Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 370
Filtrar
Más filtros

Intervalo de año de publicación
1.
Immunity ; 56(10): 2311-2324.e6, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37643615

RESUMEN

Engagement of platelet endothelial cell adhesion molecule 1 (PECAM, PECAM-1, CD31) on the leukocyte pseudopod with PECAM at the endothelial cell border initiates transendothelial migration (TEM, diapedesis). We show, using fluorescence lifetime imaging microscopy (FLIM), that physical traction on endothelial PECAM during TEM initiated the endothelial signaling pathway. In this role, endothelial PECAM acted as part of a mechanotransduction complex with VE-cadherin and vascular endothelial growth factor receptor 2 (VEGFR2), and this predicted that VEGFR2 was required for efficient TEM. We show that TEM required both VEGFR2 and the ability of its Y1175 to be phosphorylated, but not VEGF or VEGFR2 endogenous kinase activity. Using inducible endothelial-specific VEGFR2-deficient mice, we show in three mouse models of inflammation that the absence of endothelial VEGFR2 significantly (by ≥75%) reduced neutrophil extravasation by selectively blocking diapedesis. These findings provide a more complete understanding of the process of transmigration and identify several potential anti-inflammatory targets.


Asunto(s)
Migración Transendotelial y Transepitelial , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Animales , Ratones , Adhesión Celular , Movimiento Celular , Endotelio Vascular , Mecanotransducción Celular , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
2.
Immunity ; 56(12): 2755-2772.e8, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38039967

RESUMEN

In triple-negative breast cancer (TNBC), stromal restriction of CD8+ T cells associates with poor clinical outcomes and lack of responsiveness to immune-checkpoint blockade (ICB). To identify mediators of T cell stromal restriction, we profiled murine breast tumors lacking the transcription factor Stat3, which is commonly hyperactive in breast cancers and promotes an immunosuppressive tumor microenvironment. Expression of the cytokine Chi3l1 was decreased in Stat3-/- tumors. CHI3L1 expression was elevated in human TNBCs and other solid tumors exhibiting T cell stromal restriction. Chi3l1 ablation in the polyoma virus middle T (PyMT) breast cancer model generated an anti-tumor immune response and delayed mammary tumor onset. These effects were associated with increased T cell tumor infiltration and improved response to ICB. Mechanistically, Chi3l1 promoted neutrophil recruitment and neutrophil extracellular trap formation, which blocked T cell infiltration. Our findings provide insight into the mechanism underlying stromal restriction of CD8+ T cells and suggest that targeting Chi3l1 may promote anti-tumor immunity in various tumor types.


Asunto(s)
Trampas Extracelulares , Neoplasias de la Mama Triple Negativas , Animales , Humanos , Ratones , Linfocitos T CD8-positivos , Línea Celular Tumoral , Citocinas , Trampas Extracelulares/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Microambiente Tumoral
3.
Immunity ; 54(9): 1989-2004.e9, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34363750

RESUMEN

The migration of neutrophils from the blood circulation to sites of infection or injury is a key immune response and requires the breaching of endothelial cells (ECs) that line the inner aspect of blood vessels. Unregulated neutrophil transendothelial cell migration (TEM) is pathogenic, but the molecular basis of its physiological termination remains unknown. Here, we demonstrated that ECs of venules in inflamed tissues exhibited a robust autophagic response that was aligned temporally with the peak of neutrophil trafficking and was strictly localized to EC contacts. Genetic ablation of EC autophagy led to excessive neutrophil TEM and uncontrolled leukocyte migration in murine inflammatory models, while pharmacological induction of autophagy suppressed neutrophil infiltration into tissues. Mechanistically, autophagy regulated the remodeling of EC junctions and expression of key EC adhesion molecules, facilitating their intracellular trafficking and degradation. Collectively, we have identified autophagy as a modulator of EC leukocyte trafficking machinery aimed at terminating physiological inflammation.


Asunto(s)
Autofagia/fisiología , Células Endoteliales/fisiología , Infiltración Neutrófila/fisiología , Migración Transendotelial y Transepitelial/fisiología , Animales , Quimiotaxis de Leucocito/fisiología , Células Endoteliales/patología , Células Endoteliales de la Vena Umbilical Humana/inmunología , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Inflamación/inmunología , Inflamación/patología , Uniones Intercelulares/fisiología , Ratones , Ratones Endogámicos C57BL , Neutrófilos/fisiología
4.
Genes Dev ; 34(19-20): 1304-1309, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32912899

RESUMEN

Mutations in the estrogen receptor α (ERα) occur in endocrine-resistant metastatic breast cancer. However, a major gap persists with the lack of genetically tractable immune competent mouse models to study disease. Hence, we developed a Cre-inducible murine model expressing a point-activated ESR1Y541S (ESR1Y537S in humans) driven by its endogenous promoter. Germline expression of mutant ESR1Y541S reveals dramatic developmental defects in the reproductive organs, mammary glands, and bones of the mice. These observations provide critical insights into the tissue-specific roles of ERα during development and highlights the potential use of our model in further developmental and cancer studies.


Asunto(s)
Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Crecimiento y Desarrollo/genética , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/fisiopatología , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Mutación , Caracteres Sexuales
5.
Proc Natl Acad Sci U S A ; 120(4): e2218373120, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36656864

RESUMEN

The HER2+ subtype of human breast cancer is associated with the malignant transformation of luminal ductal cells of the mammary epithelium. The sequence analysis of tumor DNA identifies loss of function mutations and deletions of the MAP2K4 and MAP2K7 genes that encode direct activators of the JUN NH2-terminal kinase (JNK). We report that in vitro studies of human mammary epithelial cells with CRISPR-induced mutations in the MAPK and MAP2K components of the JNK pathway caused no change in growth in 2D culture, but these mutations promoted epithelial cell proliferation in 3D culture. Analysis of gene expression signatures in 3D culture demonstrated similar changes caused by HER2 activation and JNK pathway loss. The mechanism of signal transduction cross-talk may be mediated, in part, by JNK-suppressed expression of integrin α6ß4 that binds HER2 and amplifies HER2 signaling. These data suggest that HER2 activation and JNK pathway loss may synergize to promote breast cancer. To test this hypothesis, we performed in vivo studies using a mouse model of HER2+ breast cancer with Cre/loxP-mediated ablation of genes encoding JNK (Mapk8 and Mapk9) and the MAP2K (Map2k4 and Map2k7) that activate JNK in mammary epithelial cells. Kaplan-Meier analysis of tumor development demonstrated that JNK pathway deficiency promotes HER2+-driven breast cancer. Collectively, these data identify JNK pathway genes as potential suppressors for HER2+ breast cancer.


Asunto(s)
Neoplasias de la Mama , Sistema de Señalización de MAP Quinasas , Humanos , Femenino , Neoplasias de la Mama/patología , Transducción de Señal , Transformación Celular Neoplásica/genética , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Línea Celular Tumoral
6.
Proc Natl Acad Sci U S A ; 120(33): e2303010120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549258

RESUMEN

The regulation of gene expression through histone posttranslational modifications plays a crucial role in breast cancer progression. However, the molecular mechanisms underlying the contribution of histone modification to tumor initiation remain unclear. To gain a deeper understanding of the role of the histone modifier Enhancer of Zeste homology 2 (Ezh2) in the early stages of mammary tumor progression, we employed an inducible mammary organoid system bearing conditional Ezh2 alleles that faithfully recapitulates key events of luminal B breast cancer initiation. We showed that the loss of Ezh2 severely impairs oncogene-induced organoid growth, with Ezh2-deficient organoids maintaining a polarized epithelial phenotype. Transcriptomic profiling showed that Ezh2-deficient mammary epithelial cells up-regulated the expression of negative regulators of Wnt signaling and down-regulated genes involved in mTORC1 (mechanistic target of rapamycin complex 1) signaling. We identified Sfrp1, a Wnt signaling suppressor, as an Ezh2 target gene that is derepressed and expressed in Ezh2-deficient epithelium. Furthermore, an analysis of breast cancer data revealed that Sfrp1 expression was associated with favorable clinical outcomes in luminal B breast cancer patients. Finally, we confirmed that targeting Ezh2 impairs mTORC1 activity through an indirect mechanism that up-regulates the expression of the tumor suppressor Pten. These findings indicate that Ezh2 integrates the mTORC1 and Wnt signaling pathways during early mammary tumor progression, arguing that inhibiting Ezh2 or therapeutically targeting Ezh2-dependent programs could be beneficial for the treatment of early-stage luminal B breast cancer.


Asunto(s)
Histonas , Complejo Represivo Polycomb 2 , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Histonas/metabolismo , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Vía de Señalización Wnt/genética
7.
N Engl J Med ; 386(9): 837-846, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35235726

RESUMEN

BACKGROUND: Respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infection and hospitalization in infants. Nirsevimab is a monoclonal antibody to the RSV fusion protein that has an extended half-life. The efficacy and safety of nirsevimab in healthy late-preterm and term infants are uncertain. METHODS: We randomly assigned, in a 2:1 ratio, infants who had been born at a gestational age of at least 35 weeks to receive a single intramuscular injection of nirsevimab or placebo before the start of an RSV season. The primary efficacy end point was medically attended RSV-associated lower respiratory tract infection through 150 days after the injection. The secondary efficacy end point was hospitalization for RSV-associated lower respiratory tract infection through 150 days after the injection. RESULTS: A total of 1490 infants underwent randomization: 994 were assigned to the nirsevimab group and 496 to the placebo group. Medically attended RSV-associated lower respiratory tract infection occurred in 12 infants (1.2%) in the nirsevimab group and in 25 infants (5.0%) in the placebo group; these findings correspond to an efficacy of 74.5% (95% confidence interval [CI], 49.6 to 87.1; P<0.001) for nirsevimab. Hospitalization for RSV-associated lower respiratory tract infection occurred in 6 infants (0.6%) in the nirsevimab group and in 8 infants (1.6%) in the placebo group (efficacy, 62.1%; 95% CI, -8.6 to 86.8; P = 0.07). Among infants with data available to day 361, antidrug antibodies after baseline were detected in 58 of 951 (6.1%) in the nirsevimab group and in 5 of 473 (1.1%) in the placebo group. Serious adverse events were reported in 67 of 987 infants (6.8%) who received nirsevimab and in 36 of 491 infants (7.3%) who received placebo. CONCLUSIONS: A single injection of nirsevimab administered before the RSV season protected healthy late-preterm and term infants from medically attended RSV-associated lower respiratory tract infection. (Funded by MedImmune/AstraZeneca and Sanofi; MELODY ClinicalTrials.gov number, NCT03979313.).


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Antivirales/uso terapéutico , Enfermedades del Prematuro/prevención & control , Recien Nacido Prematuro , Infecciones por Virus Sincitial Respiratorio/prevención & control , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/efectos adversos , Antivirales/administración & dosificación , Antivirales/efectos adversos , Esquema de Medicación , Femenino , Humanos , Lactante , Recién Nacido , Inyecciones Intramusculares , Estimación de Kaplan-Meier , Masculino
8.
N Engl J Med ; 387(18): 1673-1687, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36260859

RESUMEN

BACKGROUND: The safety, reactogenicity, immunogenicity, and efficacy of the mRNA-1273 coronavirus disease 2019 (Covid-19) vaccine in young children are unknown. METHODS: Part 1 of this ongoing phase 2-3 trial was open label for dose selection; part 2 was an observer-blinded, placebo-controlled evaluation of the selected dose. In part 2, we randomly assigned young children (6 months to 5 years of age) in a 3:1 ratio to receive two 25-µg injections of mRNA-1273 or placebo, administered 28 days apart. The primary objectives were to evaluate the safety and reactogenicity of the vaccine and to determine whether the immune response in these children was noninferior to that in young adults (18 to 25 years of age) in a related phase 3 trial. Secondary objectives were to determine the incidences of Covid-19 and severe acute respiratory syndrome coronavirus 2 infection after administration of mRNA-1273 or placebo. RESULTS: On the basis of safety and immunogenicity results in part 1 of the trial, the 25-µg dose was evaluated in part 2. In part 2, 3040 children 2 to 5 years of age and 1762 children 6 to 23 months of age were randomly assigned to receive two 25-µg injections of mRNA-1273; 1008 children 2 to 5 years of age and 593 children 6 to 23 months of age were randomly assigned to receive placebo. The median duration of follow-up after the second injection was 71 days in the 2-to-5-year-old cohort and 68 days in the 6-to-23-month-old cohort. Adverse events were mainly low-grade and transient, and no new safety concerns were identified. At day 57, neutralizing antibody geometric mean concentrations were 1410 (95% confidence interval [CI], 1272 to 1563) among 2-to-5-year-olds and 1781 (95% CI, 1616 to 1962) among 6-to-23-month-olds, as compared with 1391 (95% CI, 1263 to 1531) among young adults, who had received 100-µg injections of mRNA-1273, findings that met the noninferiority criteria for immune responses for both age cohorts. The estimated vaccine efficacy against Covid-19 was 36.8% (95% CI, 12.5 to 54.0) among 2-to-5-year-olds and 50.6% (95% CI, 21.4 to 68.6) among 6-to-23-month-olds, at a time when B.1.1.529 (omicron) was the predominant circulating variant. CONCLUSIONS: Two 25-µg doses of the mRNA-1273 vaccine were found to be safe in children 6 months to 5 years of age and elicited immune responses that were noninferior to those in young adults. (Funded by the Biomedical Advanced Research and Development Authority and National Institute of Allergy and Infectious Diseases; KidCOVE ClinicalTrials.gov number, NCT04796896.).


Asunto(s)
Vacuna nCoV-2019 mRNA-1273 , COVID-19 , Inmunogenicidad Vacunal , Niño , Preescolar , Humanos , Lactante , Adulto Joven , Vacuna nCoV-2019 mRNA-1273/inmunología , Vacuna nCoV-2019 mRNA-1273/uso terapéutico , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/epidemiología , COVID-19/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Método Doble Ciego , Inmunogenicidad Vacunal/inmunología , Eficacia de las Vacunas , Resultado del Tratamiento , Adolescente , Adulto
9.
Am J Pathol ; 194(5): 628-636, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38309429

RESUMEN

Neutrophils are an important cell type often considered the body's first responders to inflammatory insult or damage. They are recruited to the tissue of the lungs in patients with inflammatory airspace diseases and have unique and complex functions that range from helpful to harmful. The uniqueness of these functions is due to the heterogeneity of the inflammatory cascade and retention in the vasculature. Neutrophils are known to marginate, or remain stagnant, in the lungs even in nondisease conditions. This review discusses the ways in which the recruitment, presence, and function of neutrophils in the airspace of the lungs are unique from those of other tissues, and the complex effects of neutrophils on pathogenesis. Inflammatory mediators produced by neutrophils, such as neutrophil elastase, proresolving mediators, and neutrophil extracellular traps, dramatically affect the outcomes of patients with disease of the lungs.


Asunto(s)
Trampas Extracelulares , Neutrófilos , Humanos , Infiltración Neutrófila , Neutrófilos/metabolismo , Pulmón , Trampas Extracelulares/metabolismo
10.
Artículo en Inglés | MEDLINE | ID: mdl-38989578

RESUMEN

BACKGROUND: Mitral valve (MV) disease including myxomatous degeneration is the most common form of valvular heart disease with an age-dependent frequency. Genetic evidence indicates that mutations of the transcription factor FOXC1 are associated with MV defects, including MV regurgitation. In this study, we sought to determine whether murine Foxc1 and its closely related factor, Foxc2, are required in valvular endothelial cells (VECs) for the maintenance of MV leaflets, including VEC junctions and the stratified trilaminar ECM (extracellular matrix). METHODS: Adult mice carrying tamoxifen-inducible, vascular endothelial cell (EC), and lymphatic EC-specific, compound Foxc1;Foxc2 mutations (ie, EC-Foxc-DKO and lymphatic EC-Foxc-DKO mice, respectively) were used to study the function of Foxc1 and Foxc2 in the maintenance of MVs. The EC and lymphatic EC mutations of Foxc1/c2 were induced at 7 to 8 weeks of age by tamoxifen treatment, and abnormalities in the MVs of these mutant mice were assessed via whole-mount immunostaining, immunohistochemistry/RNAscope, Movat pentachrome/Masson Trichrome staining, and Evans blue injection. RESULTS: EC deletions of Foxc1 and Foxc2 in mice resulted in abnormally extended and thicker MVs by causing defects in the regulation of ECM organization with increased proteoglycan and decreased collagen. Notably, reticular adherens junctions were found in VECs of control MV leaflets, and these reticular structures were severely disrupted in EC-Foxc-DKO mice. PROX1 (prospero homeobox protein 1), a key regulator in a subset of VECs on the fibrosa side of MVs, was downregulated in EC-Foxc1/c2 mutant VECs. Furthermore, we determined the precise location of lymphatic vessels in murine MVs, and these lymphatic vessels were aberrantly expanded and dysfunctional in EC-Foxc1/c2 mutant MVs. Lymphatic EC deletion of Foxc1/c2 also resulted in similar structural/ECM abnormalities as seen in EC-Foxc1/c2 mutant MVs. CONCLUSIONS: Our results indicate that Foxc1 and Foxc2 are required for maintaining the integrity of the MV, including VEC junctions, ECM organization, and lymphatic vessel formation/function to prevent myxomatous MV degeneration.

11.
Genes Dev ; 31(15): 1573-1587, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28887414

RESUMEN

Epithelial cancers (carcinoma) account for 80%-90% of all cancers. The development of carcinoma is associated with disrupted epithelial organization and solid ductal structures. The mechanisms underlying the morphological development of carcinoma are poorly understood, but it is thought that loss of cell polarity is an early event. Here we report the characterization of the development of human breast lesions leading to carcinoma. We identified a unique mechanism that generates solid ducts in carcinoma through progressive loss of polarity and collapse of the luminal architecture. This program initiates with asymmetric divisions of polarized cells that generate a stratified epithelium containing both polarized and depolarized cells. Stratified regions form cords that penetrate into the lumen, subdividing it into polarized secondary lumina. The secondary lumina then collapse with a concomitant decrease in RhoA and myosin II activity at the apical membrane and ultimately lose apical-basal polarity. By restoring RhoA activity in mice, ducts maintained lumen and cell polarity. Notably, disrupted tissue architecture through luminal collapse was reversible, and ducts with a lumen were re-established after oncogene suppression in vivo. This reveals a novel and common mechanism that contributes to carcinoma development by progressively disrupting cell and tissue organization.


Asunto(s)
Neoplasias de la Mama/patología , Carcinogénesis , Carcinoma/patología , Polaridad Celular/fisiología , Animales , Membrana Celular , Células Cultivadas , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Ratones , Microscopía Confocal , Miosina Tipo II/metabolismo , Cultivo Primario de Células , Proteína de Unión al GTP rhoA/metabolismo
12.
Breast Cancer Res ; 26(1): 86, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38807216

RESUMEN

Copy number gains in genes coding for Rho activating exchange factors as well as losses affecting genes coding for RhoGAP proteins are common in breast cancer (BC), suggesting that elevated Rho signaling may play an important role. Extra copies and overexpression of RHOC also occur, although a role for RhoC overexpression in driving tumor formation has not been assessed in vivo. To this end, we report on the development of a Rosa26 (R26)-targeted Cre-conditional RhoC overexpression mouse (R26RhoC). This mouse was crossed to two models for ERBB2/NEU+ breast cancer: one based on expression of an oncogenic ErbB2/Neu cDNA downstream of the endogenous ErbB2 promoter (FloxNeoNeuNT), the other, a metastatic model that is based on high-level expression from MMTV regulatory elements (NIC). RhoC overexpression dramatically enhanced mammary tumor formation in FloxNeoNeuNT mice but showed a more subtle effect in the NIC line, which forms multiple mammary tumors after a very short latency. RhoC overexpression also enhanced mammary tumor formation in an activated Pik3ca model for breast cancer (Pik3caH1047R). The transforming effect of RhoC was associated with epithelial/mesenchymal transition (EMT) in ErbB2/NeuNT and Pik3caH1047R systems. Thus, our study reveals the importance of elevated wildtype Rho protein expression as a driver of breast tumor formation and highlights the significance of Copy Number Abberations that affect Rho signalling.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I , Regulación Neoplásica de la Expresión Génica , Fosfatidilinositol 3-Quinasas , Receptor ErbB-2 , Proteínas de Unión al GTP rho , Proteína rhoC de Unión a GTP , Animales , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Femenino , Proteína rhoC de Unión a GTP/metabolismo , Proteína rhoC de Unión a GTP/genética , Ratones , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Proteínas de Unión al GTP rho/metabolismo , Proteínas de Unión al GTP rho/genética , Humanos , Ratones Transgénicos , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/patología , Neoplasias Mamarias Experimentales/metabolismo , Transición Epitelial-Mesenquimal/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Transducción de Señal
13.
J Immunol ; 209(5): 1001-1012, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35914838

RESUMEN

CD99-like 2 (CD99L2 [L2]) is a highly glycosylated 52-kDa type 1 membrane protein that is important for leukocyte transendothelial migration (TEM) in mice. Inhibiting L2 using function-blocking Ab significantly reduces the recruitment of leukocytes to sites of inflammation in vivo. Similarly, L2 knockout mice have an inherent defect in leukocyte transmigration into sites of inflammation. However, the role of L2 in inflammation has only been studied in mice. Furthermore, the mechanism by which it regulates TEM is not known. To study the relevance to human inflammation, we studied the role of L2 on primary human cells in vitro. Our data show that like PECAM and CD99, human L2 is constitutively expressed at the borders of endothelial cells and on the surface of leukocytes. Inhibiting L2 using Ab blockade or genetic knockdown significantly reduces transmigration of human neutrophils and monocytes across endothelial cells. Furthermore, our data also show that L2 regulates a specific, sequential step of TEM between PECAM and CD99, rather than operating in parallel or redundantly with these molecules. Similar to PECAM and CD99, L2 promotes transmigration by recruiting the lateral border recycling compartment to sites of TEM, specifically downstream of PECAM initiation. Collectively, our data identify a novel functional role for human L2 in TEM and elucidate a mechanism that is distinct from PECAM and CD99.


Asunto(s)
Células Endoteliales , Leucocitos , Antígeno 12E7 , Animales , Movimiento Celular , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Humanos , Inflamación/metabolismo , Leucocitos/metabolismo , Ratones , Monocitos/metabolismo , Neutrófilos/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo
14.
Pediatr Transplant ; 28(3): e14750, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38623880

RESUMEN

BACKGROUND: Pediatric allogeneic hematopoietic cell transplant (allo-HCT) recipients are at risk for morbidity and mortality from human adenovirus (HAdV). HAdV can be detected in an asymptomatic state, referred to as infection or with signs or symptoms of illness, referred to as disease. Standardized case definitions are needed to distinguish infection from disease and allow for consistent reporting in both observational cohort studies and therapeutic clinical trials. METHODS: A working group of experts in virology, transplant infectious disease, and HCT was assembled to develop HAdV infection and disease definitions with the degree of certainty (i.e., possible, probable, and proven). Definitions were further refined through an iterative process and independently applied by two central review committees (CRCs) to 20 pediatric allo-HCT recipients with at least one HAdV-positive PCR. RESULTS: Initial HAdV infection and disease definitions were developed and updated through an iterative process after reviewing clinical and virological details for 81 subjects with at least one positive HAdV PCR detected in a clinical specimen. Independent application of final definitions to 20 HAdV positive allo-HCT recipients by two CRCs yielded similar number of HAdV infection or disease events but with variation of degree of certainty for some events. CONCLUSIONS: Application of definitions by a CRC for a study of HAdV infection and disease is feasible and can provide consistency in the assignment of outcomes. Definitions need further refinement to improve reproducibility and to provide guidance on determining clinical improvement or worsening after initial diagnosis of HAdV infection or disease.


Asunto(s)
Infecciones por Adenovirus Humanos , Adenovirus Humanos , Trasplante de Células Madre Hematopoyéticas , Niño , Humanos , Infecciones por Adenovirus Humanos/diagnóstico , Reproducibilidad de los Resultados , Trasplante Homólogo , Estudios de Cohortes
15.
Clin Trials ; 21(3): 390-396, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38140914

RESUMEN

BACKGROUND/AIMS: The SARS-CoV-2 pandemic disproportionately impacted communities with lower access to health care in the United States, particularly before vaccines were widely available. These same communities are often underrepresented in clinical trials. Efforts to ensure equitable enrollment of participants in trials related to treatment and prevention of Covid-19 can raise concerns about exploitation if communities with lower access to health care are targeted for recruitment. METHODS: To enhance equity while avoiding exploitation, our site developed and implemented a three-part recruitment strategy for pediatric Covid-19 vaccine studies. First, we publicized a registry for potentially interested participants. Next, we applied public health community and social vulnerability indices to categorize the residence of families who had signed up for the registry into three levels to reflect the relative impact of the pandemic on their community: high, medium, and low. Finally, we preferentially offered study participation to interested families living in areas categorized by these indices as having high impact of the Covid-19 pandemic on their community. RESULTS: This approach allowed us to meet goals for study recruitment based on public health metrics related to disease burden, which contributed to a racially diverse study population that mirrored the surrounding community demographics. While this three-part recruitment strategy improved representation of minoritized groups from areas heavily impacted by the Covid-19 pandemic, important limitations were identified that would benefit from further study. CONCLUSION: Future use of this approach to enhance equitable access to research while avoiding exploitation should test different methods to build trust and communicate with underserved communities more effectively.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Accesibilidad a los Servicios de Salud , Selección de Paciente , Humanos , Vacunas contra la COVID-19/uso terapéutico , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/provisión & distribución , COVID-19/prevención & control , Selección de Paciente/ética , Niño , Estados Unidos , Proyectos Piloto , Ensayos Clínicos como Asunto/ética , SARS-CoV-2 , Sistema de Registros , Pandemias , Femenino
16.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34266948

RESUMEN

Hypoxia is an important phenomenon in solid tumors that contributes to metastasis, tumor microenvironment (TME) deregulation, and resistance to therapies. The receptor tyrosine kinase AXL is an HIF target, but its roles during hypoxic stress leading to the TME deregulation are not well defined. We report here that the mammary gland-specific deletion of Axl in a HER2+ mouse model of breast cancer leads to a normalization of the blood vessels, a proinflammatory TME, and a reduction of lung metastases by dampening the hypoxic response in tumor cells. During hypoxia, interfering with AXL reduces HIF-1α levels altering the hypoxic response leading to a reduction of hypoxia-induced epithelial-to-mesenchymal transition (EMT), invasion, and production of key cytokines for macrophages behaviors. These observations suggest that inhibition of Axl generates a suitable setting to increase immunotherapy. Accordingly, combining pharmacological inhibition of Axl with anti-PD-1 in a preclinical model of HER2+ breast cancer reduces the primary tumor and metastatic burdens, suggesting a potential therapeutic approach to manage HER2+ patients whose tumors present high hypoxic features.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/inmunología , Subunidad alfa del Factor 1 Inducible por Hipoxia/inmunología , Inmunoterapia , Proteínas Proto-Oncogénicas/genética , Proteínas Tirosina Quinasas Receptoras/genética , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/fisiopatología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Eliminación de Gen , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Marcación de Gen , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones , Metástasis de la Neoplasia/tratamiento farmacológico , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/inmunología , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/inmunología , Proteínas Proto-Oncogénicas/inmunología , Proteínas Tirosina Quinasas Receptoras/inmunología , Microambiente Tumoral/efectos de los fármacos , Tirosina Quinasa del Receptor Axl
17.
J Cell Sci ; 134(6)2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33097605

RESUMEN

We report here the effects of targeted p120-catenin (encoded by CTNND1; hereafter denoted p120) knockout (KO) in a PyMT mouse model of invasive ductal (mammary) cancer (IDC). Mosaic p120 ablation had little effect on primary tumor growth but caused significant pro-metastatic alterations in the tumor microenvironment, ultimately leading to a marked increase in the number and size of pulmonary metastases. Surprisingly, although early effects of p120-ablation included decreased cell-cell adhesion and increased invasiveness, cells lacking p120 were almost entirely unable to colonized distant metastatic sites in vivo The relevance of this observation to human IDC was established by analysis of a large clinical dataset of 1126 IDCs. As reported by others, p120 downregulation in primary IDC predicted worse overall survival. However, as in the mice, distant metastases were almost invariably p120 positive, even in matched cases where the primary tumors were p120 negative. Collectively, our results demonstrate a strong positive role for p120 (and presumably E-cadherin) during metastatic colonization of distant sites. On the other hand, downregulation of p120 in the primary tumor enhanced metastatic dissemination indirectly via pro-metastatic conditioning of the tumor microenvironment.


Asunto(s)
Neoplasias de la Mama , Animales , Neoplasias de la Mama/genética , Cadherinas/genética , Cateninas/genética , Adhesión Celular , Femenino , Humanos , Ratones , Microambiente Tumoral , Catenina delta
18.
Am J Pathol ; 192(2): 295-307, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34767810

RESUMEN

Peripheral monocyte-derived CX3C chemokine receptor 1 positive (CX3CR1+) cells play important roles in tissue homeostasis and gut repopulation. Increasing evidence also supports their role in immune repopulation of the brain parenchyma in response to systemic inflammation. Adoptive bone marrow transfer from CX3CR1 fluorescence reporter mice and high-resolution confocal microscopy was used to assess the time course of CX3CR1+ cell repopulation of steady-state and dextran sodium sulfate (DSS)-inflamed small intestine/colon and the brain over 4 weeks after irradiation. CX3CR1+ cell colonization and morphologic polarization into fully ramified cells occurred more rapidly in the small intestine than in the colon. For both organs, the crypt/mucosa was more densely populated than the serosa/muscularis layer, indicating preferential temporal and spatial occupancy. Repopulation of the brain was delayed compared with that of gut tissue, consistent with the immune privilege of this organ. However, DSS-induced colon injury accelerated the repopulation. Expression analyses confirmed increased chemokine levels and macrophage colonization within the small intestine/colon and the brain by DSS-induced injury. Early increases of transmembrane protein 119 and ionized calcium binding adaptor molecule 1 expression within the brain after colon injury suggest immune-priming effect of brain resident microglia in response to systemic inflammation. These findings identify temporal differences in immune repopulation of the gut and brain in response to inflammation and show that gut inflammation can impact immune responses within the brain.


Asunto(s)
Lesiones Encefálicas/inmunología , Encéfalo/inmunología , Receptor 1 de Quimiocinas CX3C/inmunología , Colitis/inmunología , Mucosa Intestinal/inmunología , Monocitos/inmunología , Traumatismos Experimentales por Radiación/metabolismo , Animales , Encéfalo/patología , Lesiones Encefálicas/genética , Lesiones Encefálicas/patología , Receptor 1 de Quimiocinas CX3C/genética , Colitis/inducido químicamente , Colitis/genética , Colitis/patología , Sulfato de Dextran/toxicidad , Mucosa Intestinal/fisiología , Ratones , Ratones Transgénicos , Monocitos/patología , Traumatismos Experimentales por Radiación/genética , Traumatismos Experimentales por Radiación/patología
19.
Am J Pathol ; 192(11): 1619-1632, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35952762

RESUMEN

The infiltration of polymorphonuclear leukocytes (PMNs) in ischemia-reperfusion injury (I/RI) has been implicated as a critical component of inflammatory damage following ischemic stroke. However, successful blockade of PMN transendothelial migration (TEM) in preclinical studies has not translated to meaningful clinical outcomes. To investigate this further, leukocyte infiltration patterns were quantified, and these patterns were modulated by blocking platelet endothelial cell adhesion molecule-1 (PECAM), a key regulator of TEM. LysM-eGFP mice and microscopy were used to visualize all myeloid leukocyte recruitment following ischemia/reperfusion. Visual examination showed heterogeneous leukocyte distribution across the infarct at both 24 and 72 hours after I/RI. A semiautomated process was designed to precisely map PMN position across brain sections. Treatment with PECAM function-blocking antibodies did not significantly affect total leukocyte recruitment but did alter their distribution, with more observed at the cortex at both early and later time points (24 hours: 89% PECAM blocked vs. 72% control; 72 hours: 69% PECAM blocked vs. 51% control). This correlated with a decrease in infarct volume. These findings suggest that TEM, in the setting of I/RI in the cerebrovasculature, occurs primarily at the cortical surface. The reduction of stroke size with PECAM blockade suggests that infiltrating PMNs may exacerbate I/RI and indicate the potential therapeutic benefit of regulating the timing and pattern of leukocyte infiltration after stroke.


Asunto(s)
Accidente Cerebrovascular Isquémico , Animales , Ratones , Adhesión Celular , Endotelio Vascular/metabolismo , Infarto , Infiltración Neutrófila , Neutrófilos , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo
20.
FASEB J ; 36 Suppl 12022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35723884

RESUMEN

BACKGROUND AND PURPOSE: Current therapies for ischemic stroke focus on reperfusion but do not address the acute inflammatory response that results in significant reperfusion injury. To advance future therapies, a thorough understanding of the precise spatiotemporal underpinnings of leukocyte extravasation and infiltration is necessary. We describe the evolution of the inflammatory response in a mouse transient middle cerebral artery occlusion (tMCAO) stroke model at several time points after reperfusion and the modulation of this response with PECAM blockade. METHODS: The transient Middle Cerebral Artery Occlusion model (90 minutes of ischemia followed by reperfusion) was used to simulate large vessel occlusion stroke and recanalization. We used wide field and confocal immunofluorescence microscopy to examine the exact distribution of neutrophils with close examination of the leukocyte position with regard to the brain vasculature and the perivascular space. Flow cytometry of single cell suspensions was used to confirm cell identity at different time points post-stroke. RESULTS: Large ischemic strokes involving both the subcortex and cortex (over 20% of the ischemic hemisphere) were induced in mice. At 12 and 24 hours, leukocyte recruitment and extravasation was primarily localized to the cortical surface. This contrasts with other organs where there is considerable migration of neutrophils deep into the inflamed tissue by 24 hours. Flow cytometry showed at 24 hours a majority of leukocytes were neutrophils. Over 48 to 72 hours, leukocytes were increasingly found deeper into the subcortex. Throughout the infarct (determined with triphenyl tetrazolium chloride staining), leukocyte recruitment was not uniform but rather organized in clusters. Disrupting leukocyte diapedesis with PECAM function-blocking monoclonal antibody restricted leukocytes to within 500 microns of the surface when compared to control; and this was still evident at 72 hours (n=3 mice per group, p<0.01, Control 46% ± 4.0 %; PECAM-1 Ab 62% ± 5.0%). High-resolution wide-field microscopy confirmed inhibition of TEM by PECAM-1 blockade at 24 hours. Flow cytometry showed approximately equal numbers of monocytes and neutrophils at 72 hours. CONCLUSIONS: Our findings demonstrate that leukocyte infiltration into a stroke evolves over several days following reperfusion. The use of PECAM blockade modulates the natural progression of leukocytes into the infarcted stroke bed. A better understanding of leukocyte spatiotemporal infiltration and its regulators could help inform the next generation of therapeutic interventions.


Asunto(s)
Infarto de la Arteria Cerebral Media , Accidente Cerebrovascular , Animales , Modelos Animales de Enfermedad , Leucocitos , Ratones , Neutrófilos , Molécula-1 de Adhesión Celular Endotelial de Plaqueta , Migración Transendotelial y Transepitelial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA