Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Br J Nutr ; 130(6): 921-932, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36539977

RESUMEN

Gestational diabetes mellitus (GDM) is the most common medical complication of pregnancy and a severe threat to pregnant people and offspring health. The molecular origins of GDM, and in particular the placental responses, are not fully known. The present study aimed to perform a comprehensive characterisation of the lipid species in placentas from pregnancies complicated with GDM using high-resolution MS lipidomics, with a particular focus on sphingolipids and acylcarnitines in a semi-targeted approach. The results indicated that despite no major disruption in lipid metabolism, placentas from GDM pregnancies showed significant alterations in sphingolipids, mostly lower abundance of total ceramides. Additionally, very long-chain ceramides and sphingomyelins with twenty-four carbons were lower, and glucosylceramides with sixteen carbons were higher in placentas from GDM pregnancies. Semi-targeted lipidomics revealed the strong impact of GDM on the placental acylcarnitine profile, particularly lower contents of medium and long-chain fatty-acyl carnitine species. The lower contents of sphingolipids may affect the secretory function of the placenta, and lower contents of long-chain fatty acylcarnitines is suggestive of mitochondrial dysfunction. These alterations in placental lipid metabolism may have consequences for fetal growth and development.


Asunto(s)
Diabetes Gestacional , Placenta , Embarazo , Femenino , Humanos , Placenta/metabolismo , Diabetes Gestacional/metabolismo , Esfingolípidos/metabolismo , Carnitina/metabolismo , Ceramidas/metabolismo
2.
Int J Mol Sci ; 24(5)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36901810

RESUMEN

Lipidomics and metabolomics are nowadays widely used to provide promising insights into the pathophysiology of cellular stress disorders. Our study expands, with the use of a hyphenated ion mobility mass spectrometric platform, the understanding of the cellular processes and stress due to microgravity. By lipid profiling of human erythrocytes, we annotated complex lipids such as oxidized phosphocholines, phosphocholines bearing arachidonic in their moiety, as well as sphingomyelins and hexosyl ceramides associated with microgravity conditions. Overall, our findings give an insight into the molecular alterations and identify erythrocyte lipidomics signatures associated with microgravity conditions. If the present results are confirmed in future studies, they may help to develop suitable treatments for astronauts after return to Earth.


Asunto(s)
Lipidómica , Ingravidez , Humanos , Lipidómica/métodos , Metabolómica , Esfingomielinas , Eritrocitos
3.
BMC Biol ; 19(1): 265, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34911556

RESUMEN

BACKGROUND: Tissue hypoxia is a key feature of several endemic hepatic diseases, including alcoholic and non-alcoholic fatty liver disease, and organ failure. Hypoxia imposes a severe metabolic challenge on the liver, potentially disrupting its capacity to carry out essential functions including fuel storage and the integration of lipid metabolism at the whole-body level. Mitochondrial respiratory function is understood to be critical in mediating the hepatic hypoxic response, yet the time-dependent nature of this response and the role of the respiratory chain in this remain unclear. RESULTS: Here, we report that hepatic respiratory capacity is enhanced following short-term exposure to hypoxia (2 days, 10% O2) and is associated with increased abundance of the respiratory chain supercomplex III2+IV and increased cardiolipin levels. Suppression of this enhanced respiratory capacity, achieved via mild inhibition of mitochondrial complex III, disrupted metabolic homeostasis. Hypoxic exposure for 2 days led to accumulation of plasma and hepatic long chain acyl-carnitines. This was observed alongside depletion of hepatic triacylglycerol species with total chain lengths of 39-53 carbons, containing palmitic, palmitoleic, stearic, and oleic acids, which are associated with de novo lipogenesis. The changes to hepatic respiratory capacity and lipid metabolism following 2 days hypoxic exposure were transient, becoming resolved after 14 days in line with systemic acclimation to hypoxia and elevated circulating haemoglobin concentrations. CONCLUSIONS: The liver maintains metabolic homeostasis in response to shorter term hypoxic exposure through transient enhancement of respiratory chain capacity and alterations to lipid metabolism. These findings may have implications in understanding and treating hepatic pathologies associated with hypoxia.


Asunto(s)
Metabolismo de los Lípidos , Hígado , Homeostasis , Humanos , Hipoxia/metabolismo , Lipogénesis , Hígado/metabolismo
4.
Int J Mol Sci ; 23(12)2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35743319

RESUMEN

Erythrocytes are highly specialized cells in human body, and their main function is to ensure the gas exchanges, O2 and CO2, within the body. The exposure to microgravity environment leads to several health risks such as those affecting red blood cells. In this work, we investigated the changes that occur in the structure and function of red blood cells under simulated microgravity, compared to terrestrial conditions, at different time points using biochemical and biophysical techniques. Erythrocytes exposed to simulated microgravity showed morphological changes, a constant increase in reactive oxygen species (ROS), a significant reduction in total antioxidant capacity (TAC), a remarkable and constant decrease in total glutathione (GSH) concentration, and an augmentation in malondialdehyde (MDA) at increasing times. Moreover, experiments were performed to evaluate the lipid profile of erythrocyte membranes which showed an upregulation in the following membrane phosphocholines (PC): PC16:0_16:0, PC 33:5, PC18:2_18:2, PC 15:1_20:4 and SM d42:1. Thus, remarkable changes in erythrocyte cytoskeletal architecture and membrane stiffness due to oxidative damage have been found under microgravity conditions, in addition to factors that contribute to the plasticity of the red blood cells (RBCs) including shape, size, cell viscosity and membrane rigidity. This study represents our first investigation into the effects of microgravity on erythrocytes and will be followed by other experiments towards understanding the behaviour of different human cell types in microgravity.


Asunto(s)
Ingravidez , Membrana Eritrocítica/metabolismo , Eritrocitos/metabolismo , Glutatión/metabolismo , Humanos , Malondialdehído/metabolismo , Estrés Oxidativo
5.
Int J Mol Sci ; 23(12)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35743227

RESUMEN

The metabolic syndrome (MetS) is a cluster of cardiovascular risk factors characterised by central obesity, atherogenic dyslipidaemia, and changes in the circulating lipidome; the underlying mechanisms that lead to this lipid remodelling have only been partially elucidated. This study used an integrated "omics" approach (untargeted whole serum lipidomics, targeted proteomics, and lipoprotein lipidomics) to study lipoprotein remodelling and HDL composition in subjects with central obesity diagnosed with MetS (vs. controls). Compared with healthy subjects, MetS patients showed higher free fatty acids, diglycerides, phosphatidylcholines, and triglycerides, particularly those enriched in products of de novo lipogenesis. On the other hand, the "lysophosphatidylcholines to phosphatidylcholines" and "cholesteryl ester to free cholesterol" ratios were reduced, pointing to a lower activity of lecithin cholesterol acyltransferase (LCAT) in MetS; LCAT activity (directly measured and predicted by lipidomic ratios) was positively correlated with high-density lipoprotein cholesterol (HDL-C) and negatively correlated with body mass index (BMI) and insulin resistance. Moreover, many phosphatidylcholines and sphingomyelins were significantly lower in the HDL of MetS patients and strongly correlated with BMI and clinical metabolic parameters. These results suggest that MetS is associated with an impairment of phospholipid metabolism in HDL, partially led by LCAT, and associated with obesity and underlying insulin resistance. This study proposes a candidate strategy to use integrated "omics" approaches to gain mechanistic insights into lipoprotein remodelling, thus deepening the knowledge regarding the molecular basis of the association between MetS and atherosclerosis.


Asunto(s)
Resistencia a la Insulina , Síndrome Metabólico , Colesterol/metabolismo , HDL-Colesterol , Humanos , Lipidómica , Lipoproteínas , Síndrome Metabólico/complicaciones , Síndrome Metabólico/diagnóstico , Obesidad/complicaciones , Obesidad Abdominal/complicaciones , Fosfatidilcolina-Esterol O-Aciltransferasa/metabolismo , Fosfatidilcolinas
6.
J Proteome Res ; 19(10): 3919-3935, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-32646215

RESUMEN

Obesity is a complex disorder where the genome interacts with diet and environmental factors to ultimately influence body mass, composition, and shape. Numerous studies have investigated how bulk lipid metabolism of adipose tissue changes with obesity and, in particular, how the composition of triglycerides (TGs) changes with increased adipocyte expansion. However, reflecting the analytical challenge posed by examining non-TG lipids in extracts dominated by TGs, the glycerophospholipid composition of cell membranes has been seldom investigated. Phospholipids (PLs) contribute to a variety of cellular processes including maintaining organelle functionality, providing an optimized environment for membrane-associated proteins, and acting as pools for metabolites (e.g. choline for one-carbon metabolism and for methylation of DNA). We have conducted a comprehensive lipidomic study of white adipose tissue in mice which become obese either through genetic modification (ob/ob), diet (high fat diet), or a combination of the two, using both solid phase extraction and ion mobility to increase coverage of the lipidome. Composition changes in seven classes of lipids (free fatty acids, diglycerides, TGs, phosphatidylcholines, lyso-phosphatidylcholines, phosphatidylethanolamines, and phosphatidylserines) correlated with perturbations in one-carbon metabolism and transcriptional changes in adipose tissue. We demonstrate that changes in TGs that dominate the overall lipid composition of white adipose tissue are distinct from diet-induced alterations of PLs, the predominant components of the cell membranes. PLs correlate better with transcriptional and one-carbon metabolism changes within the cell, suggesting that the compositional changes that occur in cell membranes during adipocyte expansion have far-reaching functional consequences. Data are available at MetaboLights under the submission number: MTBLS1775.


Asunto(s)
Adipocitos , Tejido Adiposo Blanco , Tejido Adiposo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Metabolismo de los Lípidos , Lipidómica , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo
7.
Metabolomics ; 14(10): 140, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30830399

RESUMEN

BACKGROUND: Inflammatory bowel disease is a group of pathologies characterised by chronic inflammation of the intestine and an unclear aetiology. Its main manifestations are Crohn's disease and ulcerative colitis. Currently, biopsies are the most used diagnostic tests for these diseases and metabolomics could represent a less invasive approach to identify biomarkers of disease presence and progression. OBJECTIVES: The lipid and the polar metabolite profile of plasma samples of patients affected by inflammatory bowel disease have been compared with healthy individuals with the aim to find their metabolomic differences. Also, a selected sub-set of samples was analysed following solid phase extraction to further characterise differences between pathological samples. METHODS: A total of 200 plasma samples were analysed using drift tube ion mobility coupled with time of flight mass spectrometry and liquid chromatography for the lipid metabolite profile analysis, while liquid chromatography coupled with triple quadrupole mass spectrometry was used for the polar metabolite profile analysis. RESULTS: Variations in the lipid profile between inflammatory bowel disease and healthy individuals were highlighted. Phosphatidylcholines, lyso-phosphatidylcholines and fatty acids were significantly changed among pathological samples suggesting changes in phospholipase A2 and arachidonic acid metabolic pathways. Variations in the levels of cholesteryl esters and glycerophospholipids were also found. Furthermore, a decrease in amino acids levels suggests mucosal damage in inflammatory bowel disease. CONCLUSIONS: Given good statistical results and predictive power of the model produced in our study, metabolomics can be considered as a valid tool to investigate inflammatory bowel disease.


Asunto(s)
Aminoácidos/sangre , Ácidos Grasos no Esterificados/sangre , Glicerofosfolípidos/sangre , Enfermedades Inflamatorias del Intestino/sangre , Adulto , Anciano , Aminoácidos/química , Estudios de Cohortes , Ácidos Grasos no Esterificados/química , Femenino , Glicerofosfolípidos/química , Humanos , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Italia , Masculino , Persona de Mediana Edad , Análisis Multivariante , Extracción en Fase Sólida , Adulto Joven
8.
J Dairy Sci ; 99(8): 6046-6051, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27289154

RESUMEN

Hyphenated gas chromatography-mass spectrometry (GC-MS) and multivariate data analysis techniques were used to uncover milk metabolite differences in different αS1-casein genotypes of goats. By a discriminant GC-MS metabolomics approach, we characterized milk polar metabolites of 28 goats. Animals were selected on the basis of their genotypes as 7 goats classified heterozygous for weak or null alleles, 5 for the genotype EE, 9 for the genotypes AE and BE, and finally 7 for the strong genotype AA. Low molecular weight polar metabolite profile was tightly related to the different goat genotypes, milk production, and protein levels. Results of multivariate statistical analysis of GC-MS data demonstrate that different heterozygous and homozygous genotypes expressed different metabolites such as citric and aconitic acid for the strong allele class with different sugars and polyols for the weak class.


Asunto(s)
Caseínas/genética , Cromatografía de Gases y Espectrometría de Masas , Cabras/genética , Metabolómica , Leche/química , Alelos , Animales , Genotipo , Polimorfismo Genético/genética
9.
Int J Mol Sci ; 17(2): 265, 2016 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-26907266

RESUMEN

In this study, a gas-chromatography mass spectrometry (GC-MS) metabolomics study was applied to examine urine metabolite profiles of different classes of neonates under different nutrition regimens. The study population included 35 neonates, exclusively either breastfed or formula milk fed, in a seven-day timeframe. Urine samples were collected from intrauterine growth restriction (IUGR), large for gestational age (LGA), and appropriate gestational age (AGA) neonates. At birth, IUGR and LGA neonates showed similarities in their urine metabolite profiles that differed from AGA. When neonates started milk feeding, their metabolite excretion profile was strongly characterized by the different diet regimens. After three days of formula milk nutrition, urine had higher levels of glucose, galactose, glycine and myo-inositol, while up-regulated aconitic acid, aminomalonic acid and adipic acid were found in breast milk fed neonates. At seven days, neonates fed with formula milk shared higher levels of pseudouridine with IUGR and LGA at birth. Breastfed neonates shared up-regulated pyroglutamic acid, citric acid, and homoserine, with AGA at birth. The role of most important metabolites is herein discussed.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/métodos , Metabolómica/métodos , Orina/química , Alimentación con Biberón , Lactancia Materna , Retardo del Crecimiento Fetal/orina , Humanos , Recién Nacido , Sobrepeso/orina
10.
Toxicol Mech Methods ; 26(8): 611-619, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27552400

RESUMEN

Human exposure to copper oxide (CuO) nanoparticles (NPs) is rapidly increasing and for this reason reliable toxicity test systems are urgently needed. Recently, the acute cytotoxicity of CuO NPs using the new toxicity test based on human bone marrow mesenchymal stem cells (hBMMSCs) has been evaluated. It was shown that CuO NPs are much more toxic when compared to CuO microparticles (MPs). Several studies associate CuO toxicity to a possible alteration of reactive oxygen species (ROS) system. Unluckily, the mechanism that causes the toxicity is still not clear. In this work, the polar metabolite pool of treated cells, at the corresponding IC50 value, for CuO micro and NPs has been studied by gas chromatography coupled to mass spectrometry (GC-MS) and multivariate statistical data analysis. By the same means, differences due to different treatments, on samples, were investigated. Results of discriminant analysis were considered with the aim of finding the relevant metabolites unique for each class. Serine, glyceric acid, and succinic acid were upregulated on samples treated with CuO microparticles, while glutamine was the only discriminant metabolite for the class of samples treated with nanoparticles.


Asunto(s)
Cobre/toxicidad , Células Madre Mesenquimatosas/efectos de los fármacos , Metaboloma/efectos de los fármacos , Nanopartículas/toxicidad , Pruebas de Toxicidad/métodos , Adulto , Técnicas de Cultivo de Célula , Células Cultivadas , Cobre/química , Femenino , Cromatografía de Gases y Espectrometría de Masas , Humanos , Masculino , Células Madre Mesenquimatosas/metabolismo , Metabolómica , Microscopía Electrónica de Transmisión , Persona de Mediana Edad , Análisis Multivariante , Nanopartículas/química , Tamaño de la Partícula , Propiedades de Superficie
11.
J Dairy Sci ; 97(10): 6057-66, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25108860

RESUMEN

In this work, the polar metabolite pool of commercial caprine milk was studied by gas chromatography-mass spectrometry and multivariate statistical data analysis. Experimental data were compared with those of cow milk and the discriminant analysis correctly classified milk. By the same means, differences due to heat treatments (UHT or pasteurization) on milk samples were also investigated. Results of the 2 discriminant analyses were combined, with the aim of finding the discriminant metabolites unique for each class and shared by 2 classes. Valine and glycine were specific to goat milk, talose and malic acid to cow milk, and hydroxyglutaric acid to pasteurized samples. Glucose and fructose were shared by cow milk and UHT-treated samples, whereas ribose was shared by pasteurized and goat milk. Other discriminant variables were not attributed to specific metabolites. Furthermore, with the aim to reduce food fraud, the issue of adulteration of caprine milk by addition of cheaper bovine milk has been also addressed. To this goal, mixtures of goat and cow milk were prepared by adding the latter in a range from 0 to 100% (vol/vol) and studied by multivariate regression analysis. The error in the level of cow milk detectable was approximately 5%. These overall results demonstrated that, through the combined approach of gas chromatography-mass spectrometry and multivariate statistical data analysis, we were able to discriminate between milk typologies on the basis of their polar metabolite profiles and to propose a new analytical method to easily discover food fraud and to protect goat milk uniqueness. The use of appropriate visualization tools improved the interpretation of multivariate model results.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/veterinaria , Metabolómica/métodos , Leche/química , Animales , Bovinos , Análisis Discriminante , Femenino , Cromatografía de Gases y Espectrometría de Masas/métodos , Cabras , Leche/normas , Análisis Multivariante , Pasteurización
12.
iScience ; 26(5): 106578, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37128607

RESUMEN

Caloric deprivation interventions such as intermittent fasting and caloric restriction ameliorate metabolic and inflammatory disease. As a human model of caloric deprivation, a 24-h fast blunts innate and adaptive immune cell responsiveness relative to the refed state. Isolated serum at these time points confers these same immunomodulatory effects on transformed cell lines. To identify serum mediators orchestrating this, metabolomic and lipidomic analysis was performed on serum extracted after a 24-h fast and re-feeding. Bioinformatic integration with concurrent peripheral blood mononuclear cells RNA-seq analysis implicated key metabolite-sensing GPCRs in fasting-mediated immunomodulation. The putative GPR18 ligand N-arachidonylglycine (NAGly) was elevated during fasting and attenuated CD4+T cell responsiveness via GPR18 MTORC1 signaling. In parallel, NAGly reduced inflammatory Th1 and Th17 cytokines levels in CD4+T cells isolated from obese subjects, identifying a fasting-responsive metabolic intermediate that may contribute to the regulation of nutrient-level dependent inflammation associated with metabolic disease.

13.
Mol Metab ; 73: 101728, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37084865

RESUMEN

BACKGROUND AND OBJECTIVES: Non-alcoholic fatty liver disease (NAFLD) develops due to impaired hepatic lipid fluxes and is a risk factor for chronic liver disease and atherosclerosis. Lipidomic studies consistently reported characteristic hepatic/VLDL "lipid signatures" in NAFLD; whole plasma traits are more debated. Surprisingly, the HDL lipid composition by mass spectrometry has not been characterised across the NAFLD spectrum, despite HDL being a possible source of hepatic lipids delivered from peripheral tissues alongside free fatty acids (FFA). This study characterises the HDL lipidomic signature in NAFLD, and its correlation with metabolic and liver disease markers. METHODS: We used liquid chromatography-mass spectrometry to determine the whole serum and HDL lipidomic profile in 89 biopsy-proven NAFLD patients and 20 sex and age-matched controls. RESULTS: In the whole serum of NAFLD versus controls, we report a depletion in polyunsaturated (PUFA) phospholipids (PL) and FFA; with PUFA PL being also lower in HDL, and negatively correlated with BMI, insulin resistance, triglycerides, and hepatocyte ballooning. In the HDL of the NAFLD group we also describe higher saturated ceramides, which positively correlate with insulin resistance and transaminases. CONCLUSION: NAFLD features lower serum lipid species containing polyunsaturated fatty acids; the most affected lipid fractions are FFA and (HDL) phospholipids; our data suggest a possible defect in the transfer of PUFA from peripheral tissues to the liver in NAFLD. Mechanistic studies are required to explore the biological implications of our findings addressing if HDL composition can influence liver metabolism and damage, thus contributing to NAFLD pathophysiology.


Asunto(s)
Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ácidos Grasos no Esterificados , Lipoproteínas HDL , Ácidos Grasos Insaturados , Fosfolípidos
14.
Biomedicines ; 11(11)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38001958

RESUMEN

Background: Cirrhosis detection in primary care relies on low-performing biomarkers. Consequently, up to 75% of subjects with cirrhosis receive their first diagnosis with decompensation when causal treatments are less effective at preserving liver function. We investigated an unprecedented approach to cirrhosis detection based on dynamic breath testing. Methods: We enrolled 29 subjects with cirrhosis (Child-Pugh A and B), and 29 controls. All subjects fasted overnight. Breath samples were taken using Breath Biopsy® before and at different time points after the administration of 100 mg limonene. Absolute limonene breath levels were measured using gas chromatography-mass spectrometry. Results: All subjects showed a >100-fold limonene spike in breath after administration compared to baseline. Limonene breath kinetics showed first-order decay in >90% of the participants, with higher bioavailability in the cirrhosis group. At the Youden index, baseline limonene levels showed classification performance with an area under the roc curve (AUROC) of 0.83 ± 0.012, sensitivity of 0.66 ± 0.09, and specificity of 0.83 ± 0.07. The best performing timepoint post-administration was 60 min, with an AUROC of 0.91, sensitivity of 0.83 ± 0.07, and specificity of 0.9 ± 0.06. In the cirrhosis group, limonene bioavailability showed a correlation with MELD and fibrosis indicators, and was associated with signs of portal hypertension. Conclusions: Dynamic limonene breath testing enhances diagnostic performance for cirrhosis compared to static testing. The correlation with disease severity suggests potential for monitoring therapeutic interventions. Given the non-invasive nature of breath collection, a dynamic limonene breath test could be implemented in primary care.

15.
J Clin Transl Hepatol ; 11(3): 638-648, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-36969895

RESUMEN

Background and Aims: The prevalence of chronic liver disease in adults exceeds 30% in some countries and there is significant interest in developing tests and treatments to help control disease progression and reduce healthcare burden. Breath is a rich sampling matrix that offers non-invasive solutions suitable for early-stage detection and disease monitoring. Having previously investigated targeted analysis of a single biomarker, here we investigated a multiparametric approach to breath testing that would provide more robust and reliable results for clinical use. Methods: To identify candidate biomarkers we compared 46 breath samples from cirrhosis patients and 42 from controls. Collection and analysis used Breath Biopsy OMNI™, maximizing signal and contrast to background to provide high confidence biomarker detection based upon gas chromatography mass spectrometry (GC-MS). Blank samples were also analyzed to provide detailed information on background volatile organic compounds (VOCs) levels. Results: A set of 29 breath VOCs differed significantly between cirrhosis and controls. A classification model based on these VOCs had an area under the curve (AUC) of 0.95±0.04 in cross-validated test sets. The seven best performing VOCs were sufficient to maximize classification performance. A subset of 11 VOCs was correlated with blood metrics of liver function (bilirubin, albumin, prothrombin time) and separated patients by cirrhosis severity using principal component analysis. Conclusions: A set of seven VOCs consisting of previously reported and novel candidates show promise as a panel for liver disease detection and monitoring, showing correlation to disease severity and serum biomarkers at late stage.

16.
Sci Rep ; 12(1): 1425, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35082386

RESUMEN

We hypothesized that body mass index (BMI) dependent changes in myocardial gene expression and energy-related metabolites underlie the biphasic association between BMI and mortality (the obesity paradox) in cardiac surgery. We performed transcriptome profiling and measured a panel of 144 metabolites in 53 and 55, respectively, myocardial biopsies from a cohort of sixty-six adult patients undergoing coronary artery bypass grafting (registration: NCT02908009). The initial analysis identified 239 transcripts with biphasic BMI dependence. 120 displayed u-shape and 119 n-shape expression patterns. The identified local minima or maxima peaked at BMI 28-29. Based on these results and to best fit the WHO classification, we grouped the patients into three groups: BMI < 25, 25 ≤ BMI ≤ 32, and BMI > 32. The analysis indicated that protein translation-related pathways were downregulated in 25 ≤ BMI ≤ 32 compared with BMI < 25 patients. Muscle contraction transcripts were upregulated in 25 ≤ BMI ≤ 32 patients, and cholesterol synthesis and innate immunity transcripts were upregulated in the BMI > 32 group. Transcripts involved in translation, muscle contraction and lipid metabolism also formed distinct correlation networks with biphasic dependence on BMI. Metabolite analysis identified acylcarnitines and ribose-5-phosphate increasing in the BMI > 32 group and α-ketoglutarate increasing in the BMI < 25 group. Molecular differences in the myocardium mirror the biphasic relationship between BMI and mortality.


Asunto(s)
Puente de Arteria Coronaria/métodos , Enfermedad de la Arteria Coronaria/genética , Miocardio/metabolismo , Obesidad/genética , ARN Mensajero/genética , Transcriptoma , Anciano , Anciano de 80 o más Años , Índice de Masa Corporal , Carnitina/análogos & derivados , Carnitina/metabolismo , Estudios de Casos y Controles , Colesterol/biosíntesis , Estudios de Cohortes , Enfermedad de la Arteria Coronaria/metabolismo , Enfermedad de la Arteria Coronaria/mortalidad , Enfermedad de la Arteria Coronaria/cirugía , Femenino , Perfilación de la Expresión Génica , Humanos , Inmunidad Innata/genética , Ácidos Cetoglutáricos/metabolismo , Metabolismo de los Lípidos/genética , Masculino , Metaboloma , Persona de Mediana Edad , Contracción Muscular/genética , Miocardio/patología , Obesidad/metabolismo , Obesidad/mortalidad , Obesidad/cirugía , ARN Mensajero/clasificación , ARN Mensajero/metabolismo , Factores de Riesgo , Análisis de Supervivencia , Factores de Tiempo
17.
Biomedicines ; 9(11)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34829792

RESUMEN

The gold standard method for chronic liver diseases diagnosis and staging remains liver biopsy, despite the spread of less invasive surrogate modalities based on imaging and blood biomarkers. Still, more than 50% of chronic liver disease cases are detected at later stages when patients exhibit episodes of liver decompensation. Breath analysis represents an attractive means for the development of non-invasive tests for several pathologies, including chronic liver diseases. In this perspective review, we summarize the main findings of studies that compared the breath of patients with chronic liver diseases against that of control subjects and found candidate biomarkers for a potential breath test. Interestingly, identified compounds with best classification performance are of exogenous origin and used as flavoring agents in food. Therefore, random dietary exposure of the general population to these compounds prevents the establishment of threshold levels for the identification of disease subjects. To overcome this limitation, we propose the exogenous volatile organic compounds (EVOCs) probe approach, where one or multiple of these flavoring agent(s) are administered at a standard dose and liver dysfunction associated with chronic liver diseases is evaluated as a washout of ingested compound(s). We report preliminary results in healthy subjects in support of the potential of the EVOC Probe approach.

18.
Inflamm Bowel Dis ; 27(8): 1335-1345, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-33512485

RESUMEN

BACKGROUND: Inflammatory bowel diseases (IBD) are chronic inflammatory disorders of the gastrointestinal tract, with periods of latency alternating with phases of exacerbation, and include 2 forms: Crohn disease (CD) and ulcerative colitis (UC). Although the etiology of IBD is still unclear, the identification and understanding of pathophysiological mechanisms underlying IBD could reveal newly targeted intestinal alterations and determine therapeutic approaches. METHODS: In this study, by using gas chromatography-mass spectrometry, we characterized plasma and biopsies from the metabolomics profiles of patients with IBD compared with those of a control group. RESULTS: The results showed a different metabolomics profile between patients with CD (n = 50) and patients with UC (n = 82) compared with the control group (n = 51). Multivariate statistical analysis of the identified metabolites in CD and UC showed changes in energetic metabolism, and lactic acid and ornithine in particular were altered in both plasma and colon biopsies. Moreover, metabolic changes were evidenced between the normal ileum and colon tissues. These differences disappeared when we compared the inflamed ileum and colon tissues, suggesting a common metabolism. CONCLUSIONS: This study showed how the metabolomics profile could be a potential tool to identify intestinal alterations associated with IBD and may have application in precision medicine and for better defining the pathogenesis of the disease.


Asunto(s)
Colitis Ulcerosa , Enfermedad de Crohn , Metaboloma , Biopsia , Colitis Ulcerosa/metabolismo , Enfermedad de Crohn/metabolismo , Humanos , Plasma/metabolismo
19.
Nutrients ; 13(8)2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34444927

RESUMEN

The rise in prevalence of obesity in women of reproductive age in developed and developing countries might propagate intergenerational cycles of detrimental effects on metabolic health. Placental lipid metabolism is disrupted by maternal obesity, which possibly affects the life-long health of the offspring. Here, we investigated placental lipid metabolism in women with pre-gestational obesity as a sole pregnancy complication and compared it to placental responses of lean women. Open profile and targeted lipidomics were used to assess placental lipids and oxidised products of docosahexaenoic (DHA) and arachidonic acid (AA), respectively, neuroprostanes and isoprostanes. Despite no overall signs of lipid accumulation, DHA and AA levels in placentas from obese women were, respectively, 2.2 and 2.5 times higher than those from lean women. Additionally, a 2-fold increase in DHA-derived neuroprostanes and a 1.7-fold increase in AA-derived isoprostanes were seen in the obese group. These changes correlated with a 70% decrease in placental FABP1 protein. Multivariate analyses suggested that neuroprostanes and isoprostanes are associated with maternal and placental inflammation and with birth weight. These results might shed light on the molecular mechanisms associated with altered placental fatty acid metabolism in maternal pre-gestational obesity, placing these oxidised fatty acids as novel mediators of placental function.


Asunto(s)
Proteínas de Unión a Ácidos Grasos/metabolismo , Isoprostanos/metabolismo , Fenómenos Fisiologicos Nutricionales Maternos/genética , Neuroprostanos/metabolismo , Obesidad Materna/metabolismo , Adulto , Peso al Nacer , Femenino , Humanos , Inflamación , Metabolismo de los Lípidos , Placenta/metabolismo , Embarazo
20.
Mol Genet Metab Rep ; 23: 100580, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32257815

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is associated with dietary folate deficiency and mutations in genes required for one­carbon metabolism. However, the mechanism through which this occurs is unclear. To improve our understanding of this link, we investigated liver morphology, metabolism and fuel storage in adult mice with a hypomorphic mutation in the gene methionine synthase reductase (Mtrr gt ). MTRR enzyme is a key regulator of the methionine and folate cycles. The Mtrr gt mutation in mice was previously shown to disrupt one­carbon metabolism and cause a wide-spectrum of developmental phenotypes and late adult-onset macrocytic anaemia. Here, we showed that livers of Mtrr gt/gt female mice were enlarged compared to control C57Bl/6J livers. Histological analysis of these livers revealed eosinophilic hepatocytes with decreased glycogen content, which was associated with down-regulation of genes involved in glycogen synthesis (e.g., Ugp2 and Gsk3a genes). While female Mtrr gt/gt livers showed evidence of reduced ß-oxidation of fatty acids, there were no other associated changes in the lipidome in female or male Mtrr gt/gt livers compared with controls. Defects in glycogen storage and lipid metabolism often associate with disruption of mitochondrial electron transfer system activity. However, defects in mitochondrial function were not detected in Mtrr gt/gt livers as determined by high-resolution respirometry analysis. Overall, we demonstrated that adult Mtrr gt/gt female mice showed abnormal liver morphology that differed from the NAFLD phenotype and that was accompanied by subtle changes in their hepatic metabolism and fuel storage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA