Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Medicina (Kaunas) ; 59(12)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38138197

RESUMEN

Transgender individuals often face elevated mental health challenges due to gender dysphoria, but gender-affirming treatments such as surgery and hormone therapy have been linked to significant improvements in mental well-being. The potential influence of time and circadian rhythms on these treatments is prevalent. The intricate interplay between hormones, clock genes, and fertility is profound, acknowledging the complexity of reproductive health in transgender individuals. Furthermore, risks associated with gender-affirming hormonal therapy and potential complications of puberty suppression emphasize the importance of ongoing surveillance for these patients and the need of fertility preservation and family-building options for transgender individuals. This narrative review delves into the intricate landscape of hormone therapy for transgender individuals, shedding light on its impact on bone, cardiovascular, and overall health. It explores how hormone therapy affects bone maintenance and cardiovascular risk factors, outlining the complex interplay of testosterone and estrogen. It also underscores the necessity for further research, especially regarding the long-term effects of transgender hormones. This project emphasizes the critical role of healthcare providers, particularly obstetricians and gynecologists, in providing affirming care, calling for comprehensive understanding and integration of transgender treatments. This review will contribute to a better understanding of the impact of hormone therapy on reproductive health and overall well-being in transgender individuals. It will provide valuable insights for healthcare providers, policymakers, and transgender individuals themselves, informing decision-making regarding hormone therapy and fertility preservation options. Additionally, by identifying research gaps, this review will guide future studies to address the evolving healthcare needs of transgender individuals. This project represents a critical step toward addressing the complex healthcare needs of this population. By synthesizing existing knowledge and highlighting areas for further investigation, this review aims to improve the quality of care and support provided to transgender individuals, ultimately enhancing their reproductive health and overall well-being.


Asunto(s)
Preservación de la Fertilidad , Personas Transgénero , Humanos , Personas Transgénero/psicología , Reproducción , Fertilidad , Testosterona
2.
J Clin Med ; 13(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38673433

RESUMEN

Preimplantation genetic testing (PGT) has become a common supplementary diagnοstic/testing tοol for in vitro fertilization (ΙVF) cycles due to a significant increase in cases of PGT fοr mοnogenic cοnditions (ΡGT-M) and de novο aneuplοidies (ΡGT-A) over the last ten years. This tendency is mostly attributable to the advancement and application of novel cytogenetic and molecular techniques in clinical practice that are capable of providing an efficient evaluation of the embryonic chromosomal complement and leading to better IVF/ICSI results. Although PGT is widely used, it requires invasive biopsy of the blastocyst, which may harm the embryo. Non-invasive approaches, like cell-free DNA (cfDNA) testing, have lower risks but have drawbacks in consistency and sensitivity. This review discusses new developments and opportunities in the field of preimplantation genetic testing, enhancing the overall effectiveness and accessibility of preimplantation testing in the framework of developments in genomic sequencing, bioinformatics, and the integration of artificial intelligence in the interpretation of genetic data.

3.
J Clin Med ; 13(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38892858

RESUMEN

Infertility represents a significant global health challenge impacting millions of couples worldwide. Approximately half of all infertile couples exhibit compromised semen quality, indicative of diminished male fertility. While the diagnosis of male infertility traditionally relies on semen analysis, its limitations in providing a comprehensive assessment of male reproductive health have spurred efforts to identify novel biomarkers. Seminal plasma, a complex fluid containing proteins, lipids, and metabolites, has emerged as a rich source of such indicators. Reproduction depends heavily on seminal plasma, the primary transporter of chemicals from male reproductive glands. It provides a non-invasive sample for urogenital diagnostics and has demonstrated potential in the identification of biomarkers linked to illnesses of the male reproductive system. The abundance of seminal proteins has enabled a deeper understanding of their biological functions, origins, and differential expression in various conditions associated with male infertility, including azoospermia, asthenozoospermia, oligozoospermia, teratozoospermia, among others. The true prevalence of male infertility is understated due to the limitations of the current diagnostic techniques. This review critically evaluates the current landscape of seminal plasma biomarkers and their utility in assessing male infertility. Βy bridging the gap between research and clinical practice, the integrative assessment of seminal plasma biomarkers offers a multimodal approach to comprehensively evaluate male infertility.

4.
J Clin Med ; 13(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38610915

RESUMEN

Background: Telomere attrition and mitochondrial dysfunction are two fundamental aspects of aging. Calorie restriction (CR) is the best strategy to postpone aging since it can enhance telomere attrition, boost antioxidant capacity, and lower the generation of reactive oxygen species (ROS). Since ROS is produced by mitochondria and can readily travel to cell nuclei, it is thought to be a crucial molecule for information transfer between mitochondria and cell nuclei. Important variables that affect the quality and functionality of sperm and may affect male reproductive health and fertility include telomere length, mitochondrial content, and the ratio of mitochondrial DNA (mtDNA) to nuclear DNA (nDNA). Telomere damage results from mitochondrial failure, whereas nuclear DNA remains unaffected. This research aims to investigate potential associations between these three variables and how they might relate to body mass index. Methods: Data were collected from 82 men who underwent IVF/ICSI at the University Hospital of Ioannina's IVF Unit in the Obstetrics and Gynecology Department. Evaluations included sperm morphology, sperm count, sperm motility, and participant history. To address this, male participants who were categorized into three body mass index (ΒΜΙ) groups-normal, overweight, and obese-had their sperm samples tested. Results: For both the normal and overweight groups, our results show a negative connection between relative telomere length and ΒΜI. As an illustration of a potential connection between mitochondrial health and telomere maintenance, a positive correlation was found for the obese group. Only the obese group's results were statistically significant (p < 0.05). More evidence that longer telomeres are associated with lower mitochondrial content can be found in the negative connection between telomere length and mitochondrial content in both the normal and overweight groups. However, the obese group showed a positive association. The data did not reach statistical significance for any of the three groups. These associations may affect sperm quality since telomere length and mitochondrial concentration are indicators of cellular integrity and health. Moreover, the ratio of mtDNA to nDNA was positively correlated with the relative telomere lengths of the obese group, but negatively correlated with the normal and overweight groups. In every group that was studied, the results were not statistically significant. According to this, male fertility may be negatively impacted by an imbalance in the copy number of the mitochondrial genome compared to the nuclear DNA in sperm. Conclusions: Essentially, the goal of our work is to determine whether mitochondria and telomere length in human sperm interact. Understanding these connections may aid in the explanation of some male infertility causes and possibly contribute to the creation of new treatment modalities for problems pertaining to reproductive health. The functional implications of these connections and their applications in therapeutic settings require further investigation.

5.
J Clin Med ; 13(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38929888

RESUMEN

Background: Recurrent pregnancy loss refers to the spontaneous demise of two or more pregnancies before the 24 weeks of gestation. In almost half of the cases of recurrent miscarriages, the causes remain unknown since there is no reliable way of prognosis, early diagnosis, or treatment. Recent research has detected differential expression of certain miRNAs in reproductive system pathologies. Methods: The aim of the present review is to focus on microRNAs and their relationship with idiopathic recurrent miscarriages and to correlate miRNA expression with recurrent miscarriage and examine their potential role as biomarkers. Pubmed/Medline and Scopus databases were searched up to 31st January 2024 with terms related to recurrent pregnancy loss and miRNAs. Results: In total, 21 studies were selected for the review. A total of 75 different miRNAs were identified, showing a statistically significant differential expression. Around 40 miRNAs had increased expression, such as miR-520, miR-184 and miR-100-5p, 21 decreased, such as let-7c, and 14 had either increased or decreased expression depending on the study, such as miR-21. Conclusions: The dysregulation of miRNA expression is strongly associated with recurrent miscarriages. The circulating in the peripheral blood miRNAs, miR-100-5p and let-7c, might be utilized as biomarkers and establish a valuable non-invasive prognostic and diagnostic tool in the future.

6.
Front Reprod Health ; 5: 1107215, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36890798

RESUMEN

Prior research has substantiated the vital role of telomeres in human fertility. Telomeres are prerequisites for maintaining the integrity of chromosomes by preventing the loss of genetic material following replication events. Little is known about the association between sperm telomere length and mitochondrial capacity involving its structure and functions. Mitochondria are structurally and functionally distinct organelles that are located on the spermatozoon's midpiece. Mitochondria produce adenosine triphosphate (ATP) through oxidative phosphorylation (OXPHOS), which is necessary for sperm motility and generate reactive oxygen species (ROS). While a moderate concentration of ROS is critical for egg-sperm fusion, and fertilization, excessive ROS generation is primarily related to telomere shortening, sperm DNA fragmentation, and alterations in the methylation pattern leading to male infertility. This review aims to highlight the functional connection between mitochondria biogenesis and telomere length in male infertility, as mitochondrial lesions have a damaging impact on telomere length, leading both to telomere lengthening and reprogramming of mitochondrial biosynthesis. Furthermore, it aims to shed light on how both inositol and antioxidants can positively affect male fertility.

7.
Genes (Basel) ; 14(7)2023 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-37510407

RESUMEN

Age-related mitochondrial markers may facilitate the prognosis of artificial reproductive technology outcomes. In this report, we present our study concerning the ratio of cf-mtDNA/cf-nDNA, namely the amount of cell-free mitochondrial DNA relative to cell-free nuclear DNA, in the follicular fluid (FF) of women undergoing IVF, aiming to generate a molecular fingerprint of oocyte quality. The values of this ratio were measured and compared among three groups of women (101 in total): (A) 31 women with polycystic ovary syndrome (PCOS), (B) 34 women younger than 36 years, and (C) 36 women older than 35 years of age. Real-time quantitative PCR (qPCR) was performed to quantify the ratio by using nuclear- and mitochondrial-specific primers and analyzed for potential correlation with age and pregnancy rate. Our analysis showed that the level of FF-cf-mtDNA was lower in the group of advanced-age women than in the groups of PCOS and non-PCOS women. Moreover, a significant positive correlation between FF-cf-mtDNA and the number of mature (MII) oocytes was observed. Collectively, the data show that the relative ratio of cf- mtDNA to cf-nDNA content in human FF can be an effective predictor for assessing the corresponding oocyte's age-related performance in IVF.


Asunto(s)
Líquido Folicular , Síndrome del Ovario Poliquístico , Embarazo , Humanos , Femenino , Líquido Folicular/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Oocitos/metabolismo , Mitocondrias , Síndrome del Ovario Poliquístico/genética , Fertilización In Vitro
8.
Antioxidants (Basel) ; 12(8)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37627485

RESUMEN

Oxidative stress (OS), which arises through an imbalance between the formation of reactive oxygen species (ROS) and antioxidant defenses, plays a key role in the pathophysiology of female infertility, with the latter constituting just one of a number of diseases linked to OS as a potential cause. The aim of the present article is to review the literature regarding the association between OS and female infertility. Among the reproductive diseases considered are endometriosis and polycystic ovary syndrome (PCOS), while environmental pollutants, lifestyle variables, and underlying medical conditions possibly resulting in OS are additionally examined. Current evidence points to OS likely contributing to the pathophysiology of the above reproductive disorders, with the amount of damage done by OS being influenced by such variables as duration and severity of exposure and the individual's age and genetic predisposition. Also discussed are the processes via which OS may affect female fertility, these including DNA damage and mitochondrial dysfunction. Finally, the last section of the manuscript contains an evaluation of treatment options, including antioxidants and lifestyle modification, capable of minimizing OS in infertile women. The prime message underlined by this review is the importance of considering OS in the diagnosis and treatment of female infertility. Further studies are, nevertheless required to identify the best treatment regimen and its ideal duration.

9.
Biomedicines ; 11(11)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38002013

RESUMEN

BACKGROUND: Mitochondrial dysfunction is a risk factor in the pathogenesis of metabolic disorders. According to the energy requirements, oxidative phosphorylation and the electron transport chain work together to produce ATP in sufficient quantities in the mitochondria of eukaryotic cells. Abnormal mitochondrial activity causes fat accumulation and insulin resistance as cells require a balance between the production of ATP by oxidative phosphorylation (OXPHOS) in the mitochondria and the dissipation of the proton gradient to reduce damage from reactive oxygen species (ROS). This study aims to explore the relationship between the mitochondrial content of sperm and the ratio of mitochondrial DNA to nuclear DNA in relation to body mass index (BMI) and how it may affect the progressive motility of sperm cell. Understanding the relationships between these important variables will help us better understand the possible mechanisms that could connect sperm motility and quality to BMI, as well as further our understanding of male fertility and reproductive health. METHODS: Data were collected from 100 men who underwent IVF/ICSI at the University Hospital of Ioannina's IVF Unit in the Obstetrics and Gynecology Department. The body mass index (BMI) of the males tested was used to classify them as normal weight; overweight; and obese. Evaluations included sperm morphology; sperm count; sperm motility; and participant history. RESULTS: In the group of men with normal BMI, both BMI and progressive motility displayed a statistically significant association (p < 0.05) with mitochondrial DNA content, relative mitochondrial DNA copy number, and the mtDNA/nDNA ratio. Similar to this, there was a positive association between BMI and motility in the groups of men who were overweight and obese, as well as between the expression of mitochondrial DNA and the mtDNA/nDNA ratio, with statistically significant differences (p < 0.05). There was not a statistically significant difference observed in the association between the relative mtDNA copy number and BMI or motility for the overweight group. Finally, the relative mtDNA copy number in the obese group was only associated with motility (p = 0.034) and not with BMI (p = 0.24). CONCLUSIONS: We found that in all three groups, BMI and progressive motility exhibited comparable relationships with mitochondrial DNA expression and the mtDNA/nDNA ratio. However, only in the normal group and in the obese group, the relative mitochondrial DNA copy number showed a positive association with BMI and progressive motility.

10.
Genes (Basel) ; 14(2)2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36833413

RESUMEN

The average age of fathers at first pregnancy has risen significantly over the last decade owing to various variables, including a longer life expectancy, more access to contraception, later marriage, and other factors. As has been proven in several studies, women over 35 years of age have an increased risk of infertility, pregnancy problems, spontaneous abortion, congenital malformations, and postnatal issues. There are varying opinions on whether a father's age affects the quality of his sperm or his ability to father a child. First, there is no single accepted definition of old age in a father. Second, much research has reported contradictory findings in the literature, particularly concerning the most frequently examined criteria. Increasing evidence suggests that the father's age contributes to his offspring's higher vulnerability to inheritable diseases. Our comprehensive literature evaluation shows a direct correlation between paternal age and decreased sperm quality and testicular function. Genetic abnormalities, such as DNA mutations and chromosomal aneuploidies, and epigenetic modifications, such as the silencing of essential genes, have all been linked to the father's advancing years. Paternal age has been shown to affect reproductive and fertility outcomes, such as the success rate of in vitro fertilisation (IVF), intracytoplasmic sperm injection (ICSI), and premature birth rate. Several diseases, including autism, schizophrenia, bipolar disorders, and paediatric leukaemia, have been linked to the father's advanced years. Therefore, informing infertile couples of the alarming correlations between older fathers and a rise in their offspring's diseases is crucial, so that they can be effectively guided through their reproductive years.


Asunto(s)
Infertilidad , Edad Paterna , Embarazo , Humanos , Masculino , Femenino , Niño , Semen , Fertilidad , Reproducción/genética , Padre
11.
Antioxidants (Basel) ; 12(8)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37627478

RESUMEN

Coronavirus disease 19 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), jeopardizes male fertility because of the vulnerability of the male reproductive system, especially the testes. This study evaluates the effects of the virus on testicular function and examines the potential role of antioxidants in mitigating the damage caused by oxidative stress (OS). A comprehensive PubMed search examined exocrine and endocrine testicular function alteration, the interplay between OS and COVID-19-induced defects, and the potential benefit of antioxidants. Although the virus is rarely directly detectable in sperm and testicular tissue, semen quality and hormonal balance are affected in patients, with some changes persisting throughout a spermatogenesis cycle. Testicular pathology in deceased patients shows defects in spermatogenesis, vascular changes, and inflammation. Acute primary hypogonadism is observed mainly in severely infected cases. Elevated OS and sperm DNA fragmentation markers suggest redox imbalance as a possible mechanism behind the fertility changes. COVID-19 vaccines appear to be safe for male fertility, but the efficacy of antioxidants to improve sperm quality after infection remains unproven due to limited research. Given the limited and inconclusive evidence, careful evaluation of men recovering from COVID-19 seeking fertility improvement is strongly recommended.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA