Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Retrovirology ; 15(1): 33, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29665857

RESUMEN

BACKGROUND: Adult T-cell leukemia/lymphoma (ATL) is an aggressive malignancy secondary to chronic human T-cell lymphotropic virus 1 infection, triggered by the virally encoded oncoprotein Tax. The transforming activity and subcellular localization of Tax is strongly influenced by posttranslational modifications, among which ubiquitylation and SUMOylation have been identified as key regulators of the nuclear/cytoplasmic shuttling of Tax, as well as its ability to activate NF-κB signaling. RESULTS: Adding to the complex posttranslational modification landscape of Tax, we here demonstrate that Tax also interacts with the ubiquitin-related modifier 1 (Urm1). Conjugation of Urm1 to Tax results in a redistribution of Tax to the cytoplasm and major increase in the transcription of the NF-ĸB targets Rantes and interleukin-6. Utilizing a tax-transgenic Drosophila model, we show that the Urm1-dependent subcellular targeting of Tax is evolutionary conserved, and that the presence of Urm1 is strongly correlated with the transcriptional output of Diptericin, an antimicrobial peptide and established downstream target of NF-κB in flies. CONCLUSIONS: These data put forward Urm1 as a novel Tax modifier that modulates its oncogenic activity and hence represents a potential novel target for developing new strategies for treating ATL.


Asunto(s)
Productos del Gen tax/metabolismo , Infecciones por HTLV-I/metabolismo , Infecciones por HTLV-I/virología , Interacciones Huésped-Patógeno , Virus Linfotrópico T Tipo 1 Humano/fisiología , Ubiquitinas/metabolismo , Animales , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Humanos , Quinasa I-kappa B/metabolismo , Leucemia-Linfoma de Células T del Adulto/etiología , Leucemia-Linfoma de Células T del Adulto/metabolismo , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Sumoilación , Activación Transcripcional
2.
Res Microbiol ; 174(6): 104089, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37348743

RESUMEN

Bacillus thuringiensis israelensis is largely regarded as the most selective, safe and ecofriendly biopesticide used for the control of insect vectors of human diseases. Bti enthomopathogenicity relies on the Cry and Cyt δ-endotoxins, produced as crystalline inclusions during sporulation. Insecticidal selectivity of Bti is mainly ascribed to the binding of the Cry toxins to receptors in the gut of target insects. However, the contribution of epithelial defenses in limiting Bti side effects in non-target species remains largely unexplored. Here, taking advantage of the genetically tractable Drosophila melanogaster model and its amenability for deciphering highly conserved innate immune defenses, we unravel a central role of the NF-κB factor Relish in the protection against the effects of ingested Bti spores in a non-susceptible host. Intriguingly, our data indicate that the Bti-induced Relish response is independent of its canonical activation downstream of peptidoglycan sensing and does not involve its longstanding role in the regulation of antimicrobial peptides encoding genes. In contrast, our data highlight a novel enterocyte specific function of Relish that is essential for preventing general septicemia following Bti oral infections strictly when producing δ-endotoxins. Altogether, our data provide novel insights into Bti-hosts interactions of prominent interest for the optimization and sustainability of insects' biocontrol strategies.


Asunto(s)
Bacillus thuringiensis , Endotoxinas , Animales , Humanos , Endotoxinas/genética , Endotoxinas/metabolismo , Endotoxinas/farmacología , Bacillus thuringiensis/genética , FN-kappa B/metabolismo , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Toxinas de Bacillus thuringiensis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/farmacología
3.
Front Microbiol ; 11: 611220, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33391240

RESUMEN

Antimicrobial peptides (AMPs) are essential effectors of the host innate immune system and they represent promising molecules for the treatment of multidrug resistant microbes. A better understanding of microbial resistance to these defense peptides is thus prerequisite for the control of infectious diseases. Here, using a random mutagenesis approach, we identify the fliK gene, encoding an internal molecular ruler that controls flagella hook length, as an essential element for Bacillus thuringiensis resistance to AMPs in Drosophila. Unlike its parental strain, that is highly virulent to both wild-type and AMPs deficient mutant flies, the fliK deletion mutant is only lethal to the latter's. In agreement with its conserved function, the fliK mutant is non-flagellated and exhibits highly compromised motility. However, comparative analysis of the fliK mutant phenotype to that of a fla mutant, in which the genes encoding flagella proteins are interrupted, indicate that B. thuringiensis FliK-dependent resistance to AMPs is independent of flagella assembly. As a whole, our results identify FliK as an essential determinant for B. thuringiensis virulence in Drosophila and provide new insights on the mechanisms underlying bacteria resistance to AMPs.

4.
Nat Commun ; 10(1): 2891, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31253791

RESUMEN

Our ability to manage acute myeloid leukemia (AML) is limited by our incomplete understanding of the epigenetic disruption central to leukemogenesis, including improper histone methylation. Here we examine 16 histone H3 genes in 434 primary AML samples and identify Q69H, A26P, R2Q, R8H and K27M/I mutations (1.6%), with higher incidence in secondary AML (9%). These mutations occur in pre-leukemic hematopoietic stem cells (HSCs) and exist in the major leukemic clones in patients. They increase the frequency of functional HSCs, alter differentiation, and amplify leukemic aggressiveness. These effects are dependent on the specific mutation. H3K27 mutation increases the expression of genes involved in erythrocyte and myeloid differentiation with altered H3K27 tri-methylation and K27 acetylation. The functional impact of histone mutations is independent of RUNX1 mutation, although they at times co-occur. This study establishes that H3 mutations are drivers of human pre-cancerous stem cell expansion and important early events in leukemogenesis.


Asunto(s)
Epigenómica , Regulación Leucémica de la Expresión Génica/fisiología , Histonas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Animales , Animales Modificados Genéticamente , Antineoplásicos/farmacología , Secuencia de Bases , Células de la Médula Ósea , Diferenciación Celular , Transformación Celular Neoplásica , ADN/genética , Drosophila melanogaster/genética , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/metabolismo , Humanos , Ratones , Mutación , Neoplasias Experimentales
5.
Front Microbiol ; 9: 1268, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29942298

RESUMEN

Infection with the Epstein-Barr virus (EBV) is associated with several malignancies and autoimmune diseases in humans. The following EBV infection and establishment of latency, recurrences frequently occur resulting in potential viral DNA shedding, which may then trigger the activation of immune pathways. We have previously demonstrated that levels of the pro-inflammatory cytokine IL-17, which is associated with several autoimmune diseases, are increased in response to EBV DNA injection in mice. Whether other pro-inflammatory pathways are induced in EBV DNA pathobiology remains to be investigated. The complexity of mammalian immune systems presents a challenge to studying differential activities of their intricate immune pathways in response to a particular immune stimulus. In this study, we used Drosophila melanogaster to identify innate humoral and cellular immune pathways that are activated in response to EBV DNA. Injection of wild-type adult flies with EBV DNA induced the immune deficiency (IMD) pathway resulting in enhanced expression of the antimicrobial peptide diptericin. Furthermore, EBV DNA increased the number of hemocytes in flies. Conditional silencing of the IMD pathway decreased diptericin expression in addition to curbing of hemocyte proliferation in response to challenge with EBV DNA. Comparatively, upon injecting mice with EBV DNA, we detected enhanced expression of tumor necrosis factor-α (TNFα); this enhancement is rather comparable to IMD pathway activation in flies. This study hence indicates that D. melanogaster could possibly be utilized to identify immune mediators that may also play a role in the response to EBV DNA in higher systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA