Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 110(12): 2015-2028, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37979581

RESUMEN

We examined more than 97,000 families from four neurodevelopmental disease cohorts and the UK Biobank to identify phenotypic and genetic patterns in parents contributing to neurodevelopmental disease risk in children. We identified within- and cross-disorder correlations between six phenotypes in parents and children, such as obsessive-compulsive disorder (R = 0.32-0.38, p < 10-126). We also found that measures of sub-clinical autism features in parents are associated with several autism severity measures in children, including biparental mean Social Responsiveness Scale scores and proband Repetitive Behaviors Scale scores (regression coefficient = 0.14, p = 3.38 × 10-4). We further describe patterns of phenotypic similarity between spouses, where spouses show correlations for six neurological and psychiatric phenotypes, including a within-disorder correlation for depression (R = 0.24-0.68, p < 0.001) and a cross-disorder correlation between anxiety and bipolar disorder (R = 0.09-0.22, p < 10-92). Using a simulated population, we also found that assortative mating can lead to increases in disease liability over generations and the appearance of "genetic anticipation" in families carrying rare variants. We identified several families in a neurodevelopmental disease cohort where the proband inherited multiple rare variants in disease-associated genes from each of their affected parents. We further identified parental relatedness as a risk factor for neurodevelopmental disorders through its inverse relationship with variant pathogenicity and propose that parental relatedness modulates disease risk by increasing genome-wide homozygosity in children (R = 0.05-0.26, p < 0.05). Our results highlight the utility of assessing parent phenotypes and genotypes toward predicting features in children who carry rare variably expressive variants and implicate assortative mating as a risk factor for increased disease severity in these families.


Asunto(s)
Trastorno Autístico , Trastorno Bipolar , Niño , Humanos , Virulencia , Padres , Familia , Trastorno Autístico/genética , Trastorno Bipolar/genética
2.
Ann Hum Genet ; 86(4): 171-180, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35141892

RESUMEN

It has been estimated that Copy Number Variants (CNVs) account for 10%-20% of patients affected by Developmental Disorder (DD)/Intellectual Disability (ID). Although array comparative genomic hybridization (array-CGH) represents the gold-standard for the detection of genomic imbalances, common Agilent array-CGH 4 × 180 kb arrays fail to detect CNVs smaller than 30 kb. Whole Exome sequencing (WES) is becoming the reference application for the detection of gene variants and makes it possible also to infer genomic imbalances at single exon resolution. However, the contribution of small CNVs in DD/ID is still underinvestigated. We made use of the eXome Hidden Markov Model (XHMM) software, a tool utilized by the ExAC consortium, to detect CNVs from whole exome sequencing data, in a cohort of 200 unsolved DD/DI patients after array-CGH and WES-based single nucleotide/indel variant analyses. In five out of 200 patients (2.5%), we identified pathogenic CNV(s) smaller than 30 kb, ranging from one to six exons. They included two heterozygous deletions in TCF4 and STXBP1 and three homozygous deletions in PPT1, CLCN2, and PIGN. After reverse phenotyping, all variants were reported as causative. This study shows the interest in applying sequencing-based CNV detection, from available WES data, to reduce the diagnostic odyssey of additional patients unsolved DD/DI patients and compare the CNV-detection yield of Agilent array-CGH 4 × 180kb versus whole exome sequencing.


Asunto(s)
Exoma , Discapacidad Intelectual , Hibridación Genómica Comparativa , Variaciones en el Número de Copia de ADN , Genómica , Humanos , Discapacidad Intelectual/genética , Secuenciación del Exoma
3.
J Med Genet ; 57(5): 301-307, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-30287593

RESUMEN

BACKGROUND: The clinical significance of 16p13.11 duplications remains controversial while frequently detected in patients with developmental delay (DD), intellectual deficiency (ID) or autism spectrum disorder (ASD). Previously reported patients were not or poorly characterised. The absence of consensual recommendations leads to interpretation discrepancy and makes genetic counselling challenging. This study aims to decipher the genotype-phenotype correlations to improve genetic counselling and patients' medical care. METHODS: We retrospectively analysed data from 16 013 patients referred to 12 genetic centers for DD, ID or ASD, and who had a chromosomal microarray analysis. The referring geneticists of patients for whom a 16p13.11 duplication was detected were asked to complete a questionnaire for detailed clinical and genetic data for the patients and their parents. RESULTS: Clinical features are mainly speech delay and learning disabilities followed by ASD. A significant risk of cardiovascular disease was noted. About 90% of the patients inherited the duplication from a parent. At least one out of four parents carrying the duplication displayed a similar phenotype to the propositus. Genotype-phenotype correlations show no impact of the size of the duplicated segment on the severity of the phenotype. However, NDE1 and miR-484 seem to have an essential role in the neurocognitive phenotype. CONCLUSION: Our study shows that 16p13.11 microduplications are likely pathogenic when detected in the context of DD/ID/ASD and supports an essential role of NDE1 and miR-484 in the neurocognitive phenotype. Moreover, it suggests the need for cardiac evaluation and follow-up and a large study to evaluate the aortic disease risk.


Asunto(s)
Trastorno del Espectro Autista/genética , Discapacidades del Desarrollo/genética , Discapacidad Intelectual/genética , MicroARNs/genética , Proteínas Asociadas a Microtúbulos/genética , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Adolescente , Adulto , Trastorno del Espectro Autista/patología , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/patología , Niño , Preescolar , Cromosomas Humanos Par 16/genética , Discapacidades del Desarrollo/patología , Femenino , Duplicación de Gen/genética , Estudios de Asociación Genética , Humanos , Lactante , Discapacidad Intelectual/patología , Masculino , Fenotipo , Factores de Riesgo , Adulto Joven
4.
Hum Genet ; 139(11): 1381-1390, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32399599

RESUMEN

Developmental disorders (DD), characterized by malformations/dysmorphism and/or intellectual disability, affecting around 3% of worldwide population, are mostly linked to genetic anomalies. Despite clinical exome sequencing (cES) centered on genes involved in human genetic disorders, the majority of patients affected by DD remain undiagnosed after solo-cES. Trio-based strategy is expected to facilitate variant selection thanks to rapid parental segregation. We performed a second step trio-ES (not only focusing on genes involved in human disorders) analysis in 70 patients with negative results after solo-cES. All candidate variants were shared with a MatchMaking exchange system to identify additional patients carrying variants in the same genes and with similar phenotype. In 18/70 patients (26%), we confirmed causal implication of nine OMIM-morbid genes and identified nine new strong candidate genes (eight de novo and one compound heterozygous variants). These nine new candidate genes were validated through the identification of patients with similar phenotype and genotype thanks to data sharing. Moreover, 11 genes harbored variants of unknown significance in 10/70 patients (14%). In DD, a second step trio-based ES analysis appears an efficient strategy in diagnostic and translational research to identify highly candidate genes and improve diagnostic yield.


Asunto(s)
Discapacidades del Desarrollo/genética , Exoma/genética , Predisposición Genética a la Enfermedad/genética , Discapacidad Intelectual/genética , Femenino , Genómica/métodos , Humanos , Masculino , Fenotipo , Secuenciación del Exoma/métodos
5.
Genet Med ; 21(7): 1657-1661, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30563986

RESUMEN

PURPOSE: Exome sequencing (ES) powerfully identifies the molecular bases of heterogeneous conditions such as intellectual disability and/or multiple congenital anomalies (ID/MCA). Current ES analysis, combining diagnosis analysis restricted to disease-causing genes reported in OMIM database and subsequent research investigation extended to other genes, indicated causal and candidate genes around 40% and 10%. Nonconclusive results are frequent in such ultrarare conditions that recurrence and genotype-phenotype correlations are limited. International data-sharing permits the gathering of additional patients carrying variants in the same gene to draw definitive conclusions on their implication as disease causing. Several web-based tools have been developed and grouped in Matchmaker Exchange. In this study, we report our current experience as a regional center that has implemented ES as a first-line diagnostic test since 2013, working with a research laboratory devoted to disease gene identification. METHODS: We used GeneMatcher over 2.5 years to share 71 novel candidate genes identified by ES. RESULTS: Matches occurred in 60/71 candidate genes allowing to confirm the implication of 39% of matched genes as causal and to rule out 6% of them. CONCLUSION: The introduction of user-friendly gene-matching tools, such as GeneMatcher, appeared to be an essential step for the rapid identification of novel disease genes responsible for ID/MCA.


Asunto(s)
Secuenciación del Exoma , Difusión de la Información , Enfermedades Raras/genética , Programas Informáticos , Pruebas Genéticas , Humanos , Enfermedades Raras/diagnóstico
6.
Genet Med ; 21(4): 816-825, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30190612

RESUMEN

PURPOSE: To assess the contribution of rare variants in the genetic background toward variability of neurodevelopmental phenotypes in individuals with rare copy-number variants (CNVs) and gene-disruptive variants. METHODS: We analyzed quantitative clinical information, exome sequencing, and microarray data from 757 probands and 233 parents and siblings who carry disease-associated variants. RESULTS: The number of rare likely deleterious variants in functionally intolerant genes ("other hits") correlated with expression of neurodevelopmental phenotypes in probands with 16p12.1 deletion (n=23, p=0.004) and in autism probands carrying gene-disruptive variants (n=184, p=0.03) compared with their carrier family members. Probands with 16p12.1 deletion and a strong family history presented more severe clinical features (p=0.04) and higher burden of other hits compared with those with mild/no family history (p=0.001). The number of other hits also correlated with severity of cognitive impairment in probands carrying pathogenic CNVs (n=53) or de novo pathogenic variants in disease genes (n=290), and negatively correlated with head size among 80 probands with 16p11.2 deletion. These co-occurring hits involved known disease-associated genes such as SETD5, AUTS2, and NRXN1, and were enriched for cellular and developmental processes. CONCLUSION: Accurate genetic diagnosis of complex disorders will require complete evaluation of the genetic background even after a candidate disease-associated variant is identified.


Asunto(s)
Trastorno Autístico/genética , Moléculas de Adhesión Celular Neuronal/genética , Tamización de Portadores Genéticos , Metiltransferasas/genética , Proteínas del Tejido Nervioso/genética , Proteínas/genética , Trastorno Autístico/fisiopatología , Proteínas de Unión al Calcio , Cromosomas Humanos Par 16/genética , Cognición/fisiología , Proteínas del Citoesqueleto , Variaciones en el Número de Copia de ADN/genética , Femenino , Regulación de la Expresión Génica/genética , Antecedentes Genéticos , Humanos , Masculino , Moléculas de Adhesión de Célula Nerviosa , Padres , Linaje , Fenotipo , Eliminación de Secuencia/genética , Hermanos , Factores de Transcripción
7.
Genet Med ; 20(6): 645-654, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29095811

RESUMEN

PurposeCongenital anomalies and intellectual disability (CA/ID) are a major diagnostic challenge in medical genetics-50% of patients still have no molecular diagnosis after a long and stressful diagnostic "odyssey." Solo clinical whole-exome sequencing (WES) was applied in our genetics center to improve diagnosis in patients with CA/ID.MethodsThis retrospective study examined 416 consecutive tests performed over 3 years to demonstrate the effectiveness of periodically reanalyzing WES data. The raw data from each nonpositive test was reanalyzed at 12 months with the most recent pipeline and in the light of new data in the literature. The results of the reanalysis for patients enrolled in the third year are not yet available.ResultsOf the 416 patients included, data for 156 without a diagnosis were reanalyzed. We obtained 24 (15.4%) additional diagnoses: 12 through the usual diagnostic process (7 new publications, 4 initially misclassified, and 1 copy-number variant), and 12 through translational research by international data sharing. The final yield of positive results was 27.9% through a strict diagnostic approach, and 2.9% through an additional research strategy.ConclusionThis article highlights the effectiveness of periodically combining diagnostic reinterpretation of clinical WES data with translational research involving data sharing for candidate genes.


Asunto(s)
Anomalías Congénitas/genética , Secuenciación del Exoma/métodos , Discapacidad Intelectual/genética , Bases de Datos Genéticas , Exoma , Pruebas Genéticas/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Enfermedades Raras/genética , Estudios Retrospectivos , Análisis de Secuencia de ADN/métodos
8.
J Med Genet ; 54(7): 479-488, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28119487

RESUMEN

BACKGROUND: Cohesinopathies are rare neurodevelopmental disorders arising from a dysfunction in the cohesin pathway, which enables chromosome segregation and regulates gene transcription. So far, eight genes from this pathway have been reported in human disease. STAG1 belongs to the STAG subunit of the core cohesin complex, along with five other subunits. This work aimed to identify the phenotype ascribed to STAG1 mutations. METHODS: Among patients referred for intellectual disability (ID) in genetics departments worldwide, array-comparative genomic hybridisation (CGH), gene panel, whole-exome sequencing or whole-genome sequencing were performed following the local diagnostic standards. RESULTS: A mutation in STAG1 was identified in 17 individuals from 16 families, 9 males and 8 females aged 2-33 years. Four individuals harboured a small microdeletion encompassing STAG1; three individuals from two families had an intragenic STAG1 deletion. Six deletions were identified by array-CGH, one by whole-exome sequencing. Whole-exome sequencing found de novo heterozygous missense or frameshift STAG1 variants in eight patients, a panel of genes involved in ID identified a missense and a frameshift variant in two individuals. The 17 patients shared common facial features, with wide mouth and deep-set eyes. Four individuals had mild microcephaly, seven had epilepsy. CONCLUSIONS: We report an international series of 17 individuals from 16 families presenting with syndromic unspecific ID that could be attributed to a STAG1 deletion or point mutation. This first series reporting the phenotype ascribed to mutation in STAG1 highlights the importance of data sharing in the field of rare disorders.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Discapacidad Intelectual/genética , Mutación/genética , Proteínas Nucleares/genética , Adulto , Niño , Preescolar , Hibridación Genómica Comparativa , Femenino , Humanos , Lactante , Masculino , Linaje , Fenotipo , Síndrome , Secuenciación del Exoma , Cohesinas
9.
Am J Med Genet B Neuropsychiatr Genet ; 177(4): 397-405, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29603867

RESUMEN

Recurrent deletions and duplications at the 2q13 locus have been associated with developmental delay (DD) and dysmorphisms. We aimed to undertake detailed clinical characterization of individuals with 2q13 copy number variations (CNVs), with a focus on behavioral and psychiatric phenotypes. Participants were recruited via the Unique chromosomal disorder support group, U.K. National Health Service Regional Genetics Centres, and the DatabasE of genomiC varIation and Phenotype in Humans using Ensembl Resources (DECIPHER) database. A review of published 2q13 patient case reports was undertaken to enable combined phenotypic analysis. We present a new case series of 2q13 CNV carriers (21 deletion, 4 duplication) and the largest ever combined analysis with data from published studies, making a total of 54 deletion and 23 duplication carriers. DD/intellectual disabilities was identified in the majority of carriers (79% deletion, 70% duplication), although in the new cases 52% had an IQ in the borderline or normal range. Despite the median age of the new cases being only 9 years, 64% had a clinical psychiatric diagnosis. Combined analysis found attention deficit hyperactivity disorder (ADHD) to be the most frequent diagnosis (48% deletion, 60% duplication), followed by autism spectrum disorders (33% deletion, 17% duplication). Aggressive (33%) and self-injurious behaviors (33%) were also identified in the new cases. CNVs at 2q13 are typically associated with DD with mildly impaired intelligence, and a high rate of childhood psychiatric diagnoses-particularly ADHD. We have further characterized the clinical phenotype related to imbalances of the 2q13 region and identified it as a region of interest for the neurobiological investigation of ADHD.


Asunto(s)
Cromosomas Humanos Par 2/genética , Discapacidades del Desarrollo/genética , Trastornos Mentales/genética , Adolescente , Adulto , Niño , Preescolar , Aberraciones Cromosómicas , Deleción Cromosómica , Duplicación Cromosómica , Variaciones en el Número de Copia de ADN/genética , Femenino , Duplicación de Gen/genética , Humanos , Discapacidad Intelectual/genética , Masculino , Fenotipo , Reino Unido
10.
Am J Med Genet A ; 170A(1): 116-29, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26420639

RESUMEN

Xq28 duplications encompassing MECP2 have been described in male patients with a severe neurodevelopmental disorder associated with hypotonia and spasticity, severe learning disability, stereotyped movements, and recurrent pulmonary infections. We report on standardized brain magnetic resonance imaging (MRI) data of 30 affected patients carrying an Xq28 duplication involving MECP2 of various sizes (228 kb to 11.7 Mb). The aim of this study was to seek recurrent malformations and attempt to determine whether variations in imaging features could be explained by differences in the size of the duplications. We showed that 93% of patients had brain MRI abnormalities such as corpus callosum abnormalities (n = 20), reduced volume of the white matter (WM) (n = 12), ventricular dilatation (n = 9), abnormal increased hyperintensities on T2-weighted images involving posterior periventricular WM (n = 6), and vermis hypoplasia (n = 5). The occipitofrontal circumference varied considerably between >+2SD in five patients and <-2SD in four patients. Among the nine patients with dilatation of the lateral ventricles, six had a duplication involving L1CAM. The only patient harboring bilateral posterior subependymal nodular heterotopia also carried an FLNA gene duplication. We could not demonstrate a correlation between periventricular WM hyperintensities/delayed myelination and duplication of the IKBKG gene. We thus conclude that patients with an Xq28 duplication involving MECP2 share some similar but non-specific brain abnormalities. These imaging features, therefore, could not constitute a diagnostic clue. The genotype-phenotype correlation failed to demonstrate a relationship between the presence of nodular heterotopia, ventricular dilatation, WM abnormalities, and the presence of FLNA, L1CAM, or IKBKG, respectively, in the duplicated segment.


Asunto(s)
Encefalopatías/genética , Cromosomas Humanos X/genética , Duplicación de Gen , Imagen por Resonancia Magnética/métodos , Discapacidad Intelectual Ligada al Cromosoma X/genética , Proteína 2 de Unión a Metil-CpG/genética , Adolescente , Adulto , Encefalopatías/patología , Niño , Preescolar , Femenino , Estudios de Asociación Genética , Genotipo , Humanos , Lactante , Recién Nacido , Masculino , Discapacidad Intelectual Ligada al Cromosoma X/patología , Persona de Mediana Edad , Linaje , Fenotipo , Pronóstico , Adulto Joven
11.
J Med Genet ; 51(1): 21-7, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24133203

RESUMEN

BACKGROUND: Since the advent of array-CGH, numerous new microdeletional syndromes have been delineated while others remain to be described. Although 3q29 subtelomeric deletion is a well-described syndrome, there is no report on 3q interstitial deletions. METHODS: We report for the first time seven patients with interstitial deletions at the 3q27.3q28 locus gathered through the Decipher database, and suggest this locus as a new microdeletional syndrome. RESULTS: The patients shared a recognisable facial dysmorphism and marfanoid habitus, associated with psychosis and mild to severe intellectual disability (ID). Most of the patients had no delay in gross psychomotor acquisition, but had severe impaired communicative and adaptive skills. Two small regions of overlap were defined. The first one, located on the 3q27.3 locus and common to all patients, was associated with psychotic troubles and mood disorders as well as recognisable facial dysmorphism. This region comprised several candidate genes including SST, considered a candidate for the neuropsychiatric findings because of its implication in interneuronal migration and differentiation processes. A familial case with a smaller deletion allowed us to define a second region of overlap at the 3q27.3q28 locus for marfanoid habitus and severe ID. Indeed, the common morphological findings in the first four patients included skeletal features from the marfanoid spectrum: scoliosis (4/4), long and thin habitus with leanness (average Body Mass Index of 15 (18.5

Asunto(s)
Anomalías Múltiples/genética , Deleción Cromosómica , Cromosomas Humanos Par 3 , Discapacidad Intelectual/genética , Trastornos del Humor/genética , Anomalías Múltiples/diagnóstico , Adolescente , Adulto , Preescolar , Mapeo Cromosómico , Hibridación Genómica Comparativa , Facies , Femenino , Humanos , Lactante , Discapacidad Intelectual/diagnóstico , Masculino , Trastornos del Humor/diagnóstico , Fenotipo , Síndrome , Adulto Joven
12.
Am J Med Genet A ; 164A(12): 3027-34, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25258245

RESUMEN

Distal limb contractures (DLC) represent a heterogeneous clinical and genetic condition. Overall, 20-25% of the DLC are caused by mutations in genes encoding the muscle contractile apparatus. Large interstitial deletions of the 3p have already been diagnosed by standard chromosomal analysis, but not associated with a specific phenotype. We report on four patients with syndromic DLC presenting with a de novo 3p14.1p13 microdeletion. The clinical features associated multiple contractures, feeding problems, developmental delay, and intellectual disability. Facial dysmorphism was constant with low-set posteriorly rotated ears and blepharophimosis. Review of previously reported cases with a precise mapping of the deletions, documented a 250 kb smallest region of overlap (SRO) necessary for DLC. This region contained one gene, EIF4E3, the first three exons of the FOXP1 gene, and an intronic enhancer of FOXP1 named hs1149. Sanger sequencing and locus quantification of hs1149, EIF4E3, and FOXP1 in a cohort of 11 French patients affected by DLC appeared normal. In conclusion, we delineate a new microdeletion syndrome involving the 3p14.1p13 locus and associated with DLC and severe developmental delay.


Asunto(s)
Artrogriposis/epidemiología , Aberraciones Cromosómicas , Cromosomas Humanos Par 3/genética , Contractura/epidemiología , Contractura/genética , Extremidades/patología , Animales , Proteínas Portadoras/genética , Hibridación Genómica Comparativa , Contractura/patología , Femenino , Factores de Transcripción Forkhead/genética , Francia/epidemiología , Humanos , Masculino , Ratones , Ratones Noqueados , Proteínas Represoras/genética , Síndrome
13.
medRxiv ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39252907

RESUMEN

Variable expressivity of disease-associated variants implies a role for secondary variants that modify clinical features. We assessed the effects of modifier variants towards clinical outcomes of 2,252 individuals with primary variants. Among 132 families with the 16p12.1 deletion, distinct rare and common variant classes conferred risk for specific developmental features, including short tandem repeats for neurological defects and SNVs for microcephaly, while additional disease-associated variants conferred multiple genetic diagnoses. Within disease and population cohorts of 773 individuals with the 16p12.1 deletion, we found opposing effects of secondary variants towards clinical features across ascertainments. Additional analysis of 1,479 probands with other primary variants, such as 16p11.2 deletion and CHD8 variants, and 1,084 without primary variants, showed that phenotypic associations differed by primary variant context and were influenced by synergistic interactions between primary and secondary variants. Our study provides a paradigm to dissect the genomic architecture of complex disorders towards personalized treatment.

14.
Am J Med Genet A ; 161A(7): 1594-8, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23704076

RESUMEN

We report on three males with de novo overlapping 7.5, 9.8, and 10 Mb duplication of chromosome 20q11.2. Together with another patient previously published in the literature with overlapping 20q11 microduplication, we show that such patients display common clinical features including metopic ridging/trigonocephaly, developmental delay, epicanthal folds, and short hands. The duplication comprised the ASXL1 gene, in which de novo heterozygous nonsense or truncating mutations have recently been reported in patients with Borhing-Opitz syndrome. Because of craniofacial features in common with Borhing-Opitz syndrome, in particular metopic ridging/trigonocephaly, we suggest that duplication of ASXL1 contributes to the phenotype. These observations suggest a novel microduplication syndrome, and reporting of additional patients with molecular characterization will allow more detailed genotype-phenotype correlations.


Asunto(s)
Craneosinostosis/genética , Proteínas Represoras/genética , Trisomía/genética , Niño , Preescolar , Cromosomas Humanos Par 20/genética , Discapacidades del Desarrollo/genética , Femenino , Deformidades Congénitas de la Mano/genética , Heterocigoto , Humanos , Lactante , Discapacidad Intelectual/genética , Masculino , Mosaicismo , Mutación , Embarazo , Síndrome
16.
J Med Genet ; 49(12): 731-6, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23099646

RESUMEN

BACKGROUND: DYRK1A plays different functions during development, with an important role in controlling brain growth through neuronal proliferation and neurogenesis. It is expressed in a gene dosage dependent manner since dyrk1a haploinsufficiency induces a reduced brain size in mice, and DYRK1A overexpression is the candidate gene for intellectual disability (ID) and microcephaly in Down syndrome. We have identified a 69 kb deletion including the 5' region of the DYRK1A gene in a patient with growth retardation, primary microcephaly, facial dysmorphism, seizures, ataxic gait, absent speech and ID. Because four patients previously reported with intragenic DYRK1A rearrangements or 21q22 microdeletions including only DYRK1A presented with overlapping phenotypes, we hypothesised that DYRK1A mutations could be responsible for syndromic ID with severe microcephaly and epilepsy. METHODS: The DYRK1A gene was studied by direct sequencing and quantitative PCR in a cohort of 105 patients with ID and at least two symptoms from the Angelman syndrome spectrum (microcephaly < -2.5 SD, ataxic gait, seizures and speech delay). RESULTS: We identified a de novo frameshift mutation (c.290_291delCT; p.Ser97Cysfs*98) in a patient with growth retardation, primary severe microcephaly, delayed language, ID, and seizures. CONCLUSION: The identification of a truncating mutation in a patient with ID, severe microcephaly, epilepsy, and growth retardation, combined with its dual function in regulating the neural proliferation/neuronal differentiation, adds DYRK1A to the list of genes responsible for such a phenotype. ID, microcephaly, epilepsy, and language delay are the more specific features associated with DYRK1A abnormalities. DYRK1A studies should be discussed in patients presenting such a phenotype.


Asunto(s)
Epilepsia/genética , Discapacidad Intelectual/genética , Microcefalia/genética , Mutación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Adolescente , Secuencia de Bases , Niño , Preescolar , Electroencefalografía , Epilepsia/diagnóstico , Facies , Femenino , Orden Génico , Genotipo , Humanos , Discapacidad Intelectual/diagnóstico , Masculino , Microcefalia/diagnóstico , Fenotipo , Síndrome , Quinasas DyrK
17.
J Med Genet ; 49(6): 400-8, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22693284

RESUMEN

BACKGROUND: Non-progressive congenital ataxias (NPCA) with or without intellectual disability (ID) are clinically and genetically heterogeneous conditions. As a consequence, the identification of the genes responsible for these phenotypes remained limited. OBJECTIVE: Identification of a new gene responsible for NPCA and ID. Methods Following the discovery of three familial or sporadic cases with an intragenic calmodulin-binding transcription activator 1 (CAMTA1) rearrangement identified by an array-CGH and recruited from a national collaboration, the authors defined the clinical and molecular characteristics of such rearrangements, and searched for patients with point mutations by direct sequencing. RESULTS: Intragenic copy number variations of CAMTA1 were all located in the CG-1 domain of the gene. It segregated with autosomal dominant ID with non-progressive congenital cerebellar ataxia (NPCA) in two unrelated families, and was de novo deletion located in the same domain in a child presenting with NPCA. In the patients with ID, the deletion led to a frameshift, producing a truncated protein, while this was not the case for the patient with isolated childhood ataxia. Brain MRI of the patients revealed a pattern of progressive atrophy of cerebellum medium lobes and superior vermis, parietal lobes and hippocampi. DNA sequencing of the CG-1 domain in 197 patients with sporadic or familial non-syndromic intellectual deficiency, extended to full DNA sequencing in 50 patients with ID and 47 additional patients with childhood ataxia, identified no pathogenic mutation. CONCLUSION: The authors have evidence that loss-of-function of CAMTA1, a brain-specific calcium responsive transcription factor, is responsible for NPCA with or without ID. Accession numbers CAMTA1 reference sequence used was ENST00000303635. Protein sequence was ENSP00000306522.


Asunto(s)
Ataxia/genética , Proteínas de Unión al Calcio/genética , Discapacidad Intelectual/genética , Transactivadores/genética , Adolescente , Adulto , Preescolar , Variaciones en el Número de Copia de ADN , Femenino , Reordenamiento Génico , Humanos , Lactante , Persona de Mediana Edad , Linaje , Análisis de Secuencia de ADN
18.
medRxiv ; 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37292616

RESUMEN

We examined more than 38,000 spouse pairs from four neurodevelopmental disease cohorts and the UK Biobank to identify phenotypic and genetic patterns in parents associated with neurodevelopmental disease risk in children. We identified correlations between six phenotypes in parents and children, including correlations of clinical diagnoses such as obsessive-compulsive disorder (R=0.31-0.49, p<0.001), and two measures of sub-clinical autism features in parents affecting several autism severity measures in children, such as bi-parental mean Social Responsiveness Scale (SRS) scores affecting proband SRS scores (regression coefficient=0.11, p=0.003). We further describe patterns of phenotypic and genetic similarity between spouses, where spouses show both within- and cross-disorder correlations for seven neurological and psychiatric phenotypes, including a within-disorder correlation for depression (R=0.25-0.72, p<0.001) and a cross-disorder correlation between schizophrenia and personality disorder (R=0.20-0.57, p<0.001). Further, these spouses with similar phenotypes were significantly correlated for rare variant burden (R=0.07-0.57, p<0.0001). We propose that assortative mating on these features may drive the increases in genetic risk over generations and the appearance of "genetic anticipation" associated with many variably expressive variants. We further identified parental relatedness as a risk factor for neurodevelopmental disorders through its inverse correlations with burden and pathogenicity of rare variants and propose that parental relatedness drives disease risk by increasing genome-wide homozygosity in children (R=0.09-0.30, p<0.001). Our results highlight the utility of assessing parent phenotypes and genotypes in predicting features in children carrying variably expressive variants and counseling families carrying these variants.

19.
Mol Genet Genomic Med ; 9(12): e1836, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34716697

RESUMEN

BACKGROUND: Exome sequencing (ES) has become the most powerful and cost-effective molecular tool for deciphering rare diseases with a diagnostic yield approaching 30%-40% in solo-ES and 50% in trio-ES. We applied an innovative parental DNA pooling method to reduce the parental sequencing cost while maintaining the diagnostic yield of trio-ES. METHODS: We pooled six (Agilent-CRE-v2-100X) or five parental DNA (TWIST-HCE-70X) aiming to detect allelic balance around 8-10% for heterozygous status. The strategies were applied as second-tier (74 individuals after negative solo-ES) and first-tier approaches (324 individuals without previous ES). RESULTS: The allelic balance of parental-pool variants was around 8.97%. Sanger sequencing uncovered false positives in 1.5% of sporadic variants. In the second-tier approach, we evaluated than two thirds of the Sanger validations performed after solo-ES (41/59-69%) would have been saved if the parental-pool segregations had been available from the start. The parental-pool strategy identified a causative diagnosis in 18/74 individuals (24%) in the second-tier and in 116/324 individuals (36%) in the first-tier approaches, including 19 genes newly associated with human disorders. CONCLUSIONS: Parental-pooling is an efficient alternative to trio-ES. It provides rapid segregation and extension to translational research while reducing the cost of parental and Sanger sequencing.


Asunto(s)
Secuenciación del Exoma , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Investigación Biomédica Traslacional , Marcadores Genéticos , Estudio de Asociación del Genoma Completo , Humanos , Reproducibilidad de los Resultados , Proyectos de Investigación , Sensibilidad y Especificidad , Análisis de Secuencia de ADN , Investigación Biomédica Traslacional/métodos , Investigación Biomédica Traslacional/normas , Secuenciación del Exoma/métodos , Secuenciación del Exoma/normas , Flujo de Trabajo
20.
Mol Genet Metab Rep ; 29: 100812, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34712575

RESUMEN

Considering that some Inherited Metabolic Disorders (IMDs) can be diagnosed in patients with no distinctive clinical features of IMDs, we aimed to evaluate the power of exome sequencing (ES) to diagnose IMDs within a cohort of 547 patients with unspecific developmental disorders (DD). IMDs were diagnosed in 12% of individuals with causative diagnosis (177/547). There are clear benefits of using ES in DD to diagnose IMD, particularly in cases where biochemical studies are unavailable. SYNOPSIS: Exome sequencing and diagnostic rate of Inherited Metabolic Disorders in individuals with developmental disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA