Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Cell ; 185(1): 113-130.e15, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34921774

RESUMEN

mRNA-1273 vaccine efficacy against SARS-CoV-2 Delta wanes over time; however, there are limited data on the impact of durability of immune responses on protection. Here, we immunized rhesus macaques and assessed immune responses over 1 year in blood and upper and lower airways. Serum neutralizing titers to Delta were 280 and 34 reciprocal ID50 at weeks 6 (peak) and 48 (challenge), respectively. Antibody-binding titers also decreased in bronchoalveolar lavage (BAL). Four days after Delta challenge, the virus was unculturable in BAL, and subgenomic RNA declined by ∼3-log10 compared with control animals. In nasal swabs, sgRNA was reduced by 1-log10, and the virus remained culturable. Anamnestic antibodies (590-fold increased titer) but not T cell responses were detected in BAL by day 4 post-challenge. mRNA-1273-mediated protection in the lungs is durable but delayed and potentially dependent on anamnestic antibody responses. Rapid and sustained protection in upper and lower airways may eventually require a boost.

2.
Nat Immunol ; 22(10): 1306-1315, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34417590

RESUMEN

B.1.351 is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant most resistant to antibody neutralization. We demonstrate how the dose and number of immunizations influence protection. Nonhuman primates received two doses of 30 or 100 µg of Moderna's mRNA-1273 vaccine, a single immunization of 30 µg, or no vaccine. Two doses of 100 µg of mRNA-1273 induced 50% inhibitory reciprocal serum dilution neutralizing antibody titers against live SARS-CoV-2 p.Asp614Gly and B.1.351 of 3,300 and 240, respectively. Higher neutralizing responses against B.1.617.2 were also observed after two doses compared to a single dose. After challenge with B.1.351, there was ~4- to 5-log10 reduction of viral subgenomic RNA and low to undetectable replication in bronchoalveolar lavages in the two-dose vaccine groups, with a 1-log10 reduction in nasal swabs in the 100-µg group. These data establish that a two-dose regimen of mRNA-1273 will be critical for providing upper and lower airway protection against major variants of concern.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , Primates/inmunología , SARS-CoV-2/inmunología , Vacuna nCoV-2019 mRNA-1273 , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/virología , Línea Celular , Chlorocebus aethiops , Femenino , Humanos , Macaca mulatta , Masculino , Mesocricetus , Primates/virología , ARN Viral/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación/métodos , Células Vero , Carga Viral/métodos
3.
Nature ; 614(7947): 318-325, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36599978

RESUMEN

Rare CD4 T cells that contain HIV under antiretroviral therapy represent an important barrier to HIV cure1-3, but the infeasibility of isolating and characterizing these cells in their natural state has led to uncertainty about whether they possess distinctive attributes that HIV cure-directed therapies might exploit. Here we address this challenge using a microfluidic technology that isolates the transcriptomes of HIV-infected cells based solely on the detection of HIV DNA. HIV-DNA+ memory CD4 T cells in the blood from people receiving antiretroviral therapy showed inhibition of six transcriptomic pathways, including death receptor signalling, necroptosis signalling and antiproliferative Gα12/13 signalling. Moreover, two groups of genes identified by network co-expression analysis were significantly associated with HIV-DNA+ cells. These genes (n = 145) accounted for just 0.81% of the measured transcriptome and included negative regulators of HIV transcription that were higher in HIV-DNA+ cells, positive regulators of HIV transcription that were lower in HIV-DNA+ cells, and other genes involved in RNA processing, negative regulation of mRNA translation, and regulation of cell state and fate. These findings reveal that HIV-infected memory CD4 T cells under antiretroviral therapy are a distinctive population with host gene expression patterns that favour HIV silencing, cell survival and cell proliferation, with important implications for the development of HIV cure strategies.


Asunto(s)
Linfocitos T CD4-Positivos , Regulación Viral de la Expresión Génica , Infecciones por VIH , VIH-1 , Latencia del Virus , Humanos , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/virología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , ADN Viral/aislamiento & purificación , Regulación Viral de la Expresión Génica/efectos de los fármacos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/genética , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , VIH-1/genética , VIH-1/aislamiento & purificación , VIH-1/patogenicidad , Memoria Inmunológica , Microfluídica , Necroptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Latencia del Virus/efectos de los fármacos , Antirretrovirales/farmacología , Antirretrovirales/uso terapéutico
4.
PLoS Pathog ; 17(4): e1009431, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33831133

RESUMEN

Tracking evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within infected individuals will help elucidate coronavirus disease 2019 (COVID-19) pathogenesis and inform use of antiviral interventions. In this study, we developed an approach for sequencing the region encoding the SARS-CoV-2 virion surface proteins from large numbers of individual virus RNA genomes per sample. We applied this approach to the WA-1 reference clinical isolate of SARS-CoV-2 passaged in vitro and to upper respiratory samples from 7 study participants with COVID-19. SARS-CoV-2 genomes from cell culture were diverse, including 18 haplotypes with non-synonymous mutations clustered in the spike NH2-terminal domain (NTD) and furin cleavage site regions. By contrast, cross-sectional analysis of samples from participants with COVID-19 showed fewer virus variants, without structural clustering of mutations. However, longitudinal analysis in one individual revealed 4 virus haplotypes bearing 3 independent mutations in a spike NTD epitope targeted by autologous antibodies. These mutations arose coincident with a 6.2-fold rise in serum binding to spike and a transient increase in virus burden. We conclude that SARS-CoV-2 exhibits a capacity for rapid genetic adaptation that becomes detectable in vivo with the onset of humoral immunity, with the potential to contribute to delayed virologic clearance in the acute setting.


Asunto(s)
COVID-19 , Epítopos , Inmunidad Humoral , Mutación , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , COVID-19/genética , COVID-19/inmunología , Línea Celular , Epítopos/genética , Epítopos/inmunología , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología
6.
Nucleic Acids Res ; 44(22): e161, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27576531

RESUMEN

We introduce RNA2DNAlign, a computational framework for quantitative assessment of allele counts across paired RNA and DNA sequencing datasets. RNA2DNAlign is based on quantitation of the relative abundance of variant and reference read counts, followed by binomial tests for genotype and allelic status at SNV positions between compatible sequences. RNA2DNAlign detects positions with differential allele distribution, suggesting asymmetries due to regulatory/structural events. Based on the type of asymmetry, RNA2DNAlign outlines positions likely to be implicated in RNA editing, allele-specific expression or loss, somatic mutagenesis or loss-of-heterozygosity (the first three also in a tumor-specific setting). We applied RNA2DNAlign on 360 matching normal and tumor exomes and transcriptomes from 90 breast cancer patients from TCGA. Under high-confidence settings, RNA2DNAlign identified 2038 distinct SNV sites associated with one of the aforementioned asymetries, the majority of which have not been linked to functionality before. The performance assessment shows very high specificity and sensitivity, due to the corroboration of signals across multiple matching datasets. RNA2DNAlign is freely available from http://github.com/HorvathLab/NGS as a self-contained binary package for 64-bit Linux systems.


Asunto(s)
Análisis de Secuencia de ADN , Análisis de Secuencia de ARN , Programas Informáticos , Algoritmos , Alelos , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Exoma , Femenino , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Pérdida de Heterocigocidad , Polimorfismo de Nucleótido Simple , Edición de ARN , Sensibilidad y Especificidad , Transcriptoma
7.
Bioinformatics ; 31(8): 1191-8, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25481010

RESUMEN

RATIONALE: The growing recognition of the importance of splicing, together with rapidly accumulating RNA-sequencing data, demand robust high-throughput approaches, which efficiently analyze experimentally derived whole-transcriptome splice profiles. RESULTS: We have developed a computational approach, called SNPlice, for identifying cis-acting, splice-modulating variants from RNA-seq datasets. SNPlice mines RNA-seq datasets to find reads that span single-nucleotide variant (SNV) loci and nearby splice junctions, assessing the co-occurrence of variants and molecules that remain unspliced at nearby exon-intron boundaries. Hence, SNPlice highlights variants preferentially occurring on intron-containing molecules, possibly resulting from altered splicing. To illustrate co-occurrence of variant nucleotide and exon-intron boundary, allele-specific sequencing was used. SNPlice results are generally consistent with splice-prediction tools, but also indicate splice-modulating elements missed by other algorithms. SNPlice can be applied to identify variants that correlate with unexpected splicing events, and to measure the splice-modulating potential of canonical splice-site SNVs. AVAILABILITY AND IMPLEMENTATION: SNPlice is freely available for download from https://code.google.com/p/snplice/ as a self-contained binary package for 64-bit Linux computers and as python source-code. CONTACT: pmudvari@gwu.edu or horvatha@gwu.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Intrones/genética , Empalme del ARN/genética , Epitelio Pigmentado de la Retina/metabolismo , Análisis de Secuencia de ARN/métodos , Programas Informáticos , Células Cultivadas , Exones/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Neoplasias/genética , ARN/genética , Epitelio Pigmentado de la Retina/citología
9.
J Biol Chem ; 287(33): 27843-50, 2012 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-22700976

RESUMEN

Metastasis-associated protein 1 (MTA1) is widely overexpressed in human cancers and is associated with malignant phenotypic changes contributing to morbidity in the associated diseases. Here we discovered for the first time that MTA1, a master chromatin modifier, transcriptionally represses the expression of phosphatase and tensin homolog (PTEN), a tumor suppressor gene, by recruiting class II histone deacetylase 4 (HDAC4) along with the transcription factor Yin-Yang 1 (YY1) onto the PTEN promoter. We also found evidence of an inverse correlation between the expression levels of MTA1 and PTEN in physiologically relevant breast cancer microarray datasets. We found that MTA1 up-regulation leads to a decreased expression of PTEN protein and stimulation of PI3K as well as phosphorylation of its signaling targets. Accordingly, selective down-regulation of MTA1 in breast cancer cells increases PTEN expression and inhibits stimulation of the PI3K/AKT signaling. Collectively, these findings provide a mechanistic role for MTA1 in transcriptional repression of PTEN, leading to modulation of the resulting signaling pathways.


Asunto(s)
Regulación Enzimológica de la Expresión Génica/fisiología , Histona Desacetilasas/metabolismo , Complejos Multienzimáticos/metabolismo , Fosfohidrolasa PTEN/biosíntesis , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Animales , Células HeLa , Histona Desacetilasas/genética , Humanos , Ratones , Complejos Multienzimáticos/genética , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Regiones Promotoras Genéticas/fisiología , Proteínas Represoras/genética , Transducción de Señal/fisiología , Transactivadores , Factores de Transcripción/genética , Transcripción Genética/fisiología , Regulación hacia Arriba/fisiología , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/metabolismo
10.
J Biol Chem ; 287(8): 5615-26, 2012 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-22184113

RESUMEN

Metastasis-associated protein 1 (MTA1), a component of the nucleosome-remodeling and histone deacetylase complex, is widely up-regulated in human cancers and significantly correlated with tumor invasion and metastasis, but the mechanisms involved remain largely unknown. Here, we report that MTA1 transcriptionally represses the expression of RING finger protein 144A (RNF144A), an uncharacterized gene whose protein product possesses potential E3 ubiquitin ligase activity, by recruiting the histone deacetylase 2 (HDAC2) and CCAAT/enhancer-binding protein α (c/EBPα) co-repressor complex onto human RNF144A promoter. Furthermore, an inverse correlation between the expression levels of MTA1 and RNF144A was demonstrated in publicly available breast cancer microarray datasets and the MCF10 breast cancer progression model system. To address functional aspects of MTA1 regulation of RNF144A, we demonstrate that RNF144A is a novel suppressor of cancer migration and invasion, two requisite steps of metastasis in vivo, and knockdown of endogenous RNF144A by small interfering RNAs accelerates the migration and invasion of MTA1-overexpressing cells. These results suggest that RNF144A is partially responsible for MTA1-mediated migration and invasion and that MTA1 overexpression in highly metastatic cancer cells drives cell migration and invasion by, at least in part, interfering with the suppressive function of RNF144A through transcriptional repression of RNF144A expression. Together, these findings provide novel mechanistic insights into regulation of tumor progression and metastasis by MTA1 and highlight a previously unrecognized role of RNF144A in MTA1-driven cancer cell migration and invasion.


Asunto(s)
Movimiento Celular/genética , Silenciador del Gen , Histona Desacetilasas/metabolismo , Proteínas Represoras/metabolismo , Transcripción Genética/genética , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/genética , Animales , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Proteínas Portadoras , Línea Celular Tumoral , Biología Computacional , Células HeLa , Histona Desacetilasa 2/metabolismo , Histona Desacetilasas/genética , Humanos , Ratones , Invasividad Neoplásica , Metástasis de la Neoplasia , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Represoras/genética , Transactivadores
11.
Front Immunol ; 14: 1007626, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37033916

RESUMEN

HIV-1 infection in memory CD4+ T cells forms a latent reservoir that is a barrier to cure. Identification of immune biomarkers that correlate with HIV-1 reservoir size may aid with evaluating efficacy of HIV-1 eradication strategies, towards ART-free remission and cure. In adults living with non-perinatal HIV-1, the immune exhaustion marker PD-1 on central memory CD4+ T cells (Tcm) correlates with measures of HIV-1 reservoir size. Immune correlates of HIV-1 are less defined in adolescents and young adults with perinatal HIV-1. With multi-parameter flow cytometry, we examined immune activation (CD69, CD25, HLA-DR), and exhaustion (PD-1, TIGIT, TIM-3 and LAG-3) markers on CD4+ T cell subsets (naïve (Tn), central memory (Tcm), and the combination (Ttem) of transitional (Ttm) and effector memory (Tem) cells, in 10 adolescents and young adults living with perinatal HIV-1 (median age 15.9 years; median duration of virologic suppression 7.0 years), in whom HIV-1 reservoir size was measured with the Intact Proviral HIV-1 DNA Assay (IPDA) and an enhanced Tat/Rev limiting dilution assay (TILDA). RNA-seq was also performed on the unstimulated CD4+ T cells. The median total HIV-1 DNA concentration in memory CD4+ T cells was 211.90 copies per million CD4+ T cells. In the 7 participants with subtype B HIV-1 infection, the median intact proviral DNA load was 7.96 copies per million CD4+ T cells. Levels of HLA-DR and TIGIT on the Ttem were correlated with total HIV-1 DNA (r=0.76, p=0.015) and (r=0.72, p=0.023), respectively, but not with intact proviral load or induced reservoir size. HIV-1 DNA load was also positively correlated with transcriptional clusters associated with HLA-DR expression by RNA-seq. In contrast, PD-1 expression on Tcm was inversely correlated with total HIV-1 DNA (r=-0.67, p=0.039). Reservoir size by IPDA and TILDA were correlated (r=0.81, p=0.036). Thus, in this cohort of youths with long-standing treated perinatal infection, HLA-DR and TIGIT on Ttem were the key correlates of HIV-1 infected cell frequencies by total HIV-1 DNA, and not PD-1. Total HIV-1 DNA was negatively correlated with PD-1 expressing Tcm. These differences in longstanding perinatal HIV-1 infection compared with adult infection requires further study in larger cohorts.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Humanos , Adolescente , Adulto Joven , Subgrupos de Linfocitos T , Linfocitos T CD4-Positivos , Provirus , Biomarcadores , Receptores Inmunológicos
12.
iScience ; 26(10): 108015, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37860759

RESUMEN

Persistent HIV-1 reservoirs of infected CD4 T cells are a major barrier to HIV-1 cure, although the mechanisms by which they are established and maintained in vivo remain poorly characterized. To elucidate host cell gene expression patterns that govern virus gene expression, we analyzed viral RNA+ (vRNA) CD4 T cells of untreated simian immunodeficiency virus (SIV)-infected macaques by single-cell RNA sequencing. A subset of vRNA+ cells distinguished by spliced and high total vRNA (7-10% of reads) expressed diminished FOS, a component of the Activator protein 1 (AP-1) transcription factor, relative to vRNA-low and -negative cells. Conversely, FOS and JUN, another AP-1 component, were upregulated in HIV DNA+ infected cells compared to uninfected cells from people with HIV-1 on suppressive therapy. Inhibiting c-Fos in latently infected primary cells augmented reactivatable HIV-1 infection. These findings implicate AP-1 in latency establishment and maintenance and as a potential therapeutic target to limit HIV-1 reservoirs.

14.
bioRxiv ; 2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-33655255

RESUMEN

Tracking evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within infected individuals will help elucidate coronavirus disease 2019 (COVID-19) pathogenesis and inform use of antiviral interventions. In this study, we developed an approach for sequencing the region encoding the SARS-CoV-2 virion surface proteins from large numbers of individual virus RNA genomes per sample. We applied this approach to the WA-1 reference clinical isolate of SARS-CoV-2 passaged in vitro and to upper respiratory samples from 7 study participants with COVID-19. SARS-CoV-2 genomes from cell culture were diverse, including 18 haplotypes with non-synonymous mutations clustered in the spike NH 2 -terminal domain (NTD) and furin cleavage site regions. By contrast, cross-sectional analysis of samples from participants with COVID-19 showed fewer virus variants, without structural clustering of mutations. However, longitudinal analysis in one individual revealed 4 virus haplotypes bearing 3 independent mutations in a spike NTD epitope targeted by autologous antibodies. These mutations arose coincident with a 6.2-fold rise in serum binding to spike and a transient increase in virus burden. We conclude that SARS-CoV-2 exhibits a capacity for rapid genetic adaptation that becomes detectable in vivo with the onset of humoral immunity, with the potential to contribute to delayed virologic clearance in the acute setting. AUTHOR SUMMARY: Mutant sequences of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) arising during any individual case of coronavirus disease 2019 (COVID-19) could theoretically enable the virus to evade immune responses or antiviral therapies that target the predominant infecting virus sequence. However, commonly used sequencing technologies are not optimally designed to detect variant virus sequences within each sample. To address this issue, we developed novel technology for sequencing large numbers of individual SARS-CoV-2 genomic RNA molecules across the region encoding the virus surface proteins. This technology revealed extensive genetic diversity in cultured viruses from a clinical isolate of SARS-CoV-2, but lower diversity in samples from 7 individuals with COVID-19. Importantly, concurrent analysis of paired serum samples in selected individuals revealed relatively low levels of antibody binding to the SARS-CoV-2 spike protein at the time of initial sequencing. With increased serum binding to spike protein, we detected multiple SARS-CoV-2 variants bearing independent mutations in a single epitope, as well as a transient increase in virus burden. These findings suggest that SARS-CoV-2 replication creates sufficient virus genetic diversity to allow immune-mediated selection of variants within the time frame of acute COVID-19. Large-scale studies of SARS-CoV-2 variation and specific immune responses will help define the contributions of intra-individual SARS-CoV-2 evolution to COVID-19 clinical outcomes and antiviral drug susceptibility.

15.
bioRxiv ; 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-34013272

RESUMEN

SARS-CoV-2 has caused a devastating global pandemic. The recent emergence of SARS-CoV-2 variants that are less sensitive to neutralization by convalescent sera or vaccine-induced neutralizing antibody responses has raised concerns. A second wave of SARS-CoV-2 infections in India is leading to the expansion of SARS-CoV-2 variants. The B.1.617.1 variant has rapidly spread throughout India and to several countries throughout the world. In this study, using a live virus assay, we describe the neutralizing antibody response to the B.1.617.1 variant in serum from infected and vaccinated individuals. We found that the B.1.617.1 variant is 6.8-fold more resistant to neutralization by sera from COVID-19 convalescent and Moderna and Pfizer vaccinated individuals. Despite this, a majority of the sera from convalescent individuals and all sera from vaccinated individuals were still able to neutralize the B.1.617.1 variant. This suggests that protective immunity by the mRNA vaccines tested here are likely retained against the B.1.617.1 variant. As the B.1.617.1 variant continues to evolve, it will be important to monitor how additional mutations within the spike impact antibody resistance, viral transmission and vaccine efficacy.

16.
bioRxiv ; 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34159328

RESUMEN

The emergence of SARS-CoV-2 variants of concern (VOC) requires adequate coverage of vaccine protection. We evaluated whether a spike ferritin nanoparticle vaccine (SpFN), adjuvanted with the Army Liposomal Formulation QS21 (ALFQ), conferred protection against the B.1.1.7 and B.1.351 VOCs in Syrian golden hamsters. SpFN-ALFQ was administered as either single or double-vaccination (0 and 4 week) regimens, using a high (10 µg) or low (0.2 µg) immunogen dose. Animals were intranasally challenged at week 11. Binding antibody responses were comparable between high- and low-dose groups. Neutralizing antibody titers were equivalent against WA1, B.1.1.7, and B.1.351 variants following two high dose two vaccinations. SpFN-ALFQ vaccination protected against SARS-CoV-2-induced disease and viral replication following intranasal B.1.1.7 or B.1.351 challenge, as evidenced by reduced weight loss, lung pathology, and lung and nasal turbinate viral burden. These data support the development of SpFN-ALFQ as a broadly protective, next-generation SARS-CoV-2 vaccine.

17.
bioRxiv ; 2021 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-34729558

RESUMEN

mRNA-1273 vaccine efficacy against SARS-CoV-2 Delta wanes over time; however, there are limited data on the impact of durability of immune responses on protection. We immunized rhesus macaques at weeks 0 and 4 and assessed immune responses over one year in blood, upper and lower airways. Serum neutralizing titers to Delta were 280 and 34 reciprocal ID 50 at weeks 6 (peak) and 48 (challenge), respectively. Antibody binding titers also decreased in bronchoalveolar lavage (BAL). Four days after challenge, virus was unculturable in BAL and subgenomic RNA declined ∼3-log 10 compared to control animals. In nasal swabs, sgRNA declined 1-log 10 and virus remained culturable. Anamnestic antibody responses (590-fold increase) but not T cell responses were detected in BAL by day 4 post-challenge. mRNA-1273-mediated protection in the lungs is durable but delayed and potentially dependent on anamnestic antibody responses. Rapid and sustained protection in upper and lower airways may eventually require a boost.

18.
bioRxiv ; 2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34075375

RESUMEN

BACKGROUND: Vaccine efficacy against the B.1.351 variant following mRNA-1273 vaccination in humans has not been determined. Nonhuman primates (NHP) are a useful model for demonstrating whether mRNA-1273 mediates protection against B.1.351. METHODS: Nonhuman primates received 30 or 100 µg of mRNA-1273 as a prime-boost vaccine at 0 and 4 weeks, a single immunization of 30 µg at week 0, or no vaccine. Antibody and T cell responses were assessed in blood, bronchioalveolar lavages (BAL), and nasal washes. Viral replication in BAL and nasal swabs were determined by qRT-PCR for sgRNA, and histopathology and viral antigen quantification were performed on lung tissue post-challenge. RESULTS: Eight weeks post-boost, 100 µg x2 of mRNA-1273 induced reciprocal ID 50 neutralizing geometric mean titers against live SARS-CoV-2 D614G and B.1.351 of 3300 and 240, respectively, and 430 and 84 for the 30 µg x2 group. There were no detectable neutralizing antibodies against B.1351 after the single immunization of 30 µg. On day 2 following B.1.351 challenge, sgRNA in BAL was undetectable in 6 of 8 NHP that received 100 µg x2 of mRNA-1273, and there was a ∼2-log reduction in sgRNA in NHP that received two doses of 30 µg compared to controls. In nasal swabs, there was a 1-log 10 reduction observed in the 100 µg x2 group. There was limited inflammation or viral antigen in lungs of vaccinated NHP post-challenge. CONCLUSIONS: Immunization with two doses of mRNA-1273 achieves effective immunity that rapidly controls lower and upper airway viral replication against the B.1.351 variant in NHP.

19.
NPJ Vaccines ; 6(1): 129, 2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34711815

RESUMEN

The emergence of SARS-CoV-2 variants of concern (VOC) requires adequate coverage of vaccine protection. We evaluated whether a SARS-CoV-2 spike ferritin nanoparticle vaccine (SpFN), adjuvanted with the Army Liposomal Formulation QS21 (ALFQ), conferred protection against the Alpha (B.1.1.7), and Beta (B.1.351) VOCs in Syrian golden hamsters. SpFN-ALFQ was administered as either single or double-vaccination (0 and 4 week) regimens, using a high (10 µg) or low (0.2 µg) dose. Animals were intranasally challenged at week 11. Binding antibody responses were comparable between high- and low-dose groups. Neutralizing antibody titers were equivalent against WA1, B.1.1.7, and B.1.351 variants following two high dose vaccinations. Dose-dependent SpFN-ALFQ vaccination protected against SARS-CoV-2-induced disease and viral replication following intranasal B.1.1.7 or B.1.351 challenge, as evidenced by reduced weight loss, lung pathology, and lung and nasal turbinate viral burden. These data support the development of SpFN-ALFQ as a broadly protective, next-generation SARS-CoV-2 vaccine.

20.
PLoS One ; 8(9): e74993, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24086418

RESUMEN

INTRODUCTION: In general, genomic signatures of breast cancer subtypes have little or no overlap owing to the heterogeneous genetic backgrounds of study samples. Thus, obtaining a reliable signature in the context of isogenic nature of the cells has been challenging and the precise contribution of isogenic triple negative breast cancer (TNBC) versus non-TNBC remains poorly defined. METHODS: We established isogenic stable cell lines representing TNBC and Human Epidermal Growth Factor Receptor 2 positive (HER2+) breast cancers by introducing HER2 in TNBC cell lines MDA-MB-231 and MDA-MB-468. We examined protein level expression and functionality of the transfected receptor by treatment with an antagonist of HER2. Using microarray profiling, we obtained a comprehensive gene list of differentially expressed between TNBC and HER2+ clones. We identified and validated underlying isogenic components using qPCR and also compared results with expression data from patients with similar breast cancer subtypes. RESULTS: We identified 544 and 1087 statistically significant differentially expressed genes between isogenic TNBC and HER2+ samples in MDA-MB-231 and MDA-MB-468 backgrounds respectively and a shared signature of 49 genes. By comparing results from MDA-MB-231 and MDA-MB-468 backgrounds with two patient microarray datasets, we identified 17 and 22 common genes with same expression trend respectively. Additionally, we identified 56 and 78 genes from MDA-MB-231 and MDA-MB-468 comparisons respectively present in our published RNA-seq data. CONCLUSIONS: Using our unique model system, we have identified an isogenic gene expression signature between TNBC and HER2+ breast cancer. A portion of our results was also verified in patient data samples, indicating an existence of isogenic element associated with HER2 status between genetically heterogeneous breast cancer samples. These findings may potentially contribute to the development of molecular platform that would be valuable for diagnostic and therapeutic decision for TNBC and in distinguishing it from HER2+ subtype.


Asunto(s)
Genómica , Modelos Biológicos , Receptor ErbB-2/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Línea Celular Tumoral , Regulación hacia Abajo/genética , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA