Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Glob Chang Biol ; 23(11): 4828-4839, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28346724

RESUMEN

Macroalgae contribute approximately 15% of the primary productivity in coastal marine ecosystems, fix up to 27.4 Tg of carbon per year, and provide important structural components for life in coastal waters. Despite this ecological and commercial importance, direct measurements and comparisons of the short-term responses to elevated pCO2 in seaweeds with different life-history strategies are scarce. Here, we cultured several seaweed species (bloom forming/nonbloom forming/perennial/annual) in the laboratory, in tanks in an indoor mesocosm facility, and in coastal mesocosms under pCO2 levels ranging from 400 to 2,000 µatm. We find that, across all scales of the experimental setup, ephemeral species of the genus Ulva increase their photosynthesis and growth rates in response to elevated pCO2 the most, whereas longer-lived perennial species show a smaller increase or a decrease. These differences in short-term growth and photosynthesis rates are likely to give bloom-forming green seaweeds a competitive advantage in mixed communities, and our results thus suggest that coastal seaweed assemblages in eutrophic waters may undergo an initial shift toward communities dominated by bloom-forming, short-lived seaweeds.


Asunto(s)
Aclimatación , Dióxido de Carbono/metabolismo , Rasgos de la Historia de Vida , Fotosíntesis , Algas Marinas/fisiología , Eutrofización , Algas Marinas/crecimiento & desarrollo
2.
Soft Matter ; 12(45): 9246-9255, 2016 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-27801470

RESUMEN

A two-fluid emulsion (silicone oil drops in the "leaky dielectric", castor oil) with electrohydrodynamically driven flows can serve as a model system for tunable studies of hydrodynamic interactions [Varshney et al., Sci. Rep., 2012, 2, 738]. Flows on multiple length- and time-scales have been observed but the underlying mechanism for these chaotic, multi-scale flows is not understood. In this work, we conducted experiments varying the thickness of the test cell to examine the role of substrate interactions on size distribution, mean square displacement and velocity of the drops as a function of the electric field strength. We find that the electric capillary number, CaE, at the threshold of drop breakup is of order unity for cell thicknesses of 100 µm or thicker, but much larger for thinner cells. Above this threshold, there is a clear transition to super-diffusive droplet motions. In addition, we observe that there is a convective instability prior to the onset of chaotic flows, with the lengthscale associated with the convection rolls increasing linearly with an increase in the cell thickness. The fact that the convective instability appears to occur in the leaky dielectric castor oil regardless of whether the second component is liquid drops, solid particles, or dissolved dye has implications on the underlying mechanism for the unsteady flows.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA