each variable contributed to the change in the malaria prevalence. RESULTS: The odds ratio of malaria for those who slept under an insecticide-treated net (ITN) was 0.90 (95% CI 0.77-0.97), indoor residual spraying (IRS) was 0.66 (95% CI 0.49-0.89), urban residence was 0.23 (95% CI 0.15-0.37), standard house was 0.40 (95% CI 0.35-0.71) and age group 12-59 Months against those below 12 months was 4.04 (95% CI 2.80-5.81). Decomposition of prevalence changes by determinants showed that IRS reduced malaria prevalence by - 0.3% and ITNs by - 0.2% however, these reductions were overridden by increases in prevalence due to increases in the proportion of more at-risk children aged 12-59 months by + 2.3% and rural residents by + 2.2%. CONCLUSION: The increases in interventions, such as ITNs and IRS, were shown to have contributed to malaria reduction in 2015; however, changes in demographics such as increases in the proportion of more at risk groups among under-five children and rural residents may have overridden the impact of these interventions and resulted in an overall increase. The upsurge in malaria in 2015 compared to 2010 may not have been due to weaknesses in programme interventions but due to increases in more at-risk children and rural residents compared to 2010. The apparent increase in rural residents in the sample population may not have been a true reflection of the population structure but due to oversampling in rural areas which was not fully adjusted for. The increase in malaria prevalence may therefore have been overestimated.


Asunto(s)
Malaria/epidemiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Estudios Transversales , Demografía , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Prevalencia , Factores de Riesgo , Adulto Joven , Zambia/epidemiología
5.
Epidemiol Infect ; 147: e170, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-31063099

RESUMEN

Dengue is a widespread vector-borne disease believed to affect between 100 and 390 million people every year. The interaction between vector, host and pathogen is influenced by various climatic factors and the relationship between dengue and climatic conditions has been poorly explored in India. This study explores the relationship between El Niño Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD) and dengue cases in India. Additionally, distributed lag non-linear model was used to assess the delayed effects of climatic factors on dengue cases. The weekly dengue cases reported by the Integrated Disease Surveillance Program (IDSP) over India during the period 2010-2017 were analysed. The study shows that dengue cases usually follow a seasonal pattern, with most cases reported in August and September. Both temperature and rainfall were positively associated with the number of dengue cases. The precipitation shows the higher transmission risk of dengue was observed between 8 and 15 weeks of lag. The highest relative risk (RR) of dengue was observed at 60 mm rainfall with a 12-week lag period when compared with 40 and 80 mm rainfall. The RR of dengue tends to increase with increasing mean temperature above 24 °C. The largest transmission risk of dengue was observed at 30 °C with a 0-3 weeks of lag. Similarly, the transmission risk increases more than twofold when the minimum temperature reaches 26 °C with a 2-week lag period. The dengue cases and El Niño were positively correlated with a 3-6 months lag period. The significant correlation observed between the IOD and dengue cases was shown for a 0-2 months lag period.


Asunto(s)
Clima , Dengue/epidemiología , Transmisión de Enfermedad Infecciosa , Conceptos Meteorológicos , Costo de Enfermedad , Humanos , India/epidemiología , Océano Índico , Océano Pacífico , Estaciones del Año , Temperatura , Factores de Tiempo
6.
Proc Natl Acad Sci U S A ; 111(9): 3286-91, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24596427

RESUMEN

Malaria is an important disease that has a global distribution and significant health burden. The spatial limits of its distribution and seasonal activity are sensitive to climate factors, as well as the local capacity to control the disease. Malaria is also one of the few health outcomes that has been modeled by more than one research group and can therefore facilitate the first model intercomparison for health impacts under a future with climate change. We used bias-corrected temperature and rainfall simulations from the Coupled Model Intercomparison Project Phase 5 climate models to compare the metrics of five statistical and dynamical malaria impact models for three future time periods (2030s, 2050s, and 2080s). We evaluated three malaria outcome metrics at global and regional levels: climate suitability, additional population at risk and additional person-months at risk across the model outputs. The malaria projections were based on five different global climate models, each run under four emission scenarios (Representative Concentration Pathways, RCPs) and a single population projection. We also investigated the modeling uncertainty associated with future projections of populations at risk for malaria owing to climate change. Our findings show an overall global net increase in climate suitability and a net increase in the population at risk, but with large uncertainties. The model outputs indicate a net increase in the annual person-months at risk when comparing from RCP2.6 to RCP8.5 from the 2050s to the 2080s. The malaria outcome metrics were highly sensitive to the choice of malaria impact model, especially over the epidemic fringes of the malaria distribution.


Asunto(s)
Cambio Climático , Demografía , Malaria/epidemiología , Malaria/transmisión , Modelos Teóricos , Simulación por Computador , Predicción , Geografía , Humanos , Lluvia , Medición de Riesgo , Factores Socioeconómicos , Temperatura , Incertidumbre , Urbanización
7.
Proc Natl Acad Sci U S A ; 111(9): 3233-8, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24344270

RESUMEN

The impacts of global climate change on different aspects of humanity's diverse life-support systems are complex and often difficult to predict. To facilitate policy decisions on mitigation and adaptation strategies, it is necessary to understand, quantify, and synthesize these climate-change impacts, taking into account their uncertainties. Crucial to these decisions is an understanding of how impacts in different sectors overlap, as overlapping impacts increase exposure, lead to interactions of impacts, and are likely to raise adaptation pressure. As a first step we develop herein a framework to study coinciding impacts and identify regional exposure hotspots. This framework can then be used as a starting point for regional case studies on vulnerability and multifaceted adaptation strategies. We consider impacts related to water, agriculture, ecosystems, and malaria at different levels of global warming. Multisectoral overlap starts to be seen robustly at a mean global warming of 3 °C above the 1980-2010 mean, with 11% of the world population subject to severe impacts in at least two of the four impact sectors at 4 °C. Despite these general conclusions, we find that uncertainty arising from the impact models is considerable, and larger than that from the climate models. In a low probability-high impact worst-case assessment, almost the whole inhabited world is at risk for multisectoral pressures. Hence, there is a pressing need for an increased research effort to develop a more comprehensive understanding of impacts, as well as for the development of policy measures under existing uncertainty.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Ambiente , Calentamiento Global/estadística & datos numéricos , Modelos Teóricos , Política Pública , Agricultura/estadística & datos numéricos , Simulación por Computador , Ecosistema , Geografía , Calentamiento Global/economía , Humanos , Malaria/epidemiología , Temperatura , Abastecimiento de Agua/estadística & datos numéricos
8.
Langmuir ; 32(20): 5048-57, 2016 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-27133955

RESUMEN

A quantitative investigation of the responses of surface-grown biocompatible brushes of poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC) to different types of salt has been carried out using ellipsometry, quartz crystal microbalance (QCM) measurements, and friction force microscopy. Both cations and anions of varying valency over a wide range of concentrations were examined. Ellipsometry shows that the height of the brushes is largely independent of the ionic strength, confirming that the degree of swelling of the polymer is independent of the ionic character of the medium. In contrast, QCM measurements reveal significant changes in mass and dissipation to the PMPC brush layer, suggesting that ions bind to phosphorylcholine (PC) groups in PMPC molecules, which results in changes in the stiffness of the brush layer, and the binding affinity varies with salt type. Nanotribological measurements made using friction force microscopy show that the coefficient of friction decreases with increasing ionic strength for a variety of salts, supporting the conclusion drawn from QCM measurements. It is proposed that the binding of ions to the PMPC molecules does not change their hydration state, and hence the height of the surface-grown polymeric brushes. However, the balance of the intra- and intermolecular interactions is strongly dependent upon the ionic character of the medium between the hydrated chains, modulating the interactions between the zwitterionic PC pendant groups and, consequently, the stiffness of the PMPC molecules in the brush layer.

9.
Soft Matter ; 12(5): 1477-86, 2016 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-26648408

RESUMEN

The interactions of two oil droplets grown in the presence of swollen, lightly cross-linked cationic poly(tert-butylamino)ethyl methacrylate (PTBAEMA) microgels was monitored using a high-speed video camera. Three oils (n-dodecane, isopropyl myristate and sunflower oil) were investigated, each in the absence and presence of an oil-soluble cross-linker [tolylene 2,4-diisocyanate-terminated poly(propylene glycol), PPG-TDI]. Adsorption of the swollen microgel particles was confirmed by interfacial tension, interfacial elasticity and dilational viscosity measurements on single pendant oil droplets, and assessment of the oscillatory dynamics for coalescing droplet pairs. Like the analogous bulk emulsions, particle adsorption alone did not prevent coalescence of pairs of giant Pickering emulsion droplets. However, prior addition of surface-active PPG-TDI cross-linker to the oil phase results in the formation of highly stable microgel colloidosomes via reaction with the secondary amine groups on the PTBAEMA chains. Colloidosome stability depended on the age of the oil-water interface. This reflects a balance between the adsorption kinetics of the PPG-TDI cross-linker and the microgel particles, each of which must be present at the interface to form a stable colloidosome. Colloidosome formation was virtually instantaneous in n-dodecane, but took up to 120 s in the case of isopropyl myristate. The impact of an acid-induced latex-to-microgel transition on the interaction of giant colloidosomes (originally prepared at pH 10 using isopropyl myristate) was also studied. This acid challenge did not result in coalescence, which is consistent with a closely-related study (A. J. Morse et al., Langmuir, 2014, 30(42), 12509-12519). No evidence was observed for inter-colloidosome cross-linking, which was attributed to retention of an aqueous film between the adjacent pair of colloidosomes.

10.
Langmuir ; 30(42): 12509-19, 2014 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-25264579

RESUMEN

Emulsion copolymerization of 2-(tert-butylamino)ethyl methacrylate (TBAEMA) with divinylbenzene (DVB) cross-linker in the presence of monomethoxy-capped poly(ethylene glycol) methacrylate (PEGMA) at 70 °C afforded sterically stabilized poly[2-(tert-butylamino)ethyl methacrylate] (PTBAEMA) latexes at 10% solids at pH 9. Such particles proved to be an effective Pickering emulsifier at pH 10 for both n-dodecane and n-hexane. (1)H NMR spectroscopy was used to follow the model reaction between the secondary amine of the TBAEMA monomer and the isocyanate groups of tolylene 2,4-diisocyanate-terminated poly(propylene glycol) (PPG-TDI). Cross-linking the PTBAEMA latex particles adsorbed at the n-dodecane/water interface using this oil-soluble PPG-TDI cross-linker at around 0 (o)C led to robust colloidosomes that survived an acid challenge. This resistance to demulsification was confirmed via laser diffraction studies following an in situ switch from pH 10 to 3, since no change was observed in either the oil droplet size or concentration (compared to non-cross-linked PTBAEMA-stabilized Pickering emulsions). Such PTBAEMA colloidosomes survived removal of the internal oil phase on washing with excess ethanol. However, because ethanol is a good solvent for the PTBAEMA chains, imaging the ethanol-treated colloidosomes via electron microscopy proved rather problematic due to partial film formation. Therefore, a series of TBAEMA/styrene copolymer latexes (comprising 10, 30, 50, or 60 mol % styrene) were prepared via emulsion copolymerization at 70 °C in the presence of DVB and PEGMA. The higher glass transition temperatures exhibited by these copolymer particles (and their greater resistance to ethanol swelling) enabled better-quality electron microscopy images to be obtained. The presence of nitrogen atoms at the surface of these copolymer latex particles was confirmed via X-ray photoelectron spectroscopy studies; these secondary amine groups allow covalent cross-linking via PPG-TDI when adsorbed at the surface of n-dodecane droplets at TBAEMA comonomer contents as low as 40 mol %. After removal of the n-hexane oil phase by evaporation, fluorescence microscopy studies indicate that these colloidosomes undergo collapse in their latex form at pH 10 but regain their original spherical morphology in their cationic microgel form at pH 3.5.

11.
Malar J ; 13: 310, 2014 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-25108445

RESUMEN

BACKGROUND: Malaria presents public health challenge despite extensive intervention campaigns. A 30-year hindcast of the climatic suitability for malaria transmission in India is presented, using meteorological variables from a state of the art seasonal forecast model to drive a process-based, dynamic disease model. METHODS: The spatial distribution and seasonal cycles of temperature and precipitation from the forecast model are compared to three observationally-based meteorological datasets. These time series are then used to drive the disease model, producing a simulated forecast of malaria and three synthetic malaria time series that are qualitatively compared to contemporary and pre-intervention malaria estimates. The area under the Relative Operator Characteristic (ROC) curve is calculated as a quantitative metric of forecast skill, comparing the forecast to the meteorologically-driven synthetic malaria time series. RESULTS AND DISCUSSION: The forecast shows probabilistic skill in predicting the spatial distribution of Plasmodium falciparum incidence when compared to the simulated meteorologically-driven malaria time series, particularly where modelled incidence shows high seasonal and interannual variability such as in Orissa, West Bengal, and Jharkhand (North-east India), and Gujarat, Rajastan, Madhya Pradesh and Maharashtra (North-west India). Focusing on these two regions, the malaria forecast is able to distinguish between years of "high", "above average" and "low" malaria incidence in the peak malaria transmission seasons, with more than 70% sensitivity and a statistically significant area under the ROC curve. These results are encouraging given that the three month forecast lead time used is well in excess of the target for early warning systems adopted by the World Health Organization. This approach could form the basis of an operational system to identify the probability of regional malaria epidemics, allowing advanced and targeted allocation of resources for combatting malaria in India.


Asunto(s)
Malaria/epidemiología , Modelos Biológicos , Modelos Estadísticos , Estaciones del Año , Humanos , India/epidemiología , Curva ROC , Tiempo (Meteorología)
12.
Soft Matter ; 10(31): 5669-81, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-24919402

RESUMEN

The coalescence of two oil droplets grown at pH 10 in the presence of lightly cross-linked 260 nm diameter charge-stabilised poly(tert-butylamino)ethyl methacrylate (PTBAEMA) latexes was monitored using a high-speed video camera. Three model oils (n-dodecane, isopropyl myristate and sunflower oil) were investigated, each in the absence and presence of an oil-soluble cross-linker [tolylene 2,4-diisocyanate-terminated poly(propylene glycol), PPG-TDI]. In the absence of PPG-TDI, rapid coalescence was observed for giant PTBAEMA-stabilised Pickering oil droplets, which exhibited faster coalescence times compared to bare oil droplets. However, an increase in the damping coefficients for coalescing Pickering droplets (compared to those of bare oil droplets) indicated PTBAEMA latex particle adsorption. Addition of PPG-TDI cross-linker to oil droplets in the absence of latex particles led to a reduction in the interfacial tension confirming its surface-active nature. The oil-soluble PPG-TDI reacts with the secondary amine groups on the PTBAEMA latex, producing giant colloidosomes that remain stable to coalescence when brought into contact. This stability to coalescence was not observed for bare oil droplets in the presence of PPG-TDI, confirming that the cross-linked latex particles at the interface provide the additional stability. Finally, interactions between asymmetric n-dodecane droplets were examined. Adding oil-soluble cross-linker to only one droplet resulted in "arrested coalescence" behaviour in the presence of PTBAEMA latex particles. In this context, the droplet ageing time was found to be critical and is attributed to the relatively slow particle adsorption kinetics. Ageing times of less than 60 s led to catastrophic droplet coalescence, whereas ageing times longer than 60 s indicated cross-linker diffusion from one droplet to the other, which produced inter-cross-linked colloidosomes. Arrested coalescence was only observed for ageing times of approximately 60 s.

13.
PLoS One ; 19(4): e0297744, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38625879

RESUMEN

Malaria transmission across sub-Saharan Africa is sensitive to rainfall and temperature. Whilst different malaria modelling techniques and climate simulations have been used to predict malaria transmission risk, most of these studies use coarse-resolution climate models. In these models convection, atmospheric vertical motion driven by instability gradients and responsible for heavy rainfall, is parameterised. Over the past decade enhanced computational capabilities have enabled the simulation of high-resolution continental-scale climates with an explicit representation of convection. In this study we use two malaria models, the Liverpool Malaria Model (LMM) and Vector-Borne Disease Community Model of the International Centre for Theoretical Physics (VECTRI), to investigate the effect of explicitly representing convection on simulated malaria transmission. The concluded impact of explicitly representing convection on simulated malaria transmission depends on the chosen malaria model and local climatic conditions. For instance, in the East African highlands, cooler temperatures when explicitly representing convection decreases LMM-predicted malaria transmission risk by approximately 55%, but has a negligible effect in VECTRI simulations. Even though explicitly representing convection improves rainfall characteristics, concluding that explicit convection improves simulated malaria transmission depends on the chosen metric and malaria model. For example, whilst we conclude improvements of 45% and 23% in root mean squared differences of the annual-mean reproduction number and entomological inoculation rate for VECTRI and the LMM respectively, bias-correcting mean climate conditions minimises these improvements. The projected impact of anthropogenic climate change on malaria incidence is also sensitive to the chosen malaria model and representation of convection. The LMM is relatively insensitive to future changes in precipitation intensity, whilst VECTRI predicts increased risk across the Sahel due to enhanced rainfall. We postulate that VECTRI's enhanced sensitivity to precipitation changes compared to the LMM is due to the inclusion of surface hydrology. Future research should continue assessing the effect of high-resolution climate modelling in impact-based forecasting.


Asunto(s)
Convección , Malaria , Humanos , África/epidemiología , Simulación por Computador , Hidrología/métodos , Malaria/epidemiología
14.
Front Immunol ; 15: 1329092, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38585272

RESUMEN

Background: There is a paucity of data on the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in feces of lactating women with coronavirus disease 2019 (COVID-19) and their breastfed infants as well as associations between fecal shedding and symptomatology. Objective: We examined whether and to what extent SARS-CoV-2 is detectable in the feces of lactating women and their breastfed infants following maternal COVID-19 diagnosis. Methods: This was a longitudinal study carried out from April 2020 to December 2021 involving 57 breastfeeding maternal-infant dyads: 33 dyads were enrolled within 7 d of maternal COVID-19 diagnosis, and 24 healthy dyads served as controls. Maternal/infant fecal samples were collected by participants, and surveys were administered via telephone over an 8-wk period. Feces were analyzed for SARS-CoV-2 RNA. Results: Signs/symptoms related to ears, eyes, nose, and throat (EENT); general fatigue/malaise; and cardiopulmonary signs/symptoms were commonly reported among mothers with COVID-19. In infants of mothers with COVID-19, EENT, immunologic, and cardiopulmonary signs/symptoms were most common, but prevalence did not differ from that of infants of control mothers. SARS-CoV-2 RNA was detected in feces of 7 (25%) women with COVID-19 and 10 (30%) of their infants. Duration of fecal shedding ranged from 1-4 wk for both mothers and infants. SARS-CoV-2 RNA was sparsely detected in feces of healthy dyads, with only one mother's and two infants' fecal samples testing positive. There was no relationship between frequencies of maternal and infant SARS-CoV-2 fecal shedding (P=0.36), although presence of maternal or infant fever was related to increased likelihood (7-9 times greater, P≤0.04) of fecal shedding in infants of mothers with COVID-19.


Asunto(s)
COVID-19 , Lactante , Humanos , Femenino , Masculino , COVID-19/diagnóstico , COVID-19/epidemiología , SARS-CoV-2 , Lactancia Materna , Prueba de COVID-19 , Lactancia , Estudios Longitudinales , ARN Viral , Prevalencia , Heces
15.
Langmuir ; 29(34): 10684-92, 2013 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-23855771

RESUMEN

Friction force microscopy has been used to demonstrate that biocompatible, lubricious poly(2-(methacryloyloxy)ethylphosphorylcholine) (PMPC) brushes exhibit different frictional properties depending on the medium (methanol, ethanol, 2-propanol, and water; the latter also with different quantities of added salt). The chemical functionalization of the probe (amine-, carboxylic acid-, and methyl-terminated probes were used) is not as important as the medium in determining the contact mechanics. For solvents such as methanol, where the adhesion between AFM probe and PMPC brushes is negligible, a linear friction-load relationship is observed. In contrast, the friction-load plot is nonlinear in ethanol or water, media in which stronger adhesion is measured. For ethanol, the data indicate Johnson-Kendall-Roberts (JKR) mechanics, whereas the Derjaguin-Muller-Toporov (DMT) model provided a good fit for the data acquired in water. Contact mechanics on zwitterionic PMPC brushes immersed in aqueous solutions of varying ionic strength followed the same trend, with high adhesion energies being correlated with a nonlinear friction-load relationship. These results can be rationalized by treating the friction force as the sum of a load-dependent term, attributed to molecular plowing, and an area-dependent shear term. In a good solvent for PMPC such as methanol, the shear term is negligible and the sliding interaction is dominated by molecular plowing. However, the adhesion energy is significantly larger in water and ethanol and the shear term is no longer negligible.


Asunto(s)
Materiales Biocompatibles/química , Polímeros/química , Fricción , Microscopía de Fuerza Atómica , Modelos Teóricos , Propiedades de Superficie
16.
J Am Heart Assoc ; 12(4): e027504, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36752231

RESUMEN

Background The current standard of care for the treatment of patients with primary mitral regurgitation (MR) is surgical mitral valve repair. Transcatheter edge-to-edge repair with the MitraClip device provides a less invasive treatment option for patients with both primary and secondary MR. Worldwide, >150 000 patients have been treated with the MitraClip device. However, in the United States, MitraClip is approved for use only in primary patients with MR who are at high or prohibitive risk for mitral valve surgery. The REPAIR MR (Percutaneous MitraClip Device or Surgical Mitral Valve Repair in Patients With Primary Mitral Regurgitation Who Are Candidates for Surgery) trial is designed to compare early and late outcomes associated with transcatheter edge-to-edge repair with the MitraClip and surgical repair of primary MR in older or moderate surgical risk patients. Methods and Results The REPAIR MR trial is a prospective, randomized, parallel-controlled, open-label multicenter, noninferiority trial for the treatment of severe primary MR (verified by an independent echocardiographic core laboratory). Patients with severe MR and indications for surgery because of symptoms (New York Heart Association class II-IV), or without symptoms with left ventricular ejection fraction ≤60%, pulmonary artery systolic pressure >50 mm Hg, or left ventricular end-systolic diameter ≥40 mm are eligible for the trial provided they meet the moderate surgical risk criteria as follows: (1) ≥75 years of age, or (2) if <75 years of age, then the subject has a Society of Thoracic Surgeons Predicted Risk Of Mortality score of ≥2% for mitral repair (or Society of Thoracic Surgeons replacement score of ≥4%), or the presence of a comorbidity that may introduce a surgery-specific risk. The local surgeon must determine that the mitral valve can be surgically repaired. Additionally, an independent eligibility committee will confirm that the MR can be reduced to mild or less with both the MitraClip and surgical mitral valve repair with a high degree of certainty. A total of 500 eligible subjects will be randomized in a 1:1 ratio to receive the MitraClip device or to undergo surgical mitral valve repair (control group). There are 2 co-primary end points for the trial, both of which will be evaluated at 2 years. Each subject will be followed for 10 years after enrollment. The study has received approval from both the Food and Drug Administration and the Centers for Medicare and Medicaid Services, and enrolled its first subject in July 2020. Conclusions The REPAIR MR trial will determine the safety and effectiveness of transcatheter edge-to-edge repair with the MitraClip in patients with primary MR who are at moderate surgical risk and are candidates for surgical MV repair. The trial will generate contemporary comparative clinical evidence for the MitraClip device and surgical MV repair. Registration https://clinicaltrials.gov/ct2/show/NCT04198870; NCT04198870.


Asunto(s)
Implantación de Prótesis de Válvulas Cardíacas , Insuficiencia de la Válvula Mitral , Humanos , Anciano , Estados Unidos , Insuficiencia de la Válvula Mitral/diagnóstico por imagen , Insuficiencia de la Válvula Mitral/cirugía , Insuficiencia de la Válvula Mitral/etiología , Válvula Mitral/diagnóstico por imagen , Válvula Mitral/cirugía , Volumen Sistólico , Estudios Prospectivos , Resultado del Tratamiento , Función Ventricular Izquierda , Medicare , Implantación de Prótesis de Válvulas Cardíacas/métodos , Cateterismo Cardíaco/efectos adversos
17.
Langmuir ; 27(6): 2514-21, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21319847

RESUMEN

The frictional properties of poly(2-(methacryloyloxy)ethylphosphorylcholine) (PMPC) brushes grown from planar silicon surfaces by atom transfer radical polymerization (ATRP) have been characterized using in situ friction force microscopy (FFM). The dry thicknesses of the PMPC brushes ranged from 20 to 421 nm. For brush layers with dry thicknesses greater than ca. 100 nm, the coefficient of friction decreased with increasing film thickness. For shorter brushes, the coefficient of friction varied little with brush thickness. We hypothesize that the amount of bound solvent increases as the brush length increases, causing the osmotic pressure to increase and yielding a reduced tendency for the brush layer to deform under applied load. A comparison of the force-displacement plots acquired for various PMPC brushes under water supports this hypothesis, since a greater repulsive force is measured for thicker brushes. FFM was also used to investigate the well-known co-nonsolvency behavior exhibited by PMPC chains. For a PMPC brush layer of 307 nm dry thickness, the friction force was determined as a function of the volume fraction of alcohol in alcohol/water mixtures. Unlike a previous macroscopic study, a significant increase in the coefficient of friction was observed for ethanol/water mixtures at a volume fraction of 90%. This is attributed to brush collapse due to co-nonsolvency, leading to loss of hydration of the brush chains and hence substantially reduced lubrication. Force measurements normal to the surface indicate much greater hysteresis between approaching and retraction curves under co-nonsolvency conditions. However, no such effect was observed for 2-propanol/water and methanol/water mixtures over a wide range of volume fractions, in agreement with recent ellipsometric studies of PMPC brushes.


Asunto(s)
Fosforilcolina/análogos & derivados , Ácidos Polimetacrílicos/química , 2-Propanol/química , Metanol/química , Fosforilcolina/química , Solventes/química , Agua/química
18.
Malar J ; 10: 35, 2011 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-21314922

RESUMEN

BACKGROUND: A warm and humid climate triggers several water-associated diseases such as malaria. Climate- or weather-driven malaria models, therefore, allow for a better understanding of malaria transmission dynamics. The Liverpool Malaria Model (LMM) is a mathematical-biological model of malaria parasite dynamics using daily temperature and precipitation data. In this study, the parameter settings of the LMM are refined and a new mathematical formulation of key processes related to the growth and size of the vector population are developed. METHODS: One of the most comprehensive studies to date in terms of gathering entomological and parasitological information from the literature was undertaken for the development of a new version of an existing malaria model. The knowledge was needed to allow the justification of new settings of various model parameters and motivated changes of the mathematical formulation of the LMM. RESULTS: The first part of the present study developed an improved set of parameter settings and mathematical formulation of the LMM. Important modules of the original LMM version were enhanced in order to achieve a higher biological and physical accuracy. The oviposition as well as the survival of immature mosquitoes were adjusted to field conditions via the application of a fuzzy distribution model. Key model parameters, including the mature age of mosquitoes, the survival probability of adult mosquitoes, the human blood index, the mosquito-to-human (human-to-mosquito) transmission efficiency, the human infectious age, the recovery rate, as well as the gametocyte prevalence, were reassessed by means of entomological and parasitological observations. This paper also revealed that various malaria variables lack information from field studies to be set properly in a malaria modelling approach. CONCLUSIONS: Due to the multitude of model parameters and the uncertainty involved in the setting of parameters, an extensive literature survey was carried out, in order to produce a refined set of settings of various model parameters. This approach limits the degrees of freedom of the parameter space of the model, simplifying the final calibration of undetermined parameters (see the second part of this study). In addition, new mathematical formulations of important processes have improved the model in terms of the growth of the vector population.


Asunto(s)
Anopheles/fisiología , Insectos Vectores/fisiología , Malaria/transmisión , Modelos Biológicos , Adulto , Animales , Anopheles/crecimiento & desarrollo , Anopheles/parasitología , Niño , Femenino , Interacciones Huésped-Parásitos , Humanos , Lactante , Insectos Vectores/crecimiento & desarrollo , Insectos Vectores/parasitología , Persona de Mediana Edad , Oviposición , Dinámica Poblacional , Lluvia , Temperatura
19.
Malar J ; 10: 62, 2011 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-21410939

RESUMEN

BACKGROUND: In the first part of this study, an extensive literature survey led to the construction of a new version of the Liverpool Malaria Model (LMM). A new set of parameter settings was provided and a new development of the mathematical formulation of important processes related to the vector population was performed within the LMM. In this part of the study, so far undetermined model parameters are calibrated through the use of data from field studies. The latter are also used to validate the new LMM version, which is furthermore compared against the original LMM version. METHODS: For the calibration and validation of the LMM, numerous entomological and parasitological field observations were gathered for West Africa. Continuous and quality-controlled temperature and precipitation time series were constructed using intermittent raw data from 34 weather stations across West Africa. The meteorological time series served as the LMM data input. The skill of LMM simulations was tested for 830 different sets of parameter settings of the undetermined LMM parameters. The model version with the highest skill score in terms of entomological malaria variables was taken as the final setting of the new LMM version. RESULTS: Validation of the new LMM version in West Africa revealed that the simulations compare well with entomological field observations. The new version reproduces realistic transmission rates and simulated malaria seasons are comparable to field observations. Overall the new model version performs much better than the original model. The new model version enables the detection of the epidemic malaria potential at fringes of endemic areas and, more importantly, it is now applicable to the vast area of malaria endemicity in the humid African tropics. CONCLUSIONS: A review of entomological and parasitological data from West Africa enabled the construction of a new LMM version. This model version represents a significant step forward in the modelling of a weather-driven malaria transmission cycle. The LMM is now more suitable for the use in malaria early warning systems as well as for malaria projections based on climate change scenarios, both in epidemic and endemic malaria areas.


Asunto(s)
Insectos Vectores/parasitología , Malaria/epidemiología , Malaria/transmisión , Modelos Teóricos , África Occidental/epidemiología , Animales , Clima , Femenino , Humanos , Insectos Vectores/crecimiento & desarrollo
20.
Structure ; 17(2): 303-13, 2009 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-19217401

RESUMEN

The crystal structures of two homologous endopeptidases from cyanobacteria Anabaena variabilis and Nostoc punctiforme were determined at 1.05 and 1.60 A resolution, respectively, and contain a bacterial SH3-like domain (SH3b) and a ubiquitous cell-wall-associated NlpC/P60 (or CHAP) cysteine peptidase domain. The NlpC/P60 domain is a primitive, papain-like peptidase in the CA clan of cysteine peptidases with a Cys126/His176/His188 catalytic triad and a conserved catalytic core. We deduced from structure and sequence analysis, and then experimentally, that these two proteins act as gamma-D-glutamyl-L-diamino acid endopeptidases (EC 3.4.22.-). The active site is located near the interface between the SH3b and NlpC/P60 domains, where the SH3b domain may help define substrate specificity, instead of functioning as a targeting domain, so that only muropeptides with an N-terminal L-alanine can bind to the active site.


Asunto(s)
Endopeptidasas/química , Endopeptidasas/metabolismo , Peptidoglicano/química , Peptidoglicano/metabolismo , Secuencia de Aminoácidos , Anabaena variabilis/química , Anabaena variabilis/enzimología , Dominio Catalítico , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/metabolismo , Cisteína Endopeptidasas/fisiología , Endopeptidasas/fisiología , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Nostoc/química , Nostoc/enzimología , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Dominios Homologos src
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA