Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Nature ; 599(7885): 507-512, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34707295

RESUMEN

The dearth of new medicines effective against antibiotic-resistant bacteria presents a growing global public health concern1. For more than five decades, the search for new antibiotics has relied heavily on the chemical modification of natural products (semisynthesis), a method ill-equipped to combat rapidly evolving resistance threats. Semisynthetic modifications are typically of limited scope within polyfunctional antibiotics, usually increase molecular weight, and seldom permit modifications of the underlying scaffold. When properly designed, fully synthetic routes can easily address these shortcomings2. Here we report the structure-guided design and component-based synthesis of a rigid oxepanoproline scaffold which, when linked to the aminooctose residue of clindamycin, produces an antibiotic of exceptional potency and spectrum of activity, which we name iboxamycin. Iboxamycin is effective against ESKAPE pathogens including strains expressing Erm and Cfr ribosomal RNA methyltransferase enzymes, products of genes that confer resistance to all clinically relevant antibiotics targeting the large ribosomal subunit, namely macrolides, lincosamides, phenicols, oxazolidinones, pleuromutilins and streptogramins. X-ray crystallographic studies of iboxamycin in complex with the native bacterial ribosome, as well as with the Erm-methylated ribosome, uncover the structural basis for this enhanced activity, including a displacement of the [Formula: see text] nucleotide upon antibiotic binding. Iboxamycin is orally bioavailable, safe and effective in treating both Gram-positive and Gram-negative bacterial infections in mice, attesting to the capacity for chemical synthesis to provide new antibiotics in an era of increasing resistance.


Asunto(s)
Antibacterianos/síntesis química , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Antibacterianos/química , Antibacterianos/clasificación , Clindamicina/síntesis química , Clindamicina/farmacología , Descubrimiento de Drogas , Lincomicina/síntesis química , Lincomicina/farmacología , Metiltransferasas/genética , Metiltransferasas/metabolismo , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Oxepinas , Piranos , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Ribosomas/química , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Thermus thermophilus/efectos de los fármacos , Thermus thermophilus/enzimología , Thermus thermophilus/genética
2.
Nat Chem Biol ; 20(7): 867-876, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38238495

RESUMEN

The bacterial ribosome is an essential drug target as many clinically important antibiotics bind and inhibit its functional centers. The catalytic peptidyl transferase center (PTC) is targeted by the broadest array of inhibitors belonging to several chemical classes. One of the most abundant and clinically prevalent resistance mechanisms to PTC-acting drugs in Gram-positive bacteria is C8-methylation of the universally conserved A2503 nucleobase by Cfr methylase in 23S ribosomal RNA. Despite its clinical importance, a sufficient understanding of the molecular mechanisms underlying Cfr-mediated resistance is currently lacking. Here, we report a set of high-resolution structures of the Cfr-modified 70S ribosome containing aminoacyl- and peptidyl-transfer RNAs. These structures reveal an allosteric rearrangement of nucleotide A2062 upon Cfr-mediated methylation of A2503 that likely contributes to the reduced potency of some PTC inhibitors. Additionally, we provide the structural bases behind two distinct mechanisms of engaging the Cfr-methylated ribosome by the antibiotics iboxamycin and tylosin.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Antibacterianos/farmacología , Antibacterianos/química , Farmacorresistencia Bacteriana/efectos de los fármacos , Ribosomas/metabolismo , Ribosomas/efectos de los fármacos , Ribosomas/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/genética , ARN Ribosómico 23S/química , ARN Ribosómico 23S/metabolismo , Metiltransferasas/metabolismo , Metiltransferasas/química , Metiltransferasas/antagonistas & inhibidores , Metilación , Modelos Moleculares , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Escherichia coli/genética
3.
Nucleic Acids Res ; 51(9): 4536-4554, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-36951104

RESUMEN

Genome-encoded antibiotic resistance (ARE) ATP-binding cassette (ABC) proteins of the F subfamily (ARE-ABCFs) mediate intrinsic resistance in diverse Gram-positive bacteria. The diversity of chromosomally-encoded ARE-ABCFs is far from being fully experimentally explored. Here we characterise phylogenetically diverse genome-encoded ABCFs from Actinomycetia (Ard1 from Streptomyces capreolus, producer of the nucleoside antibiotic A201A), Bacilli (VmlR2 from soil bacterium Neobacillus vireti) and Clostridia (CplR from Clostridium perfringens, Clostridium sporogenes and Clostridioides difficile). We demonstrate that Ard1 is a narrow spectrum ARE-ABCF that specifically mediates self-resistance against nucleoside antibiotics. The single-particle cryo-EM structure of a VmlR2-ribosome complex allows us to rationalise the resistance spectrum of this ARE-ABCF that is equipped with an unusually long antibiotic resistance determinant (ARD) subdomain. We show that CplR contributes to intrinsic pleuromutilin, lincosamide and streptogramin A resistance in Clostridioides, and demonstrate that C. difficile CplR (CDIF630_02847) synergises with the transposon-encoded 23S ribosomal RNA methyltransferase Erm to grant high levels of antibiotic resistance to the C. difficile 630 clinical isolate. Finally, assisted by uORF4u, our novel tool for detection of upstream open reading frames, we dissect the translational attenuation mechanism that controls the induction of cplR expression upon an antibiotic challenge.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Genes Bacterianos , Bacterias Grampositivas , Antibacterianos/farmacología , Antibacterianos/química , Clostridioides difficile/efectos de los fármacos , Clostridioides difficile/genética , Bacterias Grampositivas/efectos de los fármacos , Bacterias Grampositivas/genética , Nucleósidos/química , Nucleósidos/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Genes Bacterianos/genética , Clostridium/efectos de los fármacos , Clostridium/genética , Microscopía por Crioelectrón
4.
Nucleic Acids Res ; 50(11): 6174-6189, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35699226

RESUMEN

Since antibiotic resistance is often associated with a fitness cost, bacteria employ multi-layered regulatory mechanisms to ensure that expression of resistance factors is restricted to times of antibiotic challenge. In Bacillus subtilis, the chromosomally-encoded ABCF ATPase VmlR confers resistance to pleuromutilin, lincosamide and type A streptogramin translation inhibitors. Here we show that vmlR expression is regulated by translation attenuation and transcription attenuation mechanisms. Antibiotic-induced ribosome stalling during translation of an upstream open reading frame in the vmlR leader region prevents formation of an anti-antiterminator structure, leading to the formation of an antiterminator structure that prevents intrinsic termination. Thus, transcription in the presence of antibiotic induces vmlR expression. We also show that NusG-dependent RNA polymerase pausing in the vmlR leader prevents leaky expression in the absence of antibiotic. Furthermore, we demonstrate that induction of VmlR expression by compromised protein synthesis does not require the ability of VmlR to rescue the translational defect, as exemplified by constitutive induction of VmlR by ribosome assembly defects. Rather, the specificity of induction is determined by the antibiotic's ability to stall the ribosome on the regulatory open reading frame located within the vmlR leader. Finally, we demonstrate the involvement of (p)ppGpp-mediated signalling in antibiotic-induced VmlR expression.


Asunto(s)
Antibacterianos , Bacillus subtilis , Antibacterianos/metabolismo , Antibacterianos/farmacología , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Farmacorresistencia Microbiana/genética , Regulación Bacteriana de la Expresión Génica , Guanosina Pentafosfato/metabolismo , Factores R , Transcripción Genética
5.
J Org Chem ; 88(11): 7557-7559, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37130428

RESUMEN

The mechanism proposed for the transformation of cyclopentanone to the dienoic acid 1, as published in this journal, is revealed to be in error. We show that carbon 11 derives not from dimethyl sulfoxide as proposed but from the dichloromethane present in the "quenching" solution. The intermediacy of an α-chloromethyl ketone and its subsequent fragmentation in the presence of a hydroxide ion is supported by experiments described herein and by extensive literature precedent.

6.
J Org Chem ; 88(3): 1907-1908, 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36649386

RESUMEN

The regioselectivity of a [3+2] dipolar cycloaddition reaction of a stabilized azomethine ylide with an electron-deficient dipolarophile was found to be counter to a report published in this journal.

7.
Bioorg Med Chem Lett ; 91: 129364, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37295615

RESUMEN

Hydrogen-tritium exchange is widely employed for radioisotopic labeling of molecules of biological interest but typically involves the metal-promoted exchange of sp2-hybridized carbon-hydrogen bonds, a strategy that is not directly applicable to the antibiotic iboxamycin, which possesses no such bonds. We show that ruthenium-induced 2'-epimerization of 2'-epi-iboxamycin in HTO (200 mCi) of low specific activity (10 Ci/g, 180 mCi/mmol) at 80 °C for 18 h affords after purification tritium-labeled iboxamycin (3.55 µCi) with a specific activity of 53 mCi/mmol. Iboxamycin displayed an apparent inhibition constant (Ki, app) of 41 ± 30 nM towards Escherichia coli ribosomes, binding approximately 70-fold more tightly than the antibiotic clindamycin (Ki, app = 2.7 ± 1.1 µM).


Asunto(s)
Antibacterianos , Clindamicina , Antibacterianos/química , Clindamicina/química , Clindamicina/metabolismo , Hidrógeno , Tritio/química , Rutenio/química
8.
Acc Chem Res ; 54(7): 1635-1645, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33691070

RESUMEN

Macrolides are among the most widely prescribed antibiotics, particularly for bacterial lung infections, due to their favorable safety, oral bioavailability, and spectrum of activity against Gram-positive pathogens such as Streptococcus pneumoniae, the most common cause of bacterial pneumonia. Their utility against Gram-negative bacteria is extremely limited and does not include the Enterobacteriaceae or other ESKAPE pathogens. With the increasing development of resistance to current therapies and the lack of safe, oral options to treat Gram-negative infections, extended-spectrum macrolides have the potential to provide valuable treatment options. While the bacterial ribosome, the target of macrolides, is highly conserved across Gram-positive and Gram-negative bacteria, traditional macrolides do not possess the proper physicochemical properties to cross the polar Gram-negative outer membrane and are highly susceptible to efflux. As with most natural product-derived compounds, macrolides are generally prepared through semisynthesis, which is limited in scope and lacks the ability to make the drastic physicochemical property changes necessary to overcome these hurdles.By using a fully synthetic platform technology to greatly expand structural diversity, novel macrolides were prepared with a focus on lowering the MW and increasing the polarity to achieve a physicochemical property profile more similar to that of traditional Gram-negative drug classes. In addition to the removal of lipophilic groups, a critical structural feature for obtaining Gram-negative activity in the macrolide class proved to be the introduction of small secondary or tertiary amines to yield polycationic species potentially capable of self-promoted uptake. Within the azithromycin-like 15-membered azalides, potent activity was seen when small alkyl amines were introduced at the 6'-position of desosamine. The biggest gains, however, were made by replacing the entire C10-C13 fragment of the macrolactone ring with commercially available or readily synthesized 1,2-aminoalcohols, leading to 13-membered azalides. The introduction of a tethered basic amine at the C10-position and systematic optimization of substitution and tether length and flexibility ultimately provided new macrolides that for the first time exhibit clinically relevant antibacterial activity against multi-drug resistant Gram-negative bacteria. A retrospective computational analysis of >1800 fully synthetic macrolides prepared during this effort identified key drivers and optimum ranges for improving permeability and avoiding efflux. In contrast to standard Gram-negative drugs which generally have MWs below 600 and clogD7.4 values below 0, we found that the ideal ranges for Gram-negative macrolides were MW between 600 and 720 and cLogD7.4 between -1 and 3. A total charge of between 2.5 and 3 was also required to provide optimal permeability and efflux avoidance. Thus, Gram-negative macrolides occupy a unique physicochemical property space that lies between traditional Gram-negative drug classes and Gram-positive macrolides.


Asunto(s)
Antibacterianos/farmacología , Descubrimiento de Drogas , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Conformación Molecular
9.
Nature ; 533(7603): 338-45, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-27193679

RESUMEN

The chemical modification of structurally complex fermentation products, a process known as semisynthesis, has been an important tool in the discovery and manufacture of antibiotics for the treatment of various infectious diseases. However, many of the therapeutics obtained in this way are no longer effective, because bacterial resistance to these compounds has developed. Here we present a practical, fully synthetic route to macrolide antibiotics by the convergent assembly of simple chemical building blocks, enabling the synthesis of diverse structures not accessible by traditional semisynthetic approaches. More than 300 new macrolide antibiotic candidates, as well as the clinical candidate solithromycin, have been synthesized using our convergent approach. Evaluation of these compounds against a panel of pathogenic bacteria revealed that the majority of these structures had antibiotic activity, some efficacious against strains resistant to macrolides in current use. The chemistry we describe here provides a platform for the discovery of new macrolide antibiotics and may also serve as the basis for their manufacture.


Asunto(s)
Antibacterianos/síntesis química , Antibacterianos/farmacología , Descubrimiento de Drogas/métodos , Macrólidos/síntesis química , Macrólidos/farmacología , Amino Azúcares/síntesis química , Amino Azúcares/química , Amino Azúcares/farmacología , Antibacterianos/química , Bacterias/efectos de los fármacos , Humanos , Cetólidos/síntesis química , Cetólidos/química , Macrólidos/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Triazoles/síntesis química , Triazoles/química , Triazoles/farmacología
10.
J Am Chem Soc ; 143(29): 11019-11025, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34264649

RESUMEN

A gram-scale synthesis of iboxamycin, an antibiotic candidate bearing a fused bicyclic amino acid residue, is presented. A pivotal transformation in the route involves an intramolecular hydrosilylation-oxidation sequence to set the ring-fusion stereocenters of the bicyclic scaffold. Other notable features of the synthesis include a high-yielding, highly diastereoselective alkylation of a pseudoephenamine amide, a convergent sp3-sp2 Negishi coupling, and a one-pot transacetalization-reduction reaction to form the target compound's oxepane ring. Implementation of this synthetic strategy has provided ample quantities of iboxamycin to allow for its in vivo profiling in murine models of infection.


Asunto(s)
Antibacterianos/síntesis química , Oxepinas/síntesis química , Piranos/síntesis química , Antibacterianos/química , Cristalografía por Rayos X , Modelos Moleculares , Conformación Molecular , Oxepinas/química , Piranos/química , Estereoisomerismo
11.
J Am Chem Soc ; 143(18): 6829-6835, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33930268

RESUMEN

The development of a flexible, component-based synthetic route to the amino sugar fragment of the lincosamide antibiotics is described. This route hinges on the application and extension of nitroaldol chemistry to forge strategic bonds within complex amino sugar targets and employs a glycal epoxide as a versatile glycosyl donor for the installation of anomeric groups. Through building-block exchange and late-stage functionalization, this route affords access to a host of rationally designed lincosamides otherwise inaccessible by semisynthesis and underpins a platform for the discovery of new lincosamide antibiotics.


Asunto(s)
Antibacterianos/síntesis química , Lincosamidas/síntesis química , Antibacterianos/química , Lincosamidas/química , Conformación Molecular
12.
Nature ; 526(7572): 273-276, 2015 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-26416749

RESUMEN

Super-enhancers (SEs), which are composed of large clusters of enhancers densely loaded with the Mediator complex, transcription factors and chromatin regulators, drive high expression of genes implicated in cell identity and disease, such as lineage-controlling transcription factors and oncogenes. BRD4 and CDK7 are positive regulators of SE-mediated transcription. By contrast, negative regulators of SE-associated genes have not been well described. Here we show that the Mediator-associated kinases cyclin-dependent kinase 8 (CDK8) and CDK19 restrain increased activation of key SE-associated genes in acute myeloid leukaemia (AML) cells. We report that the natural product cortistatin A (CA) selectively inhibits Mediator kinases, has anti-leukaemic activity in vitro and in vivo, and disproportionately induces upregulation of SE-associated genes in CA-sensitive AML cell lines but not in CA-insensitive cell lines. In AML cells, CA upregulated SE-associated genes with tumour suppressor and lineage-controlling functions, including the transcription factors CEBPA, IRF8, IRF1 and ETV6 (refs 6-8). The BRD4 inhibitor I-BET151 downregulated these SE-associated genes, yet also has anti-leukaemic activity. Individually increasing or decreasing the expression of these transcription factors suppressed AML cell growth, providing evidence that leukaemia cells are sensitive to the dosage of SE-associated genes. Our results demonstrate that Mediator kinases can negatively regulate SE-associated gene expression in specific cell types, and can be pharmacologically targeted as a therapeutic approach to AML.


Asunto(s)
Quinasa 8 Dependiente de Ciclina/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Elementos de Facilitación Genéticos/genética , Regulación Neoplásica de la Expresión Génica/genética , Genes Relacionados con las Neoplasias/genética , Leucemia Mieloide Aguda/enzimología , Leucemia Mieloide Aguda/genética , Animales , Proteínas de Ciclo Celular , División Celular/efectos de los fármacos , Línea Celular Tumoral , Linaje de la Célula/efectos de los fármacos , Linaje de la Célula/genética , Quinasa 8 Dependiente de Ciclina/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Progresión de la Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genes Supresores de Tumor/efectos de los fármacos , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Masculino , Ratones , Ratones Endogámicos , Ratones SCID , Proteínas Nucleares/antagonistas & inhibidores , Compuestos Policíclicos/farmacología , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
13.
Angew Chem Int Ed Engl ; 55(2): 523-7, 2016 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-26612347

RESUMEN

D-Desosamine is synthesized in 4 steps from methyl vinyl ketone and sodium nitrite. The key step in this chromatography-free synthesis is the coupling of (R)-4-nitro-2-butanol and glyoxal (trimeric form) mediated by cesium carbonate, which affords in crystalline form 3-nitro-3,4,6-trideoxy-α-D-glucose, a nitro sugar stereochemically homologous to D-desosamine. This strategy has enabled the syntheses of an array of analogous 3-nitro sugars. In each case the 3-nitro sugars are obtained in pure form by crystallization.


Asunto(s)
Amino Azúcares/química , Amino Azúcares/síntesis química , Cristalografía por Rayos X , Espectroscopía de Protones por Resonancia Magnética
14.
Bioorg Med Chem Lett ; 24(18): 4410-4413, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25176186

RESUMEN

X-ray crystallographic characterization of products derived from natural and fully synthetic trioxacarcins, molecules with potent antiproliferative effects, illuminates aspects of their reactivity and mechanism of action. Incubation of the fully synthetic trioxacarcin analog 3, which lacks one of the carbohydrate residues present in the natural product trioxacarcin A (1) as well as oxygenation at C2 and C4 yet retains potent antiproliferative effects, with the self-complimentary duplex oligonucleotide d(AACCGGTT) led to production of a crystalline covalent guanine adduct (6). Adduct 6 is closely analogous to gutingimycin (2), the previously reported guanine adduct derived from incubation of natural trioxacarcin A (1) with duplex DNA, suggesting that 3 and 1 likely share a common basis of cytotoxicity. In addition, we isolated a novel, dark-red crystalline guanine adduct (7) from incubation of trioxacarcin A itself with the self-complimentary duplex oligonucleotide d(CGTATACG). Crystallographic analysis suggests that 7 is an anthraquinone derivative, which we propose arises by a sequence of guanosine alkylation within duplex DNA, depurination, base-catalyzed elimination of the trioxacarcinose A carbohydrate residue, and oxidative rearrangement to form an anthraquinone. We believe that this heretofore unrecognized chemical instability of natural trioxacarcins may explain why trioxacarcin analogs lacking C4 oxygenation exhibit superior chemical stabilities yet, as evidenced by structure 3, retain a capacity to form lesions with duplex DNA.


Asunto(s)
Aminoglicósidos/química , Aductos de ADN/química , Guanina/química , Aminoglicósidos/síntesis química , Cristalografía por Rayos X , Guanina/análogos & derivados , Modelos Moleculares , Conformación Molecular
15.
Proc Natl Acad Sci U S A ; 108(17): 6709-14, 2011 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-21245350

RESUMEN

Many first-line cancer drugs are natural products or are derived from them by chemical modification. The trioxacarcins are an emerging class of molecules of microbial origin with potent antiproliferative effects, which may derive from their ability to covalently modify duplex DNA. All trioxacarcins appear to be derivatives of a nonglycosylated natural product known as DC-45-A2. To explore the potential of the trioxacarcins for the development of small-molecule drugs and probes, we have designed a synthetic strategy toward the trioxacarcin scaffold that enables access to both the natural trioxacarcins and nonnatural structural variants. Here, we report a synthetic route to DC-45-A2 from a differentially protected precursor, which in turn is assembled in just six steps from three components of similar structural complexity. The brevity of the sequence arises from strict adherence to a plan in which strategic bond-pair constructions are staged at or near the end of the synthetic route.


Asunto(s)
Aminoglicósidos/química , Aminoglicósidos/síntesis química , Antineoplásicos Alquilantes/química , Antineoplásicos Alquilantes/síntesis química , Alquilación/efectos de los fármacos , Aminoglicósidos/farmacología , Antineoplásicos Alquilantes/farmacología , ADN de Neoplasias/química , ADN de Neoplasias/metabolismo , Células HeLa , Humanos , Estructura Molecular
16.
Angew Chem Int Ed Engl ; 53(34): 8840-69, 2014 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-24990531

RESUMEN

The discovery and implementation of antibiotics in the early twentieth century transformed human health and wellbeing. Chemical synthesis enabled the development of the first antibacterial substances, organoarsenicals and sulfa drugs, but these were soon outshone by a host of more powerful and vastly more complex antibiotics from nature: penicillin, streptomycin, tetracycline, and erythromycin, among others. These primary defences are now significantly less effective as an unavoidable consequence of rapid evolution of resistance within pathogenic bacteria, made worse by widespread misuse of antibiotics. For decades medicinal chemists replenished the arsenal of antibiotics by semisynthetic and to a lesser degree fully synthetic routes, but economic factors have led to a subsidence of this effort, which places society on the precipice of a disaster. We believe that the strategic application of modern chemical synthesis to antibacterial drug discovery must play a critical role if a crisis of global proportions is to be averted.


Asunto(s)
Antibacterianos/síntesis química , Descubrimiento de Drogas , Antibacterianos/farmacología , Farmacorresistencia Bacteriana
17.
Angew Chem Int Ed Engl ; 53(18): 4642-7, 2014 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-24692320

RESUMEN

ß-Hydroxy-α-amino acids figure prominently as chiral building blocks in chemical synthesis and serve as precursors to numerous important medicines. Reported herein is a method for the synthesis of ß-hydroxy-α-amino acid derivatives by aldolization of pseudoephenamine glycinamide, which can be prepared from pseudoephenamine in a one-flask protocol. Enolization of (R,R)- or (S,S)-pseudoephenamine glycinamide with lithium hexamethyldisilazide in the presence of LiCl followed by addition of an aldehyde or ketone substrate affords aldol addition products that are stereochemically homologous with L- or D-threonine, respectively. These products, which are typically solids, can be obtained in stereoisomerically pure form in yields of 55-98 %, and are readily transformed into ß-hydroxy-α-amino acids by mild hydrolysis or into 2-amino-1,3-diols by reduction with sodium borohydride. This new chemistry greatly facilitates the construction of novel antibiotics of several different classes.


Asunto(s)
Aminoácidos/síntesis química , Anfetaminas/química , Glicina/análogos & derivados , Aldehídos/química , Glicina/química , Hidrólisis , Cetonas/química , Cloruro de Litio/química , Compuestos de Litio/química , Estructura Molecular , Silanos/química , Estereoisomerismo
18.
Science ; 383(6684): 721-726, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38359125

RESUMEN

We report the design conception, chemical synthesis, and microbiological evaluation of the bridged macrobicyclic antibiotic cresomycin (CRM), which overcomes evolutionarily diverse forms of antimicrobial resistance that render modern antibiotics ineffective. CRM exhibits in vitro and in vivo efficacy against both Gram-positive and Gram-negative bacteria, including multidrug-resistant strains of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. We show that CRM is highly preorganized for ribosomal binding by determining its density functional theory-calculated, solution-state, solid-state, and (wild-type) ribosome-bound structures, which all align identically within the macrobicyclic subunits. Lastly, we report two additional x-ray crystal structures of CRM in complex with bacterial ribosomes separately modified by the ribosomal RNA methylases, chloramphenicol-florfenicol resistance (Cfr) and erythromycin-resistance ribosomal RNA methylase (Erm), revealing concessive adjustments by the target and antibiotic that permit CRM to maintain binding where other antibiotics fail.


Asunto(s)
Antibacterianos , Hidrocarburos Aromáticos con Puentes , Farmacorresistencia Bacteriana Múltiple , Lincosamidas , Oxepinas , Antibacterianos/síntesis química , Antibacterianos/química , Antibacterianos/farmacología , Eritromicina/química , Eritromicina/farmacología , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Hidrocarburos Aromáticos con Puentes/síntesis química , Hidrocarburos Aromáticos con Puentes/química , Hidrocarburos Aromáticos con Puentes/farmacología , Oxepinas/síntesis química , Oxepinas/química , Oxepinas/farmacología , Lincosamidas/síntesis química , Lincosamidas/química , Lincosamidas/farmacología , Animales , Ratones , Diseño de Fármacos , Ribosomas/química
19.
Bioorg Med Chem Lett ; 23(24): 6905-10, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24269479

RESUMEN

Analogs of salinosporamide A with variations of the C2 and C5 substituents are prepared in 8-10 steps using as the first and key transformation a diastereoselective Mukaiyama aldol reaction between the chiral 5-tert-butyldimethylsiloxy-3-methyl-1H-pyrrole-2-carboxylic ester depicted and various aldehyde substrates, promoted by tert-butyldimethylsilyl triflate. In this transformation, the 4-trimethylsilyl-3-butyn-2-ol ester functions to direct the formation of predominantly one of four possible diastereomeric aldol products. Introduction of the C2 appendage by a later-stage, stereocontrolled alkylation reaction permits the construction of analogs variant at this position. Results from in vitro and cell-based assays of proteasomal inhibition are reported. Mass spectrometric studies provide mechanistic details of proteasomal modification by salinosporamide A and analogs.


Asunto(s)
Butanoles/química , Lactonas/química , Pirroles/química , Compuestos de Trimetilsililo/química , Aldehídos/química , Alquilación , Cristalografía por Rayos X , Ésteres , Humanos , Lactonas/síntesis química , Conformación Molecular , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/síntesis química , Inhibidores de Proteasoma/química , Pirroles/síntesis química , Estereoisomerismo
20.
bioRxiv ; 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37808676

RESUMEN

The ribosome is an essential drug target as many classes of clinically important antibiotics bind and inhibit its functional centers. The catalytic peptidyl transferase center (PTC) is targeted by the broadest array of inhibitors belonging to several chemical classes. One of the most abundant and clinically prevalent mechanisms of resistance to PTC-acting drugs is C8-methylation of the universally conserved adenine residue 2503 (A2503) of the 23S rRNA by the methyltransferase Cfr. Despite its clinical significance, a sufficient understanding of the molecular mechanisms underlying Cfr-mediated resistance is currently lacking. In this work, we developed a method to express a functionally-active Cfr-methyltransferase in the thermophilic bacterium Thermus thermophilus and report a set of high-resolution structures of the Cfr-modified 70S ribosome containing aminoacyl- and peptidyl-tRNAs. Our structures reveal that an allosteric rearrangement of nucleotide A2062 upon Cfr-methylation of A2503 is likely responsible for the inability of some PTC inhibitors to bind to the ribosome, providing additional insights into the Cfr resistance mechanism. Lastly, by determining the structures of the Cfr-methylated ribosome in complex with the antibiotics iboxamycin and tylosin, we provide the structural bases behind two distinct mechanisms of evading Cfr-mediated resistance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA