Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Infect Immun ; 92(5): e0008024, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38534100

RESUMEN

Traditional folk treatments for the prevention and management of urinary tract infections (UTIs) and other infectious diseases often include plants and plant extracts that are rich in phenolic compounds. These have been ascribed a variety of activities, including inhibition of bacterial interactions with host cells. Here, we tested a panel of four well-studied phenolic compounds-caffeic acid phenethyl ester (CAPE), resveratrol, catechin, and epigallocatechin gallate-for the effects on host cell adherence and invasion by uropathogenic Escherichia coli (UPEC). These bacteria, which are the leading cause of UTIs, can bind and subsequently invade bladder epithelial cells via an actin-dependent process. Intracellular UPEC reservoirs within the bladder are often protected from antibiotics and host defenses and likely contribute to the development of chronic and recurrent infections. In cell culture-based assays, only resveratrol had a notable negative effect on UPEC adherence to bladder cells. However, both CAPE and resveratrol significantly inhibited UPEC entry into the host cells, coordinate with attenuated phosphorylation of the host actin regulator Focal Adhesion Kinase (FAK or PTK2) and marked increases in the numbers of focal adhesion structures. We further show that the intravesical delivery of resveratrol inhibits UPEC infiltration of the bladder mucosa in a murine UTI model and that resveratrol and CAPE can disrupt the ability of other invasive pathogens to enter host cells. Together, these results highlight the therapeutic potential of molecules like CAPE and resveratrol, which could be used to augment antibiotic treatments by restricting pathogen access to protective intracellular niches.IMPORTANCEUrinary tract infections (UTIs) are exceptionally common and increasingly difficult to treat due to the ongoing rise and spread of antibiotic-resistant pathogens. Furthermore, the primary cause of UTIs, uropathogenic Escherichia coli (UPEC), can avoid antibiotic exposure and many host defenses by invading the epithelial cells that line the bladder surface. Here, we identified two plant-derived phenolic compounds that disrupt activation of the host machinery needed for UPEC entry into bladder cells. One of these compounds, resveratrol, effectively inhibited UPEC invasion of the bladder mucosa in a mouse UTI model, and both phenolic compounds significantly reduced host cell entry by other invasive pathogens. These findings suggest that select phenolic compounds could be used to supplement existing antibacterial therapeutics by denying uropathogens shelter within host cells and tissues and help explain some of the benefits attributed to traditional plant-based medicines.


Asunto(s)
Infecciones por Escherichia coli , Quinasa 1 de Adhesión Focal , Fenoles , Extractos Vegetales , Infecciones Urinarias , Escherichia coli Uropatógena , Animales , Femenino , Humanos , Ratones , Adhesión Bacteriana/efectos de los fármacos , Ácidos Cafeicos/farmacología , Catequina/farmacología , Catequina/análogos & derivados , Línea Celular , Células Epiteliales/microbiología , Células Epiteliales/efectos de los fármacos , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Quinasa 1 de Adhesión Focal/metabolismo , Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Fenoles/farmacología , Alcohol Feniletílico/análogos & derivados , Extractos Vegetales/farmacología , Resveratrol/farmacología , Vejiga Urinaria/microbiología , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/patología , Infecciones Urinarias/microbiología , Infecciones Urinarias/tratamiento farmacológico , Escherichia coli Uropatógena/efectos de los fármacos
2.
PLoS Pathog ; 18(3): e1010365, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35324997

RESUMEN

Type I interferon (IFN) has been identified in patients with Lyme disease, and its abundant expression in joint tissues of C3H mice precedes development of Lyme arthritis. Forward genetics using C3H mice with severe Lyme arthritis and C57BL/6 (B6) mice with mild Lyme arthritis identified the Borrelia burgdorferi arthritis-associated locus 1 (Bbaa1) on chromosome 4 (Chr4) as a regulator of B. burgdorferi-induced IFNß expression and Lyme arthritis severity. B6 mice introgressed with the C3H allele for Bbaa1 (B6.C3-Bbaa1 mice) displayed increased severity of arthritis, which is initiated by myeloid lineage cells in joints. Using advanced congenic lines, the physical size of the Bbaa1 interval has been reduced to 2 Mbp, allowing for identification of potential genetic regulators. Small interfering RNA (siRNA)-mediated silencing identified Cdkn2a as the gene responsible for Bbaa1 allele-regulated induction of IFNß and IFN-stimulated genes (ISGs) in bone marrow-derived macrophages (BMDMs). The Cdkn2a-encoded p19 alternative reading frame (p19ARF) protein regulates IFNß induction in BMDMs as shown by siRNA silencing and overexpression of ARF. In vivo studies demonstrated that p19ARF contributes to joint-specific induction of IFNß and arthritis severity in B. burgdorferi-infected mice. p19ARF regulates B. burgdorferi-induced IFNß in BMDMs by stabilizing the tumor suppressor p53 and sequestering the transcriptional repressor BCL6. Our findings link p19ARF regulation of p53 and BCL6 to the severity of IFNß-induced Lyme arthritis in vivo and indicate potential novel roles for p19ARF, p53, and BCL6 in Lyme disease and other IFN hyperproduction syndromes.


Asunto(s)
Artritis , Inhibidor p16 de la Quinasa Dependiente de Ciclina , Enfermedad de Lyme , Animales , Artritis/genética , Borrelia burgdorferi , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Genes p16 , Interferón beta/genética , Interferón beta/metabolismo , Enfermedad de Lyme/genética , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , ARN Interferente Pequeño , Sistemas de Lectura , Proteína p53 Supresora de Tumor/genética
3.
PLoS Pathog ; 18(6): e1010582, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35700218

RESUMEN

Extra-intestinal pathogenic Escherichia coli (ExPEC) belong to a critical priority group of antibiotic resistant pathogens. ExPEC establish gut reservoirs that seed infection of the urinary tract and bloodstream, but the mechanisms of gut colonisation remain to be properly understood. Ucl fimbriae are attachment organelles that facilitate ExPEC adherence. Here, we investigated cellular receptors for Ucl fimbriae and Ucl expression to define molecular mechanisms of Ucl-mediated ExPEC colonisation of the gut. We demonstrate differential expression of Ucl fimbriae in ExPEC sequence types associated with disseminated infection. Genome editing of strains from two common sequence types, F11 (ST127) and UTI89 (ST95), identified a single nucleotide polymorphism in the ucl promoter that changes fimbriae expression via activation by the global stress-response regulator OxyR, leading to altered gut colonisation. Structure-function analysis of the Ucl fimbriae tip-adhesin (UclD) identified high-affinity glycan receptor targets, with highest affinity for sialyllacto-N-fucopentose VI, a structure likely to be expressed on the gut epithelium. Comparison of the UclD adhesin to the homologous UcaD tip-adhesin from Proteus mirabilis revealed that although they possess a similar tertiary structure, apart from lacto-N-fucopentose VI that bound to both adhesins at low-micromolar affinity, they recognize different fucose- and glucose-containing oligosaccharides. Competitive surface plasmon resonance analysis together with co-structural investigation of UcaD in complex with monosaccharides revealed a broad-specificity glycan binding pocket shared between UcaD and UclD that could accommodate these interactions. Overall, our study describes a mechanism of adaptation that augments establishment of an ExPEC gut reservoir to seed disseminated infections, providing a pathway for the development of targeted anti-adhesion therapeutics.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli Patógena Extraintestinal , Adhesinas Bacterianas/metabolismo , Adhesinas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Infecciones por Escherichia coli/metabolismo , Escherichia coli Patógena Extraintestinal/genética , Escherichia coli Patógena Extraintestinal/metabolismo , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Humanos , Enfermedades Intestinales , Polisacáridos/metabolismo
4.
Nucleic Acids Res ; 50(13): 7570-7590, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35212379

RESUMEN

Post-transcriptional modifications can impact the stability and functionality of many different classes of RNA molecules and are an especially important aspect of tRNA regulation. It is hypothesized that cells can orchestrate rapid responses to changing environmental conditions by adjusting the specific types and levels of tRNA modifications. We uncovered strong evidence in support of this tRNA global regulation hypothesis by examining effects of the well-conserved tRNA modifying enzyme MiaA in extraintestinal pathogenic Escherichia coli (ExPEC), a major cause of urinary tract and bloodstream infections. MiaA mediates the prenylation of adenosine-37 within tRNAs that decode UNN codons, and we found it to be crucial to the fitness and virulence of ExPEC. MiaA levels shifted in response to stress via a post-transcriptional mechanism, resulting in marked changes in the amounts of fully modified MiaA substrates. Both ablation and forced overproduction of MiaA stimulated translational frameshifting and profoundly altered the ExPEC proteome, with variable effects attributable to UNN content, changes in the catalytic activity of MiaA, or availability of metabolic precursors. Cumulatively, these data indicate that balanced input from MiaA is critical for optimizing cellular responses, with MiaA acting much like a rheostat that can be used to realign global protein expression patterns.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Infecciones por Escherichia coli/microbiología , Escherichia coli , Codón , Escherichia coli/metabolismo , Escherichia coli/patogenicidad , Humanos , Procesamiento Postranscripcional del ARN , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Virulencia
5.
Infect Immun ; 89(10): e0035721, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34228495

RESUMEN

Extraintestinal pathogenic Escherichia coli (ExPEC) strains are major causes of urinary and bloodstream infections. ExPEC reservoirs are not completely understood. Some mastitis-associated E. coli (MAEC) strains carry genes associated with ExPEC virulence, including metal scavenging, immune avoidance, and host attachment functions. In this study, we investigated the role of the high-affinity zinc uptake (znuABC) system in the MAEC strain M12. Elimination of znuABC moderately decreased fitness during mouse mammary gland infections. The ΔznuABC mutant strain exhibited an unexpected growth delay in the presence of bile salts, which was alleviated by the addition of excess zinc. We isolated suppressor mutants with improved growth in bile salts, several of which no longer produced the K96 capsule made by strain M12. The addition of bile salts also reduced capsule production by strain M12 and ExPEC strain CP9, suggesting that capsule synthesis may be detrimental when bile salts are present. To better understand the role of the capsule, we compared the virulence of mastitis strain M12 with that of its unencapsulated ΔkpsCS mutant in two models of ExPEC disease. The wild-type strain successfully colonized mouse bladders and kidneys and was highly virulent in intraperitoneal infections. Conversely, the ΔkpsCS mutant was unable to colonize kidneys and was unable to cause sepsis. These results demonstrate that some MAEC strains may be capable of causing human ExPEC illness. The virulence of strain M12 in these infections is dependent on its capsule. However, capsule may interfere with zinc homeostasis in the presence of bile salts while in the digestive tract.


Asunto(s)
Cápsulas Bacterianas/metabolismo , Ácidos y Sales Biliares/metabolismo , Infecciones por Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli Patógena Extraintestinal/metabolismo , Mastitis/metabolismo , Zinc/metabolismo , Animales , Infecciones por Escherichia coli/microbiología , Femenino , Masculino , Mastitis/microbiología , Ratones , Ratones Endogámicos C57BL , Sepsis/metabolismo , Sepsis/microbiología , Virulencia/fisiología , Factores de Virulencia/metabolismo
6.
PLoS Biol ; 15(6): e2001644, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28632788

RESUMEN

Antibiotic-resistant infections kill approximately 23,000 people and cost $20,000,000,000 each year in the United States alone despite the widespread use of small-molecule antimicrobial combination therapy. Antibiotic combinations typically have an additive effect: the efficacy of the combination matches the sum of the efficacies of each antibiotic when used alone. Small molecules can also act synergistically when the efficacy of the combination is greater than the additive efficacy. However, synergistic combinations are rare and have been historically difficult to identify. High-throughput identification of synergistic pairs is limited by the scale of potential combinations: a modest collection of 1,000 small molecules involves 1 million pairwise combinations. Here, we describe a high-throughput method for rapid identification of synergistic small-molecule pairs, the overlap2 method (O2M). O2M extracts patterns from chemical-genetic datasets, which are created when a collection of mutants is grown in the presence of hundreds of different small molecules, producing a precise set of phenotypes induced by each small molecule across the mutant set. The identification of mutants that show the same phenotype when treated with known synergistic molecules allows us to pinpoint additional molecule combinations that also act synergistically. As a proof of concept, we focus on combinations with the antibiotics trimethoprim and sulfamethizole, which had been standard treatment against urinary tract infections until widespread resistance decreased efficacy. Using O2M, we screened a library of 2,000 small molecules and identified several that synergize with the antibiotic trimethoprim and/or sulfamethizole. The most potent of these synergistic interactions is with the antiviral drug azidothymidine (AZT). We then demonstrate that understanding the molecular mechanism underlying small-molecule synergistic interactions allows the rational design of additional combinations that bypass drug resistance. Trimethoprim and sulfamethizole are both folate biosynthesis inhibitors. We find that this activity disrupts nucleotide homeostasis, which blocks DNA replication in the presence of AZT. Building on these data, we show that other small molecules that disrupt nucleotide homeostasis through other mechanisms (hydroxyurea and floxuridine) also act synergistically with AZT. These novel combinations inhibit the growth and virulence of trimethoprim-resistant clinical Escherichia coli and Klebsiella pneumoniae isolates, suggesting that they may be able to be rapidly advanced into clinical use. In sum, we present a generalizable method to screen for novel synergistic combinations, to identify particular mechanisms resulting in synergy, and to use the mechanistic knowledge to rationally design new combinations that bypass drug resistance.


Asunto(s)
Antibacterianos/farmacología , Antiinfecciosos Urinarios/farmacología , Farmacorresistencia Bacteriana Múltiple , Escherichia coli/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos , Animales , Antibacterianos/química , Antibacterianos/uso terapéutico , Antiinfecciosos Urinarios/química , Antiinfecciosos Urinarios/uso terapéutico , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bioensayo , Biología Computacional , Diseño de Fármacos , Sinergismo Farmacológico , Quimioterapia Combinada , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Embrión no Mamífero/microbiología , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Antagonistas del Ácido Fólico/química , Antagonistas del Ácido Fólico/farmacología , Antagonistas del Ácido Fólico/uso terapéutico , Ensayos Analíticos de Alto Rendimiento , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/metabolismo , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/crecimiento & desarrollo , Klebsiella pneumoniae/metabolismo , Pruebas de Sensibilidad Microbiana , Mutación , Tasa de Mutación , Reconocimiento de Normas Patrones Automatizadas , Inhibidores de la Transcriptasa Inversa/química , Inhibidores de la Transcriptasa Inversa/farmacología , Inhibidores de la Transcriptasa Inversa/uso terapéutico , Bibliotecas de Moléculas Pequeñas , Sulfametizol/agonistas , Sulfametizol/química , Sulfametizol/farmacología , Sulfametizol/uso terapéutico , Trimetoprim/agonistas , Trimetoprim/química , Trimetoprim/farmacología , Trimetoprim/uso terapéutico , Pez Cebra/embriología
7.
Infect Immun ; 86(3)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29311232

RESUMEN

Extraintestinal pathogenic Escherichia coli (ExPEC) acts as a commensal within the mammalian gut but can induce pathology upon dissemination to other host environments such as the urinary tract and bloodstream. ExPEC genomes are likely shaped by evolutionary forces encountered within the gut, where the bacteria spend much of their time, provoking the question of how their extraintestinal virulence traits arose. The principle of coincidental evolution, in which a gene that evolved in one niche happens to be advantageous in another, has been used to argue that ExPEC virulence factors originated in response to selective pressures within the gut ecosystem. As a test of this hypothesis, the fitness of ExPEC mutants lacking canonical virulence factors was assessed within the intact murine gut in the absence of antibiotic treatment. We found that most of the tested factors, including cytotoxic necrotizing factor type 1 (CNF1), Usp, colibactin, flagella, and plasmid pUTI89, were dispensable for gut colonization. The deletion of genes encoding the adhesin PapG or the toxin HlyA had transient effects but did not interfere with longer-term persistence. In contrast, a mutant missing the type 1 pilus-associated adhesin FimH displayed somewhat reduced persistence within the gut. However, this phenotype varied dependent on the presence of specific competing strains and was partially attributable to aberrant flagellin expression in the absence of fimH These data indicate that FimH and other key ExPEC-associated factors are not strictly required for gut colonization, suggesting that the development of extraintestinal virulence traits is not driven solely by selective pressures within the gut.


Asunto(s)
Adhesinas de Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Escherichia coli Patógena Extraintestinal/metabolismo , Proteínas Fimbrias/metabolismo , Tracto Gastrointestinal/microbiología , Factores de Virulencia/metabolismo , Adhesinas de Escherichia coli/genética , Animales , Escherichia coli Patógena Extraintestinal/genética , Femenino , Proteínas Fimbrias/genética , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Factores de Virulencia/genética
8.
J Infect Dis ; 216(3): 375-381, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28119486

RESUMEN

Uropathogenic Escherichia coli (UPEC), the primary causative agents of urinary tract infections, colonize and invade the epithelial cells of the bladder urothelium. Infection of immature urothelial cells can result in the formation of persistent intracellular reservoirs that are refractory to antibiotic treatments. Previously, we defined a novel therapeutic strategy that used the bladder cell exfoliant chitosan to deplete UPEC reservoirs. However, although a single treatment of chitosan followed by ciprofloxacin administration had a marked effect on reducing UPEC titers within the bladder, this treatment failed to prevent relapsing bacteriuria. We show here that repeated use of chitosan in conjunction with the antibiotic ciprofloxacin completely eradicates UPEC from the urinary tract and prevents the development of relapsing bouts of bacteriuria. In addition, microscopy revealed rapid restoration of bladder integrity following chitosan treatment, indicating that chitosan can be used to effectively combat recalcitrant bladder infections without causing lasting harm to the urothelium.


Asunto(s)
Antibacterianos/uso terapéutico , Bacteriuria/tratamiento farmacológico , Quitosano/uso terapéutico , Ciprofloxacina/uso terapéutico , Infecciones por Escherichia coli/tratamiento farmacológico , Escherichia coli Uropatógena/efectos de los fármacos , Animales , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Recurrencia , Vejiga Urinaria/patología , Urotelio/patología
9.
Infect Immun ; 85(6)2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28373355

RESUMEN

Extraintestinal pathogenic Escherichia coli (ExPEC) strains are typically benign within the mammalian gut but can disperse to extraintestinal sites to cause diseases like urinary tract infections and sepsis. As occupation of the intestinal tract is often a prerequisite for ExPEC-mediated pathogenesis, we set out to understand how ExPEC colonizes this niche. A screen using transposon sequencing (Tn-seq) was performed to search for genes within ExPEC isolate F11 that are important for growth in intestinal mucus, which is thought to be a major source of nutrients for E. coli in the gut. Multiple genes that contribute to ExPEC fitness in mucus broth were identified, with genes that are directly or indirectly associated with fatty acid beta-oxidation pathways being especially important. One of the identified mucus-specific fitness genes encodes the rhomboid protease GlpG. In vitro, we found that the disruption of glpG had polar effects on the downstream gene glpR, which encodes a transcriptional repressor of factors that catalyze glycerol degradation. Mutation of either glpG or glpR impaired ExPEC growth in mucus and on plates containing the long-chain fatty acid oleate as the sole carbon source. In contrast, in a mouse gut colonization model in which the natural microbiota is unperturbed, the disruption of glpG but not glpR significantly reduced ExPEC survival. This work reveals a novel biological role for a rhomboid protease and highlights new avenues for defining mechanisms by which ExPEC strains colonize the mammalian gastrointestinal tract.


Asunto(s)
Proteínas de Unión al ADN/genética , Endopeptidasas/genética , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Escherichia coli Patógena Extraintestinal/genética , Tracto Gastrointestinal/microbiología , Proteínas de la Membrana/genética , Animales , Escherichia coli Patógena Extraintestinal/enzimología , Femenino , Aptitud Genética , Mucosa Intestinal/metabolismo , Ratones , Ratones Endogámicos BALB C , Mutación , Proteínas Represoras/genética , Sepsis/microbiología
10.
PLoS Pathog ; 11(12): e1005317, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26636713

RESUMEN

Extraintestinal pathogenic Escherichia coli colonize the human gut and can spread to other body sites to induce diseases such as urinary tract infections, sepsis, and meningitis. A complete understanding of the infection process is hindered by both the inherent genetic diversity of E. coli and the large number of unstudied genes. Here, we focus on the uncharacterized gene rqlI, which our lab recently uncovered in a Tn-seq screen for bacterial genes required within a zebrafish model of infection. We demonstrate that the ΔrqlI mutant experiences a growth defect and increased DNA stress in low oxygen conditions. In a genetic screen for suppressor mutations in the Δrql strain, we found that the shortcomings of the Δrql mutant are attributable to the activity of RqlH, which is known in other bacteria to be a helicase of the RecQ family that contains a phosphoribosyltransferase (PRTase) domain. Disruption of rqlH rescues the ΔrqlI strain in both in vivo and in vitro assays, while the expression of RqlH alone activates the SOS response coincident with bacterial filamentation, heightened sensitivity to DNA damage, and an increased mutation rate. The analysis of truncation mutants indicates that, in the absence of RqlI, RqlH toxicity is due to its PRTase domain. Complementary studies demonstrate that the toxicity of RqlH is modulated in a context-dependent fashion by overlapping domains within RqlI. This regulation is seemingly direct, given that the two proteins physically interact and form an operon. Interestingly, RqlH and RqlI orthologs are encoded by a diverse group of bacteria, but in many of these microbes, and especially in Gram-positive organisms, rqlH is found in the absence of rqlI. In total, this work shows that RqlH and RqlI can act in a strain-specific fashion akin to a toxin-antitoxin system in which toxicity is mediated by an atypical helicase-associated PRTase domain.


Asunto(s)
ADN Helicasas/genética , Infecciones por Escherichia coli/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Animales , Western Blotting , ADN Helicasas/metabolismo , Modelos Animales de Enfermedad , Escherichia coli/metabolismo , Infecciones por Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Femenino , Inmunoprecipitación , Ratones , Ratones Endogámicos BALB C , Reacción en Cadena de la Polimerasa , Infecciones Urinarias/microbiología
11.
Vet Res ; 48(1): 3, 2017 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-28122589

RESUMEN

The pathogenicity of Escherichia coli O78 strain K46, originally isolated from an outbreak of septicemia in neonatal lambs, was investigated in zebrafish embryo and murine models of infection. Its biofilm potential, cellulose production, and the expression of type 1 pili and curli fimbriae were measured by in vitro assays. The strain was highly pathogenic in the zebrafish embryo model of infection, where it killed all embryos within 24 h post inoculation (hpi) at doses as low as 1000 colony forming units. Zebrafish embryos inoculated with similar doses of commensal E. coli strains showed no signs of disease, and cleared the bacteria within 24 h. E. coli K46 colonized the murine gut at the same level as the uropathogenic E. coli (UPEC) reference strain CFT073 in CBA/J mice after oral inoculation, but infected the murine bladder significantly less than CFT073 after transurethral inoculation. Type 1 pili were clearly expressed by E. coli K46, while curli fimbriae and cellulose production were weakly expressed. The ability to produce biofilm varied in different growth media, but overall E. coli K46 was a poorer biofilm producer compared to the reference strain E. coli UTI89. In conclusion, the zebrafish lethality model provides further evidence that E. coli K46 is highly pathogenic and might be useful in future studies to identify bacterial virulence factors.


Asunto(s)
Infecciones por Escherichia coli/veterinaria , Escherichia coli/patogenicidad , Sepsis/veterinaria , Enfermedades de las Ovejas/microbiología , Pez Cebra/microbiología , Animales , Animales Recién Nacidos/microbiología , Biopelículas/crecimiento & desarrollo , Modelos Animales de Enfermedad , Escherichia coli/aislamiento & purificación , Infecciones por Escherichia coli/microbiología , Femenino , Tracto Gastrointestinal/microbiología , Ratones , Ratones Endogámicos CBA/microbiología , Sepsis/microbiología , Ovinos/microbiología , Vejiga Urinaria/microbiología
12.
PLoS Genet ; 9(8): e1003716, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23990803

RESUMEN

Strains of Extraintestinal Pathogenic Escherichia c oli (ExPEC) exhibit an array of virulence strategies and are a major cause of urinary tract infections, sepsis and meningitis. Efforts to understand ExPEC pathogenesis are challenged by the high degree of genetic and phenotypic variation that exists among isolates. Determining which virulence traits are widespread and which are strain-specific will greatly benefit the design of more effective therapies. Towards this goal, we utilized a quantitative genetic footprinting technique known as transposon insertion sequencing (Tn-seq) in conjunction with comparative pathogenomics to functionally dissect the genetic repertoire of a reference ExPEC isolate. Using Tn-seq and high-throughput zebrafish infection models, we tracked changes in the abundance of ExPEC variants within saturated transposon mutant libraries following selection within distinct host niches. Nine hundred and seventy bacterial genes (18% of the genome) were found to promote pathogen fitness in either a niche-dependent or independent manner. To identify genes with the highest therapeutic and diagnostic potential, a novel Trait Enrichment Analysis (TEA) algorithm was developed to ascertain the phylogenetic distribution of candidate genes. TEA revealed that a significant portion of the 970 genes identified by Tn-seq have homologues more often contained within the genomes of ExPEC and other known pathogens, which, as suggested by the first axiom of molecular Koch's postulates, is considered to be a key feature of true virulence determinants. Three of these Tn-seq-derived pathogen-associated genes--a transcriptional repressor, a putative metalloendopeptidase toxin and a hypothetical DNA binding protein--were deleted and shown to independently affect ExPEC fitness in zebrafish and mouse models of infection. Together, the approaches and observations reported herein provide a resource for future pathogenomics-based research and highlight the diversity of factors required by a single ExPEC isolate to survive within varying host environments.


Asunto(s)
Escherichia coli/patogenicidad , Meningitis/genética , Sepsis/genética , Infecciones Urinarias/genética , Animales , Elementos Transponibles de ADN/genética , Modelos Animales de Enfermedad , Escherichia coli/genética , Aptitud Genética , Genoma Bacteriano , Meningitis/microbiología , Ratones , Filogenia , Sepsis/microbiología , Infecciones Urinarias/microbiología , Pez Cebra/genética
13.
PLoS Pathog ; 9(2): e1003175, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23459509

RESUMEN

In bacteria, laterally acquired genes are often concentrated within chromosomal regions known as genomic islands. Using a recently developed zebrafish infection model, we set out to identify unique factors encoded within genomic islands that contribute to the fitness and virulence of a reference urosepsis isolate-extraintestinal pathogenic Escherichia coli strain CFT073. By screening a series of deletion mutants, we discovered a previously uncharacterized gene, neaT, that is conditionally required by the pathogen during systemic infections. In vitro assays indicate that neaT can limit bacterial interactions with host phagocytes and alter the aggregative properties of CFT073. The neaT gene is localized within an integrated P2-like bacteriophage in CFT073, but was rarely found within other proteobacterial genomes. Sequence-based analyses revealed that neaT homologues are present, but discordantly conserved, within a phyletically diverse set of bacterial species. In CFT073, neaT appears to be unameliorated, having an exceptionally A+T-rich composition along with a notably altered codon bias. These data suggest that neaT was recently brought into the proteobacterial pan-genome from an extra-phyletic source. Interestingly, even in G+C-poor genomes, as found within the Firmicutes lineage, neaT-like genes are often unameliorated. Sequence-level features of neaT homologues challenge the common supposition that the A+T-rich nature of many recently acquired genes reflects the nucleotide composition of their genomes of origin. In total, these findings highlight the complexity of the evolutionary forces that can affect the acquisition, utilization, and assimilation of rare genes that promote the niche-dependent fitness and virulence of a bacterial pathogen.


Asunto(s)
Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/fisiología , Aptitud Genética , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/patogenicidad , Virulencia/genética , Pez Cebra/microbiología , Animales , Evolución Biológica , Modelos Animales de Enfermedad , Embrión no Mamífero/metabolismo , Embrión no Mamífero/microbiología , Infecciones por Escherichia coli/genética , Femenino , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Islas Genómicas , Interacciones Huésped-Patógeno , Ratones , Ratones Endogámicos CBA/microbiología , Filogenia , Infecciones Urinarias/genética , Pez Cebra/genética
14.
PLoS Pathog ; 8(10): e1002954, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23055930

RESUMEN

Toxin-antitoxin (TA) systems are prevalent in many bacterial genomes and have been implicated in biofilm and persister cell formation, but the contribution of individual chromosomally encoded TA systems during bacterial pathogenesis is not well understood. Of the known TA systems encoded by Escherichia coli, only a subset is associated with strains of extraintestinal pathogenic E. coli (ExPEC). These pathogens colonize diverse niches and are a major cause of sepsis, meningitis, and urinary tract infections. Using a murine infection model, we show that two TA systems (YefM-YoeB and YbaJ-Hha) independently promote colonization of the bladder by the reference uropathogenic ExPEC isolate CFT073, while a third TA system comprised of the toxin PasT and the antitoxin PasI is critical to ExPEC survival within the kidneys. The PasTI TA system also enhances ExPEC persister cell formation in the presence of antibiotics and markedly increases pathogen resistance to nutrient limitation as well as oxidative and nitrosative stresses. On its own, low-level expression of PasT protects ExPEC from these stresses, whereas overexpression of PasT is toxic and causes bacterial stasis. PasT-induced stasis can be rescued by overexpression of PasI, indicating that PasTI is a bona fide TA system. By mutagenesis, we find that the stress resistance and toxic effects of PasT can be uncoupled and mapped to distinct domains. Toxicity was specifically linked to sequences within the N-terminus of PasT, a region that also promotes the development of persister cells. These results indicate discrete, multipurpose functions for a TA-associated toxin and demonstrate that individual TA systems can provide bacteria with pronounced fitness advantages dependent on toxin expression levels and the specific environmental niche occupied.


Asunto(s)
Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/metabolismo , Animales , Antitoxinas/genética , Antitoxinas/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación Bacteriana de la Expresión Génica , Ratones , Ratones Endogámicos C3H , Vejiga Urinaria/microbiología
15.
Blood ; 120(25): 5014-20, 2012 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-23086749

RESUMEN

Bacteria can enter the bloodstream in response to infectious insults. Bacteremia elicits several immune and clinical complications, including thrombocytopenia. A primary cause of thrombocytopenia is shortened survival of platelets. We demonstrate that pathogenic bacteria induce apoptotic events in platelets that include calpain-mediated degradation of Bcl-x(L), an essential regulator of platelet survival. Specifically, bloodstream bacterial isolates from patients with sepsis induce lateral condensation of actin, impair mitochondrial membrane potential, and degrade Bcl-x(L) protein in platelets. Bcl-x(L) protein degradation is enhanced when platelets are exposed to pathogenic Escherichia coli that produce the pore-forming toxin α-hemolysin, a response that is markedly attenuated when the gene is deleted from E coli. We also found that nonpathogenic E coli gain degrading activity when they are forced to express α-hemolysin. Like α-hemolysin, purified α-toxin readily degrades Bcl-x(L) protein in platelets, as do clinical Staphylococcus aureus isolates that produce α-toxin. Inhibition of calpain activity, but not the proteasome, rescues Bcl-x(L) protein degradation in platelets coincubated with pathogenic E coli including α-hemolysin producing strains. This is the first evidence that pathogenic bacteria can trigger activation of the platelet intrinsic apoptosis program and our results suggest a new mechanism by which bacterial pathogens might cause thrombocytopenia in patients with bloodstream infections.


Asunto(s)
Plaquetas/microbiología , Escherichia coli/fisiología , Interacciones Huésped-Patógeno , Staphylococcus aureus/fisiología , Proteína bcl-X/metabolismo , Apoptosis , Plaquetas/citología , Plaquetas/metabolismo , Calpaína/metabolismo , Infecciones por Escherichia coli/microbiología , Humanos , Proteolisis , Infecciones Estafilocócicas/microbiología
16.
Microbiol Resour Announc ; : e0038724, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38832767

RESUMEN

We present the draft genome of a novel human-derived Escherichia coli strain isolated from a healthy control human microbiota that, when put into a mouse, spontaneously disseminated from the gut to the kidneys.

17.
bioRxiv ; 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38464005

RESUMEN

The rampant rise of multidrug resistant (MDR) bacterial pathogens poses a severe health threat, necessitating innovative tools to unravel the complex genetic underpinnings of antimicrobial resistance. Despite significant strides in developing genomic tools for detecting resistance genes, a gap remains in analyzing organism-specific patterns of resistance gene co-occurrence. Addressing this deficiency, we developed the Resistance Gene Association and Inference Network (ReGAIN), a novel web-based and command line genomic platform that uses Bayesian network structure learning to identify and map resistance gene networks in bacterial pathogens. ReGAIN not only detects resistance genes using well-established methods, but also elucidates their complex interplay, critical for understanding MDR phenotypes. Focusing on ESKAPE pathogens, ReGAIN yielded a queryable database for investigating resistance gene co-occurrence, enriching resistome analyses, and providing new insights into the dynamics of antimicrobial resistance. Furthermore, the versatility of ReGAIN extends beyond antibiotic resistance genes to include assessment of co-occurrence patterns among heavy metal resistance and virulence determinants, providing a comprehensive overview of key gene relationships impacting both disease progression and treatment outcomes.

18.
ISME Commun ; 4(1): ycae029, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38524762

RESUMEN

Great Salt Lake (GSL), located northwest of Salt Lake City, UT, is the largest terminal lake in the USA. While the average salinity of seawater is ~3.3%, the salinity in GSL ranges between 5% and 28%. In addition to being a hypersaline environment, GSL also contains toxic concentrations of heavy metals, such as arsenic, mercury, and lead. The extreme environment of GSL makes it an intriguing subject of study, both for its unique microbiome and its potential to harbor novel natural product-producing bacteria, which could be used as resources for the discovery of biologically active compounds. Though work has been done to survey and catalog bacteria found in GSL, the Lake's microbiome is largely unexplored, and little to no work has been done to characterize the natural product potential of GSL microbes. Here, we investigate the bacterial diversity of two important regions within GSL, describe the first genomic characterization of Actinomycetota isolated from GSL sediment, including the identification of two new Actinomycetota species, and provide the first survey of the natural product potential of GSL bacteria.

19.
Infect Immun ; 81(1): 249-58, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23115037

RESUMEN

In many bacteria, the second messenger cyclic AMP (cAMP) interacts with the transcription factor cAMP receptor protein (CRP), forming active cAMP-CRP complexes that can control a multitude of cellular activities, including expanded carbon source utilization, stress response pathways, and virulence. Here, we assessed the role of cAMP-CRP as a regulator of stress resistance and virulence in uropathogenic Escherichia coli (UPEC), the principal cause of urinary tract infections worldwide. Deletion of genes encoding either CRP or CyaA, the enzyme responsible for cAMP synthesis, attenuates the ability of UPEC to colonize the bladder in a mouse infection model, dependent on intact innate host defenses. UPEC mutants lacking cAMP-CRP grow normally in the presence of glucose but are unable to utilize alternate carbon sources like amino acids, the primary nutrients available to UPEC within the urinary tract. Relative to the wild-type UPEC isolate, the cyaA and crp deletion mutants are sensitive to nitrosative stress and the superoxide generator methyl viologen but remarkably resistant to hydrogen peroxide (H(2)O(2)) and acid stress. In the mutant strains, H(2)O(2) resistance correlates with elevated catalase activity attributable in part to enhanced translation of the alternate sigma factor RpoS. Acid resistance was promoted by both RpoS-independent and RpoS-dependent mechanisms, including expression of the RpoS-regulated DNA-binding ferritin-like protein Dps. We conclude that balanced input from many cAMP-CRP-responsive elements, including RpoS, is critical to the ability of UPEC to handle the nutrient limitations and severe environmental stresses present within the mammalian urinary tract.


Asunto(s)
Adenilil Ciclasas/metabolismo , Proteína Receptora de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Infecciones por Escherichia coli/metabolismo , Escherichia coli Uropatógena/metabolismo , Adenilil Ciclasas/genética , Aminoácidos/metabolismo , Animales , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , AMP Cíclico/genética , Proteína Receptora de AMP Cíclico/genética , Infecciones por Escherichia coli/genética , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Femenino , Glucosa/metabolismo , Peróxido de Hidrógeno/metabolismo , Lactosa/metabolismo , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos CBA , Paraquat/metabolismo , Factor sigma/genética , Factor sigma/metabolismo , Superóxidos/metabolismo , Vejiga Urinaria/metabolismo , Vejiga Urinaria/microbiología , Infecciones Urinarias/genética , Infecciones Urinarias/metabolismo , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/enzimología , Escherichia coli Uropatógena/genética , Virulencia
20.
Infect Immun ; 81(5): 1450-9, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23429541

RESUMEN

Strains of uropathogenic Escherichia coli (UPEC) are the primary cause of urinary tract infections, representing one of the most widespread and successful groups of pathogens on the planet. To colonize and persist within the urinary tract, UPEC must be able to sense and respond appropriately to environmental stresses, many of which can compromise the bacterial envelope. The Cpx two-component envelope stress response system is comprised of the inner membrane histidine kinase CpxA, the cytosolic response regulator CpxR, and the periplasmic auxiliary factor CpxP. Here, by using deletion mutants along with mouse and zebrafish infection models, we show that the Cpx system is critical to the fitness and virulence of two reference UPEC strains, the cystitis isolate UTI89 and the urosepsis isolate CFT073. Specifically, deletion of the cpxRA operon impaired the ability of UTI89 to colonize the murine bladder and greatly reduced the virulence of CFT073 during both systemic and localized infections within zebrafish embryos. These defects coincided with diminished host cell invasion by UTI89 and increased sensitivity of both strains to complement-mediated killing and the aminoglycoside antibiotic amikacin. Results obtained with the cpxP deletion mutants were more complicated, indicating variable strain-dependent and niche-specific requirements for this well-conserved auxiliary factor.


Asunto(s)
Proteínas de Escherichia coli/fisiología , Escherichia coli Uropatógena/patogenicidad , Amicacina/farmacología , Animales , Antibacterianos/farmacología , Proteínas Bacterianas/fisiología , Modelos Animales de Enfermedad , Regulación Bacteriana de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Proteínas de la Membrana/fisiología , Ratones , Operón , Proteínas Quinasas/fisiología , Transducción de Señal/fisiología , Vejiga Urinaria/microbiología , Escherichia coli Uropatógena/efectos de los fármacos , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA