RESUMEN
We report a comprehensive analysis of 412 muscle-invasive bladder cancers characterized by multiple TCGA analytical platforms. Fifty-eight genes were significantly mutated, and the overall mutational load was associated with APOBEC-signature mutagenesis. Clustering by mutation signature identified a high-mutation subset with 75% 5-year survival. mRNA expression clustering refined prior clustering analyses and identified a poor-survival "neuronal" subtype in which the majority of tumors lacked small cell or neuroendocrine histology. Clustering by mRNA, long non-coding RNA (lncRNA), and miRNA expression converged to identify subsets with differential epithelial-mesenchymal transition status, carcinoma in situ scores, histologic features, and survival. Our analyses identified 5 expression subtypes that may stratify response to different treatments.
Asunto(s)
Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología , Anciano , Análisis por Conglomerados , Metilación de ADN , Humanos , MicroARNs/genética , Persona de Mediana Edad , Músculo Liso/patología , ARN Largo no Codificante/genética , Análisis de Supervivencia , Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/epidemiología , Neoplasias de la Vejiga Urinaria/terapiaRESUMEN
Medulloblastoma (MB) comprises a group of heterogeneous paediatric embryonal neoplasms of the hindbrain with strong links to early development of the hindbrain1-4. Mutations that activate Sonic hedgehog signalling lead to Sonic hedgehog MB in the upper rhombic lip (RL) granule cell lineage5-8. By contrast, mutations that activate WNT signalling lead to WNT MB in the lower RL9,10. However, little is known about the more commonly occurring group 4 (G4) MB, which is thought to arise in the unipolar brush cell lineage3,4. Here we demonstrate that somatic mutations that cause G4 MB converge on the core binding factor alpha (CBFA) complex and mutually exclusive alterations that affect CBFA2T2, CBFA2T3, PRDM6, UTX and OTX2. CBFA2T2 is expressed early in the progenitor cells of the cerebellar RL subventricular zone in Homo sapiens, and G4 MB transcriptionally resembles these progenitors but are stalled in developmental time. Knockdown of OTX2 in model systems relieves this differentiation blockade, which allows MB cells to spontaneously proceed along normal developmental differentiation trajectories. The specific nature of the split human RL, which is destined to generate most of the neurons in the human brain, and its high level of susceptible EOMES+KI67+ unipolar brush cell progenitor cells probably predisposes our species to the development of G4 MB.
Asunto(s)
Diferenciación Celular , Neoplasias Cerebelosas , Meduloblastoma , Metencéfalo , Diferenciación Celular/genética , Linaje de la Célula , Neoplasias Cerebelosas/clasificación , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Cerebelo/embriología , Cerebelo/patología , Subunidades alfa del Factor de Unión al Sitio Principal/genética , Proteínas Hedgehog/metabolismo , Histona Demetilasas , Humanos , Antígeno Ki-67/metabolismo , Meduloblastoma/clasificación , Meduloblastoma/genética , Meduloblastoma/patología , Metencéfalo/embriología , Metencéfalo/patología , Proteínas Musculares , Mutación , Factores de Transcripción Otx/deficiencia , Factores de Transcripción Otx/genética , Proteínas Represoras , Proteínas de Dominio T Box/metabolismo , Factores de TranscripciónRESUMEN
Accurate assessment of fragment abundance within a genome is crucial in clinical genomics applications such as the analysis of copy number variation (CNV). However, this task is often hindered by biased coverage in regions with varying guanine-cytosine (GC) content. These biases are particularly exacerbated in hybridization capture sequencing due to GC effects on probe hybridization and polymerase chain reaction (PCR) amplification efficiency. Such GC content-associated variations can exert a negative impact on the fidelity of CNV calling within hybridization capture panels. In this report, we present panelGC, a novel metric, to quantify and monitor GC biases in hybridization capture sequencing data. We establish the efficacy of panelGC, demonstrating its proficiency in identifying and flagging potential procedural anomalies, even in situations where instrument and experimental monitoring data may not be readily accessible. Validation using real-world datasets demonstrates that panelGC enhances the quality control and reliability of hybridization capture panel sequencing.
Asunto(s)
Composición de Base , Variaciones en el Número de Copia de ADN , Genómica , Humanos , Genómica/métodos , Análisis de Secuencia de ADN/métodos , Hibridación de Ácido Nucleico/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Genoma Humano , Reproducibilidad de los ResultadosRESUMEN
The development of targeted anti-cancer therapies through the study of cancer genomes is intended to increase survival rates and decrease treatment-related toxicity. We treated a transposon-driven, functional genomic mouse model of medulloblastoma with 'humanized' in vivo therapy (microneurosurgical tumour resection followed by multi-fractionated, image-guided radiotherapy). Genetic events in recurrent murine medulloblastoma exhibit a very poor overlap with those in matched murine diagnostic samples (<5%). Whole-genome sequencing of 33 pairs of human diagnostic and post-therapy medulloblastomas demonstrated substantial genetic divergence of the dominant clone after therapy (<12% diagnostic events were retained at recurrence). In both mice and humans, the dominant clone at recurrence arose through clonal selection of a pre-existing minor clone present at diagnosis. Targeted therapy is unlikely to be effective in the absence of the target, therefore our results offer a simple, proximal, and remediable explanation for the failure of prior clinical trials of targeted therapy.
Asunto(s)
Neoplasias Cerebelosas/terapia , Células Clonales/efectos de los fármacos , Células Clonales/metabolismo , Meduloblastoma/terapia , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Selección Genética/efectos de los fármacos , Animales , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Neoplasias Cerebelosas/radioterapia , Neoplasias Cerebelosas/cirugía , Células Clonales/patología , Irradiación Craneoespinal , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Femenino , Genoma Humano/genética , Humanos , Masculino , Meduloblastoma/genética , Meduloblastoma/patología , Meduloblastoma/radioterapia , Meduloblastoma/cirugía , Ratones , Terapia Molecular Dirigida/métodos , Recurrencia Local de Neoplasia/terapia , Radioterapia Guiada por Imagen , Transducción de Señal , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Summary: Reliably identifying genomic rearrangements and interpreting their impact is a key step in understanding their role in human cancers and inherited genetic diseases. Many short read algorithmic approaches exist but all have appreciable false negative rates. A common approach is to evaluate the union of multiple tools increasing sensitivity, followed by filtering to retain specificity. Here we describe an application framework for the rapid generation of structural variant consensus, unique in its ability to visualize the genetic impact and context as well as process both genome and transcriptome data. Availability and implementation: http://mavis.bcgsc.ca. Supplementary information: Supplementary data are available at Bioinformatics online.
Asunto(s)
Genómica , Neoplasias/genética , Programas Informáticos , Biología Computacional , Humanos , TranscriptomaRESUMEN
PURPOSE: Structural variants (SVs) may be an underestimated cause of hereditary cancer syndromes given the current limitations of short-read next-generation sequencing. Here we investigated the utility of long-read sequencing in resolving germline SVs in cancer susceptibility genes detected through short-read genome sequencing. METHODS: Known or suspected deleterious germline SVs were identified using Illumina genome sequencing across a cohort of 669 advanced cancer patients with paired tumor genome and transcriptome sequencing. Candidate SVs were subsequently assessed by Oxford Nanopore long-read sequencing. RESULTS: Nanopore sequencing confirmed eight simple pathogenic or likely pathogenic SVs, resolving three additional variants whose impact could not be fully elucidated through short-read sequencing. A recurrent sequencing artifact on chromosome 16p13 and one complex rearrangement on chromosome 5q35 were subsequently classified as likely benign, obviating the need for further clinical assessment. Variant configuration was further resolved in one case with a complex pathogenic rearrangement affecting TSC2. CONCLUSION: Our findings demonstrate that long-read sequencing can improve the validation, resolution, and classification of germline SVs. This has important implications for return of results, cascade carrier testing, cancer screening, and prophylactic interventions.
Asunto(s)
Predisposición Genética a la Enfermedad , Neoplasias , Secuencia de Bases , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , HumanosRESUMEN
Medulloblastoma, the most common malignant paediatric brain tumour, is currently treated with nonspecific cytotoxic therapies including surgery, whole-brain radiation, and aggressive chemotherapy. As medulloblastoma exhibits marked intertumoural heterogeneity, with at least four distinct molecular variants, previous attempts to identify targets for therapy have been underpowered because of small samples sizes. Here we report somatic copy number aberrations (SCNAs) in 1,087 unique medulloblastomas. SCNAs are common in medulloblastoma, and are predominantly subgroup-enriched. The most common region of focal copy number gain is a tandem duplication of SNCAIP, a gene associated with Parkinson's disease, which is exquisitely restricted to Group 4α. Recurrent translocations of PVT1, including PVT1-MYC and PVT1-NDRG1, that arise through chromothripsis are restricted to Group 3. Numerous targetable SCNAs, including recurrent events targeting TGF-ß signalling in Group 3, and NF-κB signalling in Group 4, suggest future avenues for rational, targeted therapy.
Asunto(s)
Neoplasias Cerebelosas/clasificación , Neoplasias Cerebelosas/genética , Genoma Humano/genética , Variación Estructural del Genoma/genética , Meduloblastoma/clasificación , Meduloblastoma/genética , Proteínas Portadoras/genética , Neoplasias Cerebelosas/metabolismo , Niño , Variaciones en el Número de Copia de ADN/genética , Duplicación de Gen/genética , Genes myc/genética , Genómica , Proteínas Hedgehog/metabolismo , Humanos , Meduloblastoma/metabolismo , FN-kappa B/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas de Fusión Oncogénica/genética , Proteínas/genética , ARN Largo no Codificante , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Translocación Genética/genéticaRESUMEN
BACKGROUND: Intellectual Disability (ID) is among the most common global disorders, yet etiology is unknown in ~30% of patients despite clinical assessment. Whole genome sequencing (WGS) is able to interrogate the entire genome, providing potential to diagnose idiopathic patients. METHODS: We conducted WGS on eight children with idiopathic ID and brain structural defects, and their normal parents; carrying out an extensive data analyses, using standard and discovery approaches. RESULTS: We verified de novo pathogenic single nucleotide variants (SNV) in ARID1B c.1595delG and PHF6 c.820C > T, potentially causative de novo two base indels in SQSTM1 c.115_116delinsTA and UPF1 c.1576_1577delinsA, and de novo SNVs in CACNB3 c.1289G > A, and SPRY4 c.508 T > A, of uncertain significance. We report results from a large secondary control study of 2081 exomes probing the pathogenicity of the above genes. We analyzed structural variation by four different algorithms including de novo genome assembly. We confirmed a likely contributory 165 kb de novo heterozygous 1q43 microdeletion missed by clinical microarray. The de novo assembly resulted in unmasking hidden genome instability that was missed by standard re-alignment based algorithms. We also interrogated regulatory sequence variation for known and hypothesized ID genes and present useful strategies for WGS data analyses for non-coding variation. CONCLUSION: This study provides an extensive analysis of WGS in the context of ID, providing genetic and structural insights into ID and yielding diagnoses.
Asunto(s)
Discapacidad Intelectual/genética , Secuenciación Completa del Genoma , Niño , Genoma Humano/genética , Humanos , Mutación INDEL , Mutación Missense , Polimorfismo de Nucleótido SimpleRESUMEN
A 41-year-old Asian woman with bilateral renal angiomyolipomas (AML) was incidentally identified to have a balanced translocation, 46,XX,t(11;12)(p15.4;q15). She had no other features or family history to suggest a diagnosis of tuberous sclerosis. Her healthy daughter had the same translocation and no renal AML at the age of 3 years. Whole-genome sequencing was performed on genomic maternal DNA isolated from blood. A targeted de novo assembly was then conducted with ABySS for chromosomes 11 and 12. Sanger sequencing was used to validate the translocation breakpoints. As a result, genomic characterization of chromosomes 11 and 12 revealed that the 11p breakpoint disrupted the NUP98 gene in intron 1, causing a separation of the promoter and transcription start site from the rest of the gene. The translocation breakpoint on chromosome 12q was located in a gene desert. NUP98 has not yet been associated with renal AML pathogenesis, but somatic NUP98 alterations are recurrently implicated in hematological malignancies, most often following a gene fusion event. We also found evidence for complex structural events involving chromosome 12, which appear to disrupt the TDG gene. We identified a TDGP1 partially processed pseudogene at 12p12.1, which adds complexity to the de novo assembly. In conclusion, this is the first report of a germline constitutional structural chromosome rearrangement disrupting NUP98 that occurred in a generally healthy woman with bilateral renal AML.
Asunto(s)
Angiomiolipoma/genética , Cromosomas Humanos Par 11/genética , Cromosomas Humanos Par 12/genética , Neoplasias Renales/genética , Proteínas de Complejo Poro Nuclear/genética , Translocación Genética , Adulto , Amniocentesis , Análisis Citogenético/métodos , Femenino , Proteínas Ligadas a GPI/genética , Estudio de Asociación del Genoma Completo , Genómica/métodos , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas de Neoplasias/genética , Regiones Promotoras Genéticas , Seudogenes , Sitio de Iniciación de la Transcripción , Esclerosis Tuberosa/diagnóstico , Esclerosis Tuberosa/genéticaRESUMEN
Follicular lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL) are the two most common non-Hodgkin lymphomas (NHLs). Here we sequenced tumour and matched normal DNA from 13 DLBCL cases and one FL case to identify genes with mutations in B-cell NHL. We analysed RNA-seq data from these and another 113 NHLs to identify genes with candidate mutations, and then re-sequenced tumour and matched normal DNA from these cases to confirm 109 genes with multiple somatic mutations. Genes with roles in histone modification were frequent targets of somatic mutation. For example, 32% of DLBCL and 89% of FL cases had somatic mutations in MLL2, which encodes a histone methyltransferase, and 11.4% and 13.4% of DLBCL and FL cases, respectively, had mutations in MEF2B, a calcium-regulated gene that cooperates with CREBBP and EP300 in acetylating histones. Our analysis suggests a previously unappreciated disruption of chromatin biology in lymphomagenesis.
Asunto(s)
Histonas/metabolismo , Linfoma no Hodgkin/genética , Mutación/genética , Cromatina/genética , Cromatina/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Genoma Humano/genética , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Pérdida de Heterocigocidad/genética , Linfoma Folicular/enzimología , Linfoma Folicular/genética , Linfoma de Células B Grandes Difuso/enzimología , Linfoma de Células B Grandes Difuso/genética , Linfoma no Hodgkin/enzimología , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Factores de Transcripción MEF2 , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismoAsunto(s)
Neoplasias del Sistema Nervioso Central , Linfoma de Células B Grandes Difuso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Sistema Nervioso Central , Neoplasias del Sistema Nervioso Central/diagnóstico , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Neoplasias del Sistema Nervioso Central/genética , Humanos , Linfoma de Células B Grandes Difuso/diagnóstico , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/genética , Recurrencia Local de Neoplasia/tratamiento farmacológico , Rituximab/uso terapéuticoRESUMEN
Recently, the landscape of single base mutations in diffuse large B-cell lymphoma (DLBCL) was described. Here we report the discovery of a gene fusion between TBL1XR1 and TP63, the only recurrent somatic novel gene fusion identified in our analysis of transcriptome data from 96 DLBCL cases. Based on this cohort and a further 157 DLBCL cases analyzed by FISH, the incidence in de novo germinal center B cell-like (GCB) DLBCL is 5% (6 of 115). The fusion appears exclusive to GCB and was not seen in 138 non-GCB cases examined (P = .008, Fisher exact test) but was present at low incidence in follicular lymphoma (1 of 81). In all 7 cases identified, the 3' end of the fusion consists of exons 4 and onwards of TP63. The recurrence, subtype enrichment, and the remarkably conserved nature of the TP63 portion of the fusion suggest an important functional role in the lymphomas that harbor this event.
Asunto(s)
Linfoma de Células B/genética , Proteínas Nucleares/genética , Proteínas de Fusión Oncogénica/genética , Receptores Citoplasmáticos y Nucleares/genética , Proteínas Represoras/genética , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Secuencia de Bases , Cromosomas Humanos Par 3/genética , Estudios de Cohortes , Análisis Mutacional de ADN , Frecuencia de los Genes , Estudios de Asociación Genética , Humanos , Hibridación Fluorescente in Situ , Incidencia , Linfoma de Células B/epidemiología , Linfoma de Células B/metabolismo , Linfoma de Células B/patología , Linfoma no Hodgkin/epidemiología , Linfoma no Hodgkin/genética , Linfoma no Hodgkin/metabolismo , Linfoma no Hodgkin/patología , Datos de Secuencia MolecularRESUMEN
Parathyroid carcinoma is a rare endocrine malignancy with an estimated incidence of less than 1 per million population. Excessive secretion of parathyroid hormone, extremely high serum calcium level, and the deleterious effects of hypercalcaemia are the clinical manifestations of the disease. Up to 60% of patients develop multiple disease recurrences and although long-term survival is possible with palliative surgery, permanent remission is rarely achieved. Molecular drivers of sporadic parathyroid carcinoma have remained largely unknown. Previous studies, mostly based on familial cases of the disease, suggested potential roles for the tumour suppressor MEN1 and proto-oncogene RET in benign parathyroid tumourigenesis, while the tumour suppressor HRPT2 and proto-oncogene CCND1 may also act as drivers in parathyroid cancer. Here, we report the complete genomic analysis of a sporadic and recurring parathyroid carcinoma. Mutational landscapes of the primary and recurrent tumour specimens were analysed using high-throughput sequencing technologies. Such molecular profiling allowed for identification of somatic mutations never previously identified in this malignancy. These included single nucleotide point mutations in well-characterized cancer genes such as mTOR, MLL2, CDKN2C, and PIK3CA. Comparison of acquired mutations in patient-matched primary and recurrent tumours revealed loss of PIK3CA activating mutation during the evolution of the tumour from the primary to the recurrence. Structural variations leading to gene fusions and regions of copy loss and gain were identified at a single-base resolution. Loss of the short arm of chromosome 1, along with somatic missense and truncating mutations in CDKN2C and THRAP3, respectively, provides new evidence for the potential role of these genes as tumour suppressors in parathyroid cancer. The key somatic mutations identified in this study can serve as novel diagnostic markers as well as therapeutic targets.
Asunto(s)
Biomarcadores de Tumor/genética , Perfilación de la Expresión Génica , Genómica , Recurrencia Local de Neoplasia/genética , Neoplasias de las Paratiroides/genética , Adulto , Secuencia de Bases , Calcio/sangre , Transformación Celular Neoplásica , Fosfatidilinositol 3-Quinasa Clase I , Inhibidor p18 de las Quinasas Dependientes de la Ciclina/genética , ADN de Neoplasias/química , ADN de Neoplasias/genética , Proteínas de Unión al ADN/genética , Dosificación de Gen , Fusión Génica , Humanos , Masculino , Datos de Secuencia Molecular , Mutación , Proteínas de Neoplasias/genética , Recurrencia Local de Neoplasia/patología , Recurrencia Local de Neoplasia/cirugía , Hormona Paratiroidea/metabolismo , Neoplasias de las Paratiroides/patología , Neoplasias de las Paratiroides/cirugía , Fosfatidilinositol 3-Quinasas/genética , Polimorfismo de Nucleótido Simple , Proto-Oncogenes Mas , ARN Neoplásico/genética , Serina-Treonina Quinasas TOR/genética , Factores de Transcripción/genéticaRESUMEN
The Long-Read Personalized OncoGenomics (POG) dataset comprises a cohort of 189 patient tumors and 41 matched normal samples sequenced using the Oxford Nanopore Technologies PromethION platform. This dataset from the POG program and the Marathon of Hope Cancer Centres Network includes DNA and RNA short-read sequence data, analytics, and clinical information. We show the potential of long-read sequencing for resolving complex cancer-related structural variants, viral integrations, and extrachromosomal circular DNA. Long-range phasing facilitates the discovery of allelically differentially methylated regions (aDMRs) and allele-specific expression, including recurrent aDMRs in the cancer genes RET and CDKN2A. Germline promoter methylation in MLH1 can be directly observed in Lynch syndrome. Promoter methylation in BRCA1 and RAD51C is a likely driver behind homologous recombination deficiency where no coding driver mutation was found. This dataset demonstrates applications for long-read sequencing in precision medicine and is available as a resource for developing analytical approaches using this technology.
RESUMEN
The role for routine whole genome and transcriptome analysis (WGTA) for poor prognosis pediatric cancers remains undetermined. Here, we characterize somatic mutations, structural rearrangements, copy number variants, gene expression, immuno-profiles and germline cancer predisposition variants in children and adolescents with relapsed, refractory or poor prognosis malignancies who underwent somatic WGTA and matched germline sequencing. Seventy-nine participants with a median age at enrollment of 8.8 y (range 6 months to 21.2 y) are included. Germline pathogenic/likely pathogenic variants are identified in 12% of participants, of which 60% were not known prior. Therapeutically actionable variants are identified by targeted gene report and whole genome in 32% and 62% of participants, respectively, and increase to 96% after integrating transcriptome analyses. Thirty-two molecularly informed therapies are pursued in 28 participants with 54% achieving a clinical benefit rate; objective response or stable disease ≥6 months. Integrated WGTA identifies therapeutically actionable variants in almost all tumors and are directly translatable to clinical care of children with poor prognosis cancers.
Asunto(s)
Variaciones en el Número de Copia de ADN , Perfilación de la Expresión Génica , Neoplasias , Humanos , Niño , Neoplasias/genética , Neoplasias/terapia , Femenino , Adolescente , Masculino , Preescolar , Pronóstico , Perfilación de la Expresión Génica/métodos , Lactante , Transcriptoma , Adulto Joven , Secuenciación Completa del Genoma , Mutación de Línea Germinal , Mutación , Genoma Humano/genética , Predisposición Genética a la EnfermedadRESUMEN
BACKGROUND: Chimeric transcripts, including partial and internal tandem duplications (PTDs, ITDs) and gene fusions, are important in the detection, prognosis, and treatment of human cancers. RESULTS: We describe Barnacle, a production-grade analysis tool that detects such chimeras in de novo assemblies of RNA-seq data, and supports prioritizing them for review and validation by reporting the relative coverage of co-occurring chimeric and wild-type transcripts. We demonstrate applications in large-scale disease studies, by identifying PTDs in MLL, ITDs in FLT3, and reciprocal fusions between PML and RARA, in two deeply sequenced acute myeloid leukemia (AML) RNA-seq datasets. CONCLUSIONS: Our analyses of real and simulated data sets show that, with appropriate filter settings, Barnacle makes highly specific predictions for three types of chimeric transcripts that are important in a range of cancers: PTDs, ITDs, and fusions. High specificity makes manual review and validation efficient, which is necessary in large-scale disease studies. Characterizing an extended range of chimera types will help generate insights into progression, treatment, and outcomes for complex diseases.
Asunto(s)
Duplicación de Gen/genética , Perfilación de la Expresión Génica/métodos , Fusión Génica/genética , Genómica , Neoplasias de la Mama/genética , Exones/genética , Humanos , Leucemia Mieloide Aguda/genética , Anotación de Secuencia Molecular , ARN Mensajero/genética , Estadística como AsuntoRESUMEN
UNLABELLED: Despite recent progress, computational tools that identify gene fusions from next-generation whole transcriptome sequencing data are often limited in accuracy and scalability. Here, we present a software package, BreakFusion that combines the strength of reference alignment followed by read-pair analysis and de novo assembly to achieve a good balance in sensitivity, specificity and computational efficiency. AVAILABILITY: http://bioinformatics.mdanderson.org/main/BreakFusion
Asunto(s)
Biología Computacional/métodos , Análisis de Secuencia de ARN/métodos , Programas Informáticos , Transcriptoma , Línea Celular Tumoral , Humanos , Alineación de SecuenciaRESUMEN
Oligodendroglioma is characterized by unique clinical, pathological, and genetic features. Recurrent losses of chromosomes 1p and 19q are strongly associated with this brain cancer but knowledge of the identity and function of the genes affected by these alterations is limited. We performed exome sequencing on a discovery set of 16 oligodendrogliomas with 1p/19q co-deletion to identify new molecular features at base-pair resolution. As anticipated, there was a high rate of IDH mutations: all cases had mutations in either IDH1 (14/16) or IDH2 (2/16). In addition, we discovered somatic mutations and insertions/deletions in the CIC gene on chromosome 19q13.2 in 13/16 tumours. These discovery set mutations were validated by deep sequencing of 13 additional tumours, which revealed seven others with CIC mutations, thus bringing the overall mutation rate in oligodendrogliomas in this study to 20/29 (69%). In contrast, deep sequencing of astrocytomas and oligoastrocytomas without 1p/19q loss revealed that CIC alterations were otherwise rare (1/60; 2%). Of the 21 non-synonymous somatic mutations in 20 CIC-mutant oligodendrogliomas, nine were in exon 5 within an annotated DNA-interacting domain and three were in exon 20 within an annotated protein-interacting domain. The remaining nine were found in other exons and frequently included truncations. CIC mutations were highly associated with oligodendroglioma histology, 1p/19q co-deletion, and IDH1/2 mutation (p < 0.001). Although we observed no differences in the clinical outcomes of CIC mutant versus wild-type tumours, in a background of 1p/19q co-deletion, hemizygous CIC mutations are likely important. We hypothesize that the mutant CIC on the single retained 19q allele is linked to the pathogenesis of oligodendrogliomas with IDH mutation. Our detailed study of genetic aberrations in oligodendroglioma suggests a functional interaction between CIC mutation, IDH1/2 mutation, and 1p/19q co-deletion.