Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Genet ; 8(4): e1002569, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22496664

RESUMEN

Sex reversal can occur in XY humans with only a single functional WT1 or SF1 allele or a duplication of the chromosome region containing WNT4. In contrast, XY mice with only a single functional Wt1, Sf1, or Wnt4 allele, or mice that over-express Wnt4 from a transgene, reportedly are not sex-reversed. Because genetic background plays a critical role in testis differentiation, particularly in C57BL/6J (B6) mice, we tested the hypothesis that Wt1, Sf1, and Wnt4 are dosage sensitive in B6 XY mice. We found that reduced Wt1 or Sf1 dosage in B6 XY(B6) mice impaired testis differentiation, but no ovarian tissue developed. If, however, a Y(AKR) chromosome replaced the Y(B6) chromosome, these otherwise genetically identical B6 XY mice developed ovarian tissue. In contrast, reduced Wnt4 dosage increased the amount of testicular tissue present in Sf1+/- B6 XY(AKR), Wt1+/- B6 XY(AKR), B6 XY(POS), and B6 XY(AKR) fetuses. We propose that Wt1(B6) and Sf1(B6) are hypomorphic alleles of testis-determining pathway genes and that Wnt4(B6) is a hypermorphic allele of an ovary-determining pathway gene. The latter hypothesis is supported by the finding that expression of Wnt4 and four other genes in the ovary-determining pathway are elevated in normal B6 XX E12.5 ovaries. We propose that B6 mice are sensitive to XY sex reversal, at least in part, because they carry Wt1(B6) and/or Sf1(B6) alleles that compromise testis differentiation and a Wnt4(B6) allele that promotes ovary differentiation and thereby antagonizes testis differentiation. Addition of a "weak" Sry allele, such as the one on the Y(POS) chromosome, to the sensitized B6 background results in inappropriate development of ovarian tissue. We conclude that Wt1, Sf1, and Wnt4 are dosage-sensitive in mice, this dosage-sensitivity is genetic background-dependant, and the mouse strains described here are good models for the investigation of human dosage-sensitive XY sex reversal.


Asunto(s)
Ovario/metabolismo , Procesos de Determinación del Sexo , Factor Esteroidogénico 1/metabolismo , Testículo/metabolismo , Proteínas WT1/metabolismo , Proteína Wnt4/metabolismo , Alelos , Animales , Femenino , Dosificación de Gen , Regulación del Desarrollo de la Expresión Génica , Humanos , Hibridación in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Transgénicos , Ovario/crecimiento & desarrollo , Factores de Transcripción SOXB1/genética , Factor Esteroidogénico 1/genética , Testículo/crecimiento & desarrollo , Proteínas WT1/genética , Proteína Wnt4/genética , Cromosoma X/genética , Cromosoma Y/genética
2.
Am J Physiol Regul Integr Comp Physiol ; 297(6): R1803-12, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19793957

RESUMEN

In mammals, glucose-dependent insulinotropic polypeptide (GIP) is synthesized predominately in the small intestine and functions in conjunction with insulin to promote nutrient deposition. However, little is known regarding GIP expression and function in early vertebrates like the zebrafish, a model organism representing an early stage in the evolutionary development of the compound vertebrate pancreas. Analysis of GIP and insulin (insa) expression in zebrafish larvae by RT-PCR demonstrated that although insa was detected as early as 24 h postfertilization (hpf), GIP expression was not demonstrated until 72 hpf, shortly after the completion of endocrine pancreatic development but prior to the commencement of independent feeding. Furthermore, whole mount in situ hybridization of zebrafish larvae showed expression of GIP and insa in the same tissues, and in adult zebrafish, RT-PCR and immunohistochemistry demonstrated GIP expression in both the intestine and the pancreas. Receptor activation studies showed that zebrafish GIP was capable of activating the rat GIP receptor. Although previous studies have identified four receptors with glucagon receptor-like sequences in the zebrafish, one of which possesses the capacity to bind GIP, a functional analysis of these receptors has not been performed. This study demonstrates interactions between the latter receptor and zebrafish GIP, identifying it as a potential in vivo target for the ligand. Finally, food deprivation studies in larvae demonstrated an increase in GIP and proglucagon II mRNA levels in response to fasting. In conclusion, the results of these studies suggest that although the zebrafish appears to be a model of an early stage of evolutionary development of GIP expression, the peptide may not possess incretin properties in this species.


Asunto(s)
Polipéptido Inhibidor Gástrico/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Factores de Edad , Envejecimiento/genética , Envejecimiento/metabolismo , Secuencia de Aminoácidos , Animales , Femenino , Privación de Alimentos , Polipéptido Inhibidor Gástrico/genética , Regulación del Desarrollo de la Expresión Génica , Inmunohistoquímica , Hibridación in Situ , Insulina/genética , Insulina/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/embriología , Larva/genética , Larva/metabolismo , Ligandos , Masculino , Datos de Secuencia Molecular , Páncreas/embriología , Páncreas/metabolismo , Proglucagón/genética , ARN Mensajero/metabolismo , Ratas , Receptores de la Hormona Gastrointestinal/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
3.
Regul Pept ; 171(1-3): 26-34, 2011 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-21723886

RESUMEN

Glucose-dependent insulinotropic polypeptide (GIP) is a mammalian incretin hormone released into the circulation following nutrient ingestion. We examined the functional evolution of GIP and its relationship with insulin to delineate their respective roles in promoting nutrient efficiency. Expression patterns were examined in the sea lamprey (Petromyzon marinus), a basal vertebrate lacking a distinct pancreas, and in the zebrafish, Xenopus laevis, chicken, and mouse, organisms possessing extraintestinal pancreata. Although sea lamprey genomic analysis predicted a potential GIP-like gene, transcripts were not detected, and insulin expression was confined to the caudal pancreatic bud. GIP was detected in both the intestine and pancreas of the zebrafish and X. laevis. In contrast, GIP and insulin expression were limited to the intestine and pancreas, respectively, in chicken and mouse. Phylogenetic analysis of the glucagon-like ligands suggested proglucagon as the common ancestor, supporting the theory that GIP arose as a gene duplication of proglucagon. Insulin-secreting cells in the sea lamprey intestine may have obviated the need for an enteroinsular axis, and zebrafish may represent an evolutionary transition where GIP does not yet function as an incretin hormone. These observations are consistent with the hypothesis that GIP and insulin influence survival advantage by enhancing the efficiency of nutrient absorption and energy storage.


Asunto(s)
Evolución Molecular , Polipéptido Inhibidor Gástrico/genética , Insulina/genética , Petromyzon/genética , Proglucagón/genética , Pez Cebra/genética , Animales , Pollos/genética , Polipéptido Inhibidor Gástrico/metabolismo , Expresión Génica , Insulina/metabolismo , Mucosa Intestinal/metabolismo , Ratones , Páncreas/metabolismo , Petromyzon/metabolismo , Filogenia , Xenopus laevis/genética , Xenopus laevis/metabolismo , Pez Cebra/metabolismo
4.
Regul Pept ; 164(2-3): 97-104, 2010 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-20621665

RESUMEN

Glucose-dependent insulinotropic polypeptide (GIP), an important component of the enteroinsular axis, is a potent stimulator of insulin secretion, functioning to maintain nutrient efficiency. Although well-characterized in mammals, little is known regarding GIP transcriptional regulation in Danio rerio (Dr). We previously demonstrated that DrGIP is expressed in the intestine and the pancreas, and we therefore cloned the Dr promoter to compare GIP transcriptional regulation in Dr and mammals. Although no significant homology was indentified between the highly conserved mammalian promoter and the DrGIP promoter, 1072-bp of the DrGIP promoter conferred tissue-specific expression in mammalian cell lines. Deletional analysis of the DrGIP promoter identified two regions that, when deleted, reduced transcription by 75% and 95%, respectively. Mutational analysis of the upstream region suggested involvement of an Nkx binding site, although we were unable to identify the factor binding to this site. The cis element in the downstream region was found to be a GATA binding site. Lastly, overexpression and shRNA experiments identified PAX4 as a potential repressor of DrGIP expression. These findings provide evidence that despite the identification of species-specific transcriptional regulators and differences in GIP expression patterns between D. rerio and mammals, a moderate degree of regulatory conservation appears to exist.


Asunto(s)
Evolución Molecular , Polipéptido Inhibidor Gástrico/genética , Animales , Línea Celular , Línea Celular Tumoral , Ratones , Células 3T3 NIH , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/metabolismo , Regiones Promotoras Genéticas/genética , ARN Interferente Pequeño/genética , Ratas , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA