Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
J Am Chem Soc ; 146(16): 11083-11094, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38619978

RESUMEN

Molecular lanthanide (Ln) complexes are promising candidates for the development of next-generation quantum technologies. High-symmetry structures incorporating integer spin Ln ions can give rise to well-isolated crystal field quasi-doublet ground states, i.e., quantum two-level systems that may serve as the basis for magnetic qubits. Recent work has shown that symmetry lowering of the coordination environment around the Ln ion can produce an avoided crossing or clock transition within the ground doublet, leading to significantly enhanced coherence. Here, we employ single-crystal high-frequency electron paramagnetic resonance spectroscopy and high-level ab initio calculations to carry out a detailed investigation of the nine-coordinate complexes, [HoIIIL1L2], where L1 = 1,4,7,10-tetrakis(2-pyridylmethyl)-1,4,7,10-tetraaza-cyclododecane and L2 = F- (1) or [MeCN]0 (2). The pseudo-4-fold symmetry imposed by the neutral organic ligand scaffold (L1) and the apical anionic fluoride ion generates a strong axial anisotropy with an mJ = ±8 ground-state quasi-doublet in 1, where mJ denotes the projection of the J = 8 spin-orbital moment onto the ∼C4 axis. Meanwhile, off-diagonal crystal field interactions give rise to a giant 116.4 ± 1.0 GHz clock transition within this doublet. We then demonstrate targeted crystal field engineering of the clock transition by replacing F- with neutral MeCN (2), resulting in an increase in the clock transition frequency by a factor of 2.2. The experimental results are in broad agreement with quantum chemical calculations. This tunability is highly desirable because decoherence caused by second-order sensitivity to magnetic noise scales inversely with the clock transition frequency.

2.
Inorg Chem ; 61(26): 9906-9917, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35727882

RESUMEN

The recently reported compound [DyIIILF](CF3SO3)2·H2O (L = 1,4,7,10-tetrakis(2-pyridylmethyl)-1,4,7,10-tetraaza-cyclododecane) displays a strong axial magnetic anisotropy, due to the short axial Dy-F bond, and single-molecule magnet (SMM) behavior. Following our earlier [DyIIILF]2+ work, herein we report the systematic structural and magnetic study of a family of [LnIIILF](CF3SO3)2·H2O compounds (Ln(III) = 1-Ce, 2-Pr, 3-Nd, 4-Eu, 5-Tb, 6-Ho, 7-Er, 8-Tm, and 9-Yb). From this series, the Ce(III) and Nd(III) analogues show slow relaxation of the magnetization under an applied direct current magnetic field, which is modeled using a Raman process. Complete active space self-consistent field theoretical calculations are employed to understand the relaxation pathways in 1-Ce and 3-Nd and also reveal a large tunnel splitting for 5-Tb. Additional computational studies on model compounds where we remove the axial F- ligand, or replace F- with I-, highlight the importance of the F- ligand in creating a strong axial crystal field for 1-Ce and 3-Nd and for promoting the SMM behavior. Importantly, this systematic study provides insight into the magnetic properties of these lighter lanthanide ions.

3.
Inorg Chem ; 58(20): 13815-13825, 2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-31588739

RESUMEN

The chelating ligand 1,3-bis(tris(hydroxymethyl)methylamino)propane (H6L) has been used to synthesize a family of octanuclear heterometallic complexes with the formula (NMe4)3[Mn4Ln4(H2L)3(H3L)(NO3)12] (Ln = La (1), Ce (2), Pr (3), Nd (4)). Encapsulation by the ligand causes the Mn(III) centers to lie in an unusually distorted (∼C2v) environment, which is shown by density functional theory and complete active space self-consistent field calculations to impact on the magnetic anisotropy of the Mn(III) ion. The theoretical study also supports the experimental observation of a ferromagnetic superexchange interaction between the Mn(III) ions in 1, despite the ions being separated by the diamagnetic La(III) ion. The optical properties of the compounds show that the distortion of the Mn(III) ions leads to three broad absorption bands originating from the transition metal ion, while the Nd(III) containing complex also displays some weak sharp features arising from the lanthanide f-f transitions.

4.
Inorg Chem ; 58(15): 9691-9697, 2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31328921

RESUMEN

In molecular magnetism and single-ion magnets in particular, the observation of slow relaxation of the magnetization is intimately linked to the coordination environment of the metal center. Such systems typically have blocking temperatures well below that of liquid nitrogen, and therefore detailed magnetic characterization is usually carried out at very low temperatures. Despite this, there has been little advantage taken of ultralow temperature single-crystal X-ray diffraction techniques that could provide a full understanding of the crystal structure in the same temperature regime where slow magnetic relaxation occurs. Here, we present a systematic variable temperature single crystal X-ray diffraction study of [CoII(NO3)3(H2O)(HDABCO)] (1) {DABCO = 1,4-diazabicyclo[2.2.2]octane} conducted between 295 to 4 K. A reversible and robust disorder-to-order, single-crystal to single-crystal phase transition was identified, which accompanied a switching of the coordination geometry around the central Co(II) from 5- to 7-coordinate below 140 K. The magnetic properties were investigated, revealing slow relaxation of the magnetization arising from a large easy-plane magnetic anisotropy (+D) in the Co(II) pentagonal bipyramidal environment observed at low temperatures. This study highlights the importance of conducting thorough low temperature crystallographic studies, particularly where magnetic characterization is carried out at such low temperatures.

5.
Angew Chem Int Ed Engl ; 58(40): 14146-14151, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31343095

RESUMEN

Following a novel synthetic strategy where the strong uniaxial ligand field generated by the Ph3 SiO- (Ph3 SiO- =anion of triphenylsilanol) and the 2,4-di-t Bu-PhO- (2,4-di-t Bu-PhO- =anion of 2,4-di-tertbutylphenol) ligands combined with the weak equatorial field of the ligand LN6 , leads to [DyIII (LN6 )(2,4-di-t Bu-PhO)2 ](PF6 ) (1), [DyIII (LN6 )(Ph3 SiO)2 ](PF6 ) (2) and [DyIII (LN6 )(Ph3 SiO)2 ](BPh4 ) (3) hexagonal bipyramidal dysprosium(III) single-molecule magnets (SMMs) with high anisotropy barriers of Ueff =973 K for 1, Ueff =1080 K for 2 and Ueff =1124 K for 3 under zero applied dc field. Ab initio calculations predict that the dominant magnetization reversal barrier of these complexes expands up to the 3rd Kramers doublet, thus revealing for the first time the exceptional uniaxial magnetic anisotropy that even the six equatorial donor atoms fail to negate, opening up the possibility to other higher-order symmetry SMMs.

6.
Inorg Chem ; 57(21): 13176-13187, 2018 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-30351068

RESUMEN

A systematic one-step one-pot multicomponent reaction of Co(ClO4)2·6H2O, H3L (2,6-bis((2-(2-hydroxyethylamino)ethylimino)methyl)-4-methylphenol), and readily available carboxylate salts (RCO2Na; R = CH3, C2H5) resulted in the two structurally novel coordination aggregates [CoIICoIII4L2(µ1,3-O2CCH3)2(µ-OH)2](ClO4)4·4H2O (1) and [CoIICoIII4L2(µ1,3-O2CC2H5)2(µ-OH)(µ-OMe)](ClO4)4·5H2O (2). At room temperature, reactions of H3L in MeOH with cobalt(II) perchlorate salts led to coassembly of initially formed ligand-bound {CoII2} fragments following aerial oxidation of metal centers and bridging by in situ generated hydroxido/alkoxido groups and added carboxylate anions. Available alkoxido arms of the initially formed {L(µ1,3-O2CCH3)(µ-OH/OMe)Co2}+ fragments were utilized to trap a central CoII ion during the formation of [Co5] aggregates. In the solid state, both complexes have been characterized by X-ray crystallography, variable-temperature magnetic measurements, and theoretical studies. Both 1 and 2 show field-induced slow magnetic relaxation that arises from the single pseudo- T d CoII ion present. The structural distortion leads to an easy-axis magnetic anisotropy ( D = -31.31 cm-1 for 1 and -21.88 cm-1 for 2) and a small but non-negligible transverse component ( E/ D = 0.11 for 1 and 0.08 for 2). The theoretical studies also reveal how the O-Co-O bond angles and the interplanar angles control D and E values in 1 and 2. The presence of two diamagnetic {Co2(µ-L)} hosts controls the distortion of the central {CoO4} unit, highlighting a strategy to control single-ion magnetic anisotropy by trapping single ions within a diamagnetic coordination environment.

7.
Inorg Chem ; 56(5): 2639-2652, 2017 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-28198623

RESUMEN

Two flexible, branched, and sterically constrained di- and tripodal side arms around a phenol backbone were utilized in ligands H3L1 and H5L2 to isolate {Mn6} and {Mn3} coordination aggregates. 2,6-Bis{(1-hydroxy-2-methylpropan-2-ylimino)methyl}-4-methylphenol (H3L1) gave trinuclear complex [Mn3(µ-H2L1)2(µ1,3-O2CCH3)4(CH3OH)2](ClO4)2·4CH3OH (1), whereas 2,6-bis[{1-hydroxy-2-(hydroxymethyl)butan-2-ylimino}methyl]-4-methylphenol (H5L2) provided hexanuclear complex [Mn6(µ4-H2L2)2(µ-HL3)2(µ3-OH)2(µ1,3-O2CC2H5)4](ClO4)2·2H2O (2). Binding of acetates and coordination of {H2L1}- provided a linear MnIIIMnIIMnIII arrangement in 1. A MnIII6 fused diadamantane-type assembly was obtained in 2 from propionate bridges, coordination of {H2L2}3-, and in situ generated {HL3}2-. The magnetic characterization of 1 and 2 revealed the properties dominated by intramolecular anti-ferromagnetic exchange interactions, and this was confirmed using density functional theory calculations. Complex 1 exhibited field-induced slow magnetic relaxation at 2 K due to the axial anisotropy of MnIII centers. Both the complexes show effective solvent-dependent catechol oxidation toward 3,5-di-tert-butylcatechol in air. The catechol oxidation abilities are comparable from two complexes of different nuclearity and structure.

8.
Chemistry ; 22(36): 12839-48, 2016 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-27484259

RESUMEN

We report a series of 3d-4f complexes {Ln2 Cu3 (H3 L)2 Xn } (X=OAc(-) , Ln=Gd, Tb or X=NO3 (-) , Ln=Gd, Tb, Dy, Ho, Er) using the 2,2'-(propane-1,3-diyldiimino)bis[2-(hydroxylmethyl)propane-1,3-diol] (H6 L) pro-ligand. All complexes, except that in which Ln=Gd, show slow magnetic relaxation in zero applied dc field. A remarkable improvement of the energy barrier to reorientation of the magnetisation in the {Tb2 Cu3 (H3 L)2 Xn } complexes is seen by changing the auxiliary ligands (X=OAc(-) for NO3 (-) ). This leads to the largest reported relaxation barrier in zero applied dc field for a Tb/Cu-based single-molecule magnet. Ab initio CASSCF calculations performed on mononuclear Tb(III) models are employed to understand the increase in energy barrier and the calculations suggest that the difference stems from a change in the Tb(III) coordination environment (C4v versus Cs ).

9.
Inorg Chem ; 55(20): 10783-10792, 2016 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-27684055

RESUMEN

Four different carboxylato bridges have been efficiently utilized for growth of three tetranuclear nickel(II) complexes [Ni4(µ3-H2L)2(µ3-OH)2(µ1,3-CH3CO2)2](ClO4)2 (1), [Ni4(µ3-H2L)2(µ3-OH)2(µ1,3-C2H5CO2)2](ClO4)2·1/2H2O (2), and [Ni4(µ3-H2L)2(µ3-OH)2(µ1,3-O2C-C6H4-pNO2)2](ClO4)(p-NO2-C6H4-CO2)·DMF·5H2O (3) and one dinuclear nickel(II)-based chain complex {[Ni2(µ-H2L)(µ1,3-O2CCH2Ph)2(H2O)](ClO4)·1/2(CH3OH)}n (4). These were obtained via the reaction of Ni(ClO4)2·6H2O with H3L [2,6-bis((2-(2-hydroxyethylamino)ethylimino)methyl)-4-methylphenol] and RCO2Na (R = CH3,C2H5, p-NO2C6H4, and PhCH2). This family of complexes is developed from {Ni2(µ-H2L)}3+ fragments following self-aggregation. The complexes were characterized by X-ray crystallography and magnetic measurements. The changes from acetate, propionate, and p-nitrobenzoate to phenylacetate groups resulted in two different types of coordination aggregation. These compounds are new examples of [Ni4] and [Ni2]n complexes where organization of the building motifs are guided by the type of the carboxylate groups responsible for in-situ generation and utilization of HO- bridges with alteration in the aggregation process within the same ligand environment. Studies on the magnetic behavior of the compounds reveal that the exchange coupling within 1-4 is predominantly antiferromagnetic in nature.

10.
Chem Soc Rev ; 44(8): 2135-47, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25716220

RESUMEN

One of the determining factors in whether single-molecule magnets (SMMs) may be used as the smallest component of data storage, is the size of the barrier to reversal of the magnetisation, Ueff. This physical quantity depends on the magnitude of the magnetic anisotropy of a complex and the size of its spin ground state. In recent years, there has been a growing focus on maximising the anisotropy generated for a single 3d transition metal (TM) ion, by an appropriate ligand field, as a means of achieving higher barriers. Because the magnetic properties of these compounds arise from a single ion in a ligand field, they are often referred to as single-ion magnets (SIMs). Here, the synthetic chemist has a significant role to play, both in the design of ligands to enforce propitious splitting of the 3d orbitals and in the judicious choice of TM ion. Since the publication of the first 3d-based SIM, which was based on Fe(ii), many other contributions have been made to this field, using different first row TM ions, and exploring varied coordination environments for the paramagnetic ions.

11.
Inorg Chem ; 54(1): 13-5, 2015 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-25495825

RESUMEN

High-field electron paramagnetic resonance spectroscopy shows that the structurally distorted Mn(III) ion in Na5[Mn(L-tart)2]·12H2O (1; L-tart = L-tartrate) has a significant negative axial zero-field splitting and a small rhombic anisotropy (∼1% of D). Alternating-current magnetic susceptibility measurements demonstrate that 1, which contains isolated Mn(III) centers, displays slow relaxation of its magnetization under an applied direct-current magnetic field.

12.
Inorg Chem ; 53(16): 8610-23, 2014 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-25073110

RESUMEN

The syntheses, structures, and magnetic properties of three new coordination complexes, tetranuclear [Zn2L(3)(OAc)(OMe)]2·3MeOH·H2O (3), trinuclear [Ni3(L(3))3]·6H2O (4), and a 1-D chain {[Cu2L(3)(OAc)2]2·H2O}n (6), of a polydentate, doubly deprotonated, 3,3'-disubstituted bipyridine ligand [L(3)](2-) are reported. The X-ray crystal structures demonstrate that the ditopic ligand provides a flexible N3 donor set for transition metal ions where each binding pocket shifts from fac to intermediate fac/mer to the mer isomer affording a Ni3 triangle, a Zn4 tetramer, and a 1-D Cu(II) polymer, respectively. This variation in coordination preference is rationalized with the aim of designing future ligands with controlled coordination modes. Magnetic susceptibility studies on 4 reveal it belongs to the rare family of ferromagnetically coupled [Ni3] clusters. In contrast, magnetic studies of the 1-D chain 6 reveal weak antiferromagnetic interactions due to the poor orbital overlap of the singly occupied Cu(II) d(x(2)-y(2)) orbitals with the one-atom bridge that connects them along the Jahn-Teller distortion axis.

13.
Inorg Chem ; 53(17): 8970-8, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25101774

RESUMEN

New {TbCu3} and {DyCu3} single-molecule magnets (SMMs) containing a low-symmetry Ln(III) center (shape measurements relative to a trigonal dodecahedron and biaugmented trigonal prism are 2.2-2.3) surrounded by three Cu(II) metalloligands are reported. SMM behavior is confirmed by frequency-dependent out-of-phase ac susceptibility signals and single-crystal temperature and sweep rate dependent hysteresis loops. The ferromagnetic exchange interactions between the central Ln(III) ion and the three Cu(II) ions could be accurately measured by inelastic neutron scattering (INS) spectroscopy and modeled effectively. The excitations observed by INS correspond to flipping of Cu(II) spins and appear at energies similar to the thermodynamic barrier for relaxation of the magnetization, ~15-20 K, and are thus at the origin of the SMM behavior. The magnetic quantum number M(tot) of the cluster ground state of {DyCu3} is an integer, whereas it is a half-integer for {TbCu3}, which explains their vastly different quantum tunneling of the magnetization behavior despite similar energy barriers.

14.
Dalton Trans ; 52(10): 3203-3209, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36799208

RESUMEN

The multinucleating ligand 2,2'-(propane-1,3-diyldiimino)bis[2-(hydroxymethyl)-propane-1,3-diol] (bis-tris propane, H6L) is used in the design of a new family of 3d-4f complexes that display an unusual {LnCu4} four-blade propeller topology. We report the synthesis, structure and magnetic characterisation of [LnCu4(H4L)4](Cl)2(ClO4)·6CH3OH, where Ln = Gd (1), Tb (2), Dy (3), La (4). Previously we have used CH3COO- and NO3- as co-ligands with bis-tris propane, but here the use of Cl- and ClO4- leads to coordination of four {Cu(H4L)} units around the central Ln ion. A magneto-structural analysis reveals that the geometrical arrangement of the Cu(II) centres defined by the H4L2- ligands controls the magnetic communication between the different metal centres. DFT calculations performed on the isotropic (Gd) and diamagnetic (La) systems 1 and 4 help to unravel the intriguing exchange interactions.

15.
Dalton Trans ; 52(12): 3795-3806, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36866587

RESUMEN

Two new paths for coordination driven self-assembly reactions under the binding support of 2-((1-hydroxy-2-methylpropan-2-ylimino)methyl)-6-methoxyphenol (H2L) have been discovered from the reactions of Cu(ClO4)2·6H2O, NEt3 and GdCl3/DyCl3·6H2O in MeOH/CHCl3 (2 : 1) medium. A similar synthetic protocol is useful to provide two different types of self-aggregated molecular clusters [Cu6Gd3(L)3(HL)3(µ3-Cl)3(µ3-OH)6(OH)2]ClO4·4H2O (1) and [Cu5Dy2(L)2(HL)2(µ-Cl)2(µ3-OH)4(ClO4)2(H2O)6](ClO4)2·2NHEt3Cl·21H2O (2). The adopted reaction procedure established the importance of the HO- and Cl- ions in the mineral-like growth of the complexes, derived from solvents and metal ion salts. In the case of complex 1, one GdIII center has been trapped at the central position of the core upheld by six µ3-OH and three µ3-Cl groups, whereas for complex 2 one CuII center was trapped using four µ3-hydroxo and two µ-chlorido groups. The magnetothermal behavior of 1 has been examined for a magnetocaloric effect of -ΔSm = 11.3 J kg-1 K-1 at 2 K for ΔH = 7 T, whereas the magnetic susceptibility measurements of 2 showed slow magnetic relaxation with Ueff = 15.8 K and τ0 = 9.8 × 10-7 s in zero external dc field. Cancer cell growth inhibition studies proved the potential of both the complexes with interestingly high activity for the Cu6Gd3 complex against human lung cancer cells. Both complexes 1 and 2 also exhibited DNA and human serum albumin (HSA) binding abilities in relation to the involved binding sites and thermodynamics.


Asunto(s)
Transformación Celular Neoplásica , Neoplasias Pulmonares , Humanos , Sitios de Unión , Sales (Química) , Albúmina Sérica Humana
16.
Cryst Growth Des ; 22(8): 4935-4940, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35971413

RESUMEN

Use of the 1,3,5-tri(2-hydroxyethyl)-1,3,5-triazacyclohexane ligand, LH3, in manganese chemistry affords access to two structurally related {Mn8} clusters: a "closed" {MnIII 6MnII 2} puckered square wheel of formula [Mn8L2(LH)O3(OH)2(MeO)2Br(imH)(H2O)3](Br)3 (1; imH = imidazole) and an "open" {MnIII 8} rod of formula [MnΙΙΙ 8L2O4(aibH)2(aib)2(MeO)6(MeOH)2](NO3)2 (2, aibH = 2-amino-isobutyric acid). In each case the triaza ligands, L/LH, direct the formation of {Mn3} triangles with their N atoms preferentially bonding to the Jahn-Teller axes of the MnIII ions. Subsequent self-assembly is dependent on the anion of the Mn salt and the identity of the organic coligand employed-the terminally bonded imidazole and the chelating/bridging amino acid. The {Mn3} triangles fold up on themselves in 1, forming a wheel. However, the syn, syn-bridging carboxylates in 2 prevent this from happening, instead directing the formation of a linear rod. Magnetic susceptibility and magnetization measurements reveal competing ferro- and antiferromagnetic interactions in both complexes, the exchange being somewhat weaker in 1 due to the presence of MnII ions.

17.
Chem Soc Rev ; 39(6): 1986-95, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20422103

RESUMEN

This short tutorial review covers recent progress in the field of polynuclear cobalt(ii)-based complexes, which display slow magnetic relaxation at low temperature. Cobalt(ii) single-molecule magnets (SMMs) can display much larger magnetic anisotropies and hence, potentially higher blocking temperatures than SMMs based on ions where the zero-field splitting originates from a second order spin-orbit coupling, such as manganese(iii).

18.
Dalton Trans ; 50(27): 9574-9588, 2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34160479

RESUMEN

Five new cobalt(ii/iii)-lanthanide(iii)-based coordination aggregates, [LnIII3CoII2CoIII2(L1)2(O2CCMe3)8(OH)4(OMe)2(H2O)4]·Ln(η1-O2CCMe3)2(η2-O2CCMe3)2(MeOH)2·2MeOH·2H2O (where Ln = Tb (1), Ho (3), and H2L1 = N-(2-hydroxyethyl)-salicylaldimine), TbIII3CoII3CoIII4(L1)4(O2CCMe3)9(OH)10(H2O) (4) and LnIII3CoII2CoIII5(L1)4(O2CCMe3)10(OH)10 (Ln = Dy (5), Ho (6)) have been synthesized and characterized, including structural analysis via single-crystal X-ray diffraction. The dysprosium analogue (2) of 1 and 3 was previously reported by us. The heptanuclear monocationic clusters in 1 and 3 were formed by placement of seven metal ions (4 Co and 3 Ln) in a vertex shared dicubane structure from the control of two Schiff base anions and crystallized in the presence of in situ generated and literature unknown counter anions Tb(η1-O2CCMe3)2(η2-O2CCMe3)2(MeOH)2- and Ho(η1-O2CCMe3)2(η2-O2CCMe3)2(MeOH)2-. Interesting solvent-induced cluster structure transformation was observed on dissolving the heptanuclear aggregates in MeCN for the formation of decanuclear clusters 4-6. These high nuclearity clusters consist of a vertex shared heptanuclear dicubane part and a curved trinuclear chain linking the two cubic halves. The dicubane unit differs from that of the heptanuclear precursors in the presence of CoII/III at the shared vertex as opposed to LnIII and the absence of OMe- bridges. HRMS (+ve) analysis shed light on the pathway of formation of these heptanuclear molecules, while at the same time revealing a different aggregation process for the decanuclear clusters.

19.
Dalton Trans ; 50(34): 11861-11877, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34369499

RESUMEN

Two new families of cobalt(ii/iii)-lanthanide(iii) coordination aggregates have been reported: tetranuclear [LnCoL2(N-BuDEA)2(O2CCMe3)4(H2O)2]·(MeOH)n·(H2O)m (Ln = Gd, 1; Tb, 2; Dy, 3; n = 2, m = 10 for 1 and 2; n = 6, m = 2 for 3) and pentanuclear LnCoIICoL2(N-BuDEA)2(O2CCMe3)6(MeOH)2 (Ln = Dy, 4; Ho, 5) formed from the reaction of two aggregation assisting ligands H2L (o-vanillin oxime) and N-BuDEAH2 (N-butyldiethanolamine). A change in preference from a lower to higher nuclearity structure was observed on going across the lanthanide series brought about by the variation in the size of the LnIII ions. An interesting observation was made for the varying sequence of addition of the ligands into the reaction medium paving the way to access both structural types for Ln = Dy. HRMS (+ve) of solutions gave further insight into the formation of the aggregates via different pathways. The tetranuclear complexes adopt a modified butterfly structure with a more complex bridging network while trapping of an extra CoII ion in the pentanuclear complexes destroys this arrangement putting the Co-Co-Co axis above the Ln-Ln axis. Direct current (dc) magnetic susceptibility measurements reveal weak antiferromagnetic coupling in 1. Complexes 2 and 5 display no slow magnetic relaxation, whereas complexes 3 and 4 display out-of-phase signals at low temperature in ac susceptibility measurements. All compounds were analyzed with DFT and CASSCF calculations and informations about the single-ion anisotropies and mutual 4f-4f/4f-3d magnetic interactions were derived.

20.
Dalton Trans ; 50(14): 5023-5035, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33877200

RESUMEN

The design and synthesis of a Schiff base H2L, (2-{[(2-hydroxy-3-methoxybenzyl)imino]methyl}phenol), bearing an ONOO donor set has been explored for its reactivity pattern with LnCl3·6H2O (Ln = GdIII and DyIII) and Ni(CH3CO2)2·4H2O in the presence of NEt3 for molecular aggregation. Coordination driven spontaneous self-assembly reactions provide [Gd2Ni6L4(µ3-OH)6(µ-OH)2(CH3CO2)2(µ-H2O)2(H2O)3(MeOH)]·8H2O (1) having a 'butterfly-shaped' core and [Dy2Ni6L4(µ3-OH)4(µ-Cl)2Cl4(H2O)2(MeOH)2]·2MeOH·4H2O (2) with a 'candy-shaped' core. Fusion of six partial cubane units led to a mineral-like core in 1, developed around the central Ni2(OH)2 moiety, whereas in the case of 2, four such partial cubanes collapsed on Dy2(OH)2. Direct-current (dc) magnetic susceptibility measurements revealed that predominant ferromagnetic interactions lead to a high-spin S = 13 ground state for 1. Complex 2 exhibits slow relaxation of magnetization under an applied small dc field with an energy barrier to reorientation of the magnetization, Ueff = 19.3 K. The static and dynamic magnetic data are analysed and corroborated by density functional theory (DFT) and detailed CASSCF based calculations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA