Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Gen Virol ; 105(1)2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38265285

RESUMEN

Transmissible spongiform encephalopathies or prion diseases comprise diseases with different levels of contagiousness under natural conditions. The hypothesis has been raised that the chronic wasting disease (CWD) cases detected in Nordic moose (Alces alces) may be less contagious, or not contagious between live animals under field conditions. This study aims to investigate the epidemiology of CWD cases detected in moose in Norway, Sweden and Finland using surveillance data from 2016 to 2022.In total, 18 CWD cases were detected in Nordic moose. All moose were positive for prion (PrPres) detection in the brain, but negative in lymph nodes, all were old (mean 16 years; range 12-20) and all except one, were female. Age appeared to be a strong risk factor, and the sex difference may be explained by few males reaching high age due to hunting targeting calves, yearlings and males.The cases were geographically scattered, distributed over 15 municipalities. However, three cases were detected in each of two areas, Selbu in Norway and Arjeplog-Arvidsjaur in Sweden. A Monte Carlo simulation approach was applied to investigate the likelihood of such clustering occurring by chance, given the assumption of a non-contagious disease. The empirical P-value for obtaining three cases in one Norwegian municipality was less than 0.05, indicating clustering. However, the moose in Selbu were affected by different CWD strains, and over a 6 year period with intensive surveillance, the apparent prevalence decreased, which would not be expected for an ongoing outbreak of CWD. Likewise, the three cases in Arjeplog-Arvidsjaur could also indicate clustering, but management practices promotes a larger proportion of old females and the detection of the first CWD case contributed to increased awareness and sampling.The results of our study show that the CWD cases detected so far in Nordic moose have a different epidemiology compared to CWD cases reported from North America and in Norwegian reindeer (Rangifer tarandus tarandus). The results support the hypothesis that these cases are less contagious or not contagious between live animals under field conditions. To enable differentiation from other types of CWD, we support the use of sporadic CWD (sCWD) among the names already in use.


Asunto(s)
Ciervos , Enfermedad Debilitante Crónica , Femenino , Masculino , Animales , Estudios Epidemiológicos , Encéfalo , Análisis por Conglomerados
2.
Vet Res ; 55(1): 133, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39375799

RESUMEN

The ongoing increase in wild boar populations across Europe has fostered human-wildlife conflicts, including the transmission of emerging pathogens with zoonotic importance. Blastocystis is a ubiquitous, faecal-oral transmitted protist that can cause gastrointestinal illnesses and is observed in humans and animals worldwide. The role of wildlife in the epidemiology of Blastocystis is insufficiently understood. Thus, we investigated the occurrence and subtype diversity of Blastocystis in free-ranging wild boars from the Iberian Peninsula using conventional PCR and next-generation amplicon sequencing of a fragment of the ssu RNA gene. A total of 459 wild boar faecal samples were collected across Spain (n = 360) and Portugal (n = 99) between 2014 and 2021. Blastocystis was present in 15.3% (70/459; 95% CI 12.1-18.9) of the wild boars analysed, and its occurrence was significantly higher in Portugal (34.3%, 34/99; 95% CI 25.1-44.6) than in Spain (10.0%, 36/360; 95% CI 7.1-13.6). Seven Blastocystis subtypes (ST5, ST10b, ST13-ST15, ST24b, and ST43) were detected among the surveyed wild boar populations, with greater variability detected in Portuguese samples. ST5 was identified in all the Blastocystis-positive animals, whereas 14.3% of them harboured ST mixed colonisations. Our results demonstrate that Blastocystis ST5 is particularly adapted to infect wild boars. The additional identification of zoonotic STs reinforces the role of wild boars as spreaders of zoonotic infections with public health significance.


Asunto(s)
Infecciones por Blastocystis , Blastocystis , Sus scrofa , Enfermedades de los Porcinos , Animales , Portugal/epidemiología , España/epidemiología , Enfermedades de los Porcinos/parasitología , Enfermedades de los Porcinos/epidemiología , Blastocystis/genética , Blastocystis/clasificación , Blastocystis/aislamiento & purificación , Porcinos , Infecciones por Blastocystis/veterinaria , Infecciones por Blastocystis/epidemiología , Infecciones por Blastocystis/parasitología , Prevalencia , Heces/parasitología , Variación Genética
3.
Proc Biol Sci ; 290(1993): 20222420, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36809802

RESUMEN

Climate change has had a major impact on seasonal weather patterns, resulting in marked phenological changes in a wide range of taxa. However, empirical studies of how changes in seasonality impact the emergence and seasonal dynamics of vector-borne diseases have been limited. Lyme borreliosis, a bacterial infection spread by hard-bodied ticks, is the most common vector-borne disease in the northern hemisphere and has been rapidly increasing in both incidence and geographical distribution in many regions of Europe and North America. By analysis of long-term surveillance data (1995-2019) from across Norway (latitude 57°58'-71°08' N), we demonstrate a marked change in the within-year timing of Lyme borreliosis cases accompanying an increase in the annual number of cases. The seasonal peak in cases is now six weeks earlier than 25 years ago, exceeding seasonal shifts in plant phenology and previous model predictions. The seasonal shift occurred predominantly in the first 10 years of the study period. The concurrent upsurgence in case number and shift in case timing indicate a major change in the Lyme borreliosis disease system over recent decades. This study highlights the potential for climate change to shape the seasonal dynamics of vector-borne disease systems.


Asunto(s)
Ixodes , Enfermedad de Lyme , Animales , Humanos , Enfermedad de Lyme/microbiología , Europa (Continente)/epidemiología , Ixodes/microbiología , Noruega/epidemiología , América del Norte
4.
Glob Chang Biol ; 29(20): 5788-5801, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37306048

RESUMEN

Human activity and associated landscape modifications alter the movements of animals with consequences for populations and ecosystems worldwide. Species performing long-distance movements are thought to be particularly sensitive to human impact. Despite the increasing anthropogenic pressure, it remains challenging to understand and predict animals' responses to human activity. Here we address this knowledge gap using 1206 Global Positioning System movement trajectories of 815 individuals from 14 red deer (Cervus elaphus) and 14 elk (Cervus canadensis) populations spanning wide environmental gradients, namely the latitudinal range from the Alps to Scandinavia in Europe, and the Greater Yellowstone Ecosystem in North America. We measured individual-level movements relative to the environmental context, or movement expression, using the standardized metric Intensity of Use, reflecting both the directionality and extent of movements. We expected movement expression to be affected by resource (Normalized Difference Vegetation Index, NDVI) predictability and topography, but those factors to be superseded by human impact. Red deer and elk movement expression varied along a continuum, from highly segmented trajectories over relatively small areas (high intensity of use), to directed transitions through restricted corridors (low intensity of use). Human activity (Human Footprint Index, HFI) was the strongest driver of movement expression, with a steep increase in Intensity of Use as HFI increased, but only until a threshold was reached. After exceeding this level of impact, the Intensity of Use remained unchanged. These results indicate the overall sensitivity of Cervus movement expression to human activity and suggest a limitation of plastic responses under high human pressure, despite the species also occurring in human-dominated landscapes. Our work represents the first comparison of metric-based movement expression across widely distributed populations of a deer genus, contributing to the understanding and prediction of animals' responses to human activity.


Asunto(s)
Ciervos , Ecosistema , Humanos , Animales , Ciervos/fisiología , Actividades Humanas , América del Norte , Sistemas de Información Geográfica
5.
Med Mycol ; 61(2)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36746434

RESUMEN

The phylum Microsporidia encompasses a diverse group of obligate, intracellular, and spore-forming organisms able to infect a wide range of animal hosts. Among them, Enterocytozoon bieneusi is the most frequently reported species in humans and animals. Little is known about the presence and epidemiology of E. bieneusi in wildlife. We investigated E. bieneusi occurrence and genetic diversity in wild and domestic mammals, through molecular-detection methods, from different regions across Portugal. A total of 756 samples were collected from 288, 242, and 226 wild carnivores, wild ungulates, and domestic animals, respectively. Overall, eight specimens were E. bieneusi-positive (1.1%, 8/756) obtained from five wild (Iberian lynx, Iberian wolf, red fox, stone marten, and wild boar) and one domestic (sheep) host. Nucleotide sequence analysis identified four genotypes of E. bieneusi, Type IV, Wildboar3, BEB6, and PtEbIX. Three of those genotypes belong to Groups 1 (Type IV and Wildboar3) and 2 (BEB6), which are known to contain genotypes capable of infecting a variety of hosts, including humans, highlighting their public health importance. PtEbIX belongs to the dog-specific Group 11. This study represents the first, largest, and most comprehensive molecular-based epidemiology survey carried out in Portugal in wild and domestic animals to date and the first worldwide identification of E. bieneusi in wolf species. Our study showed that wild carnivores and ungulates may act as reservoirs of zoonotic genotypes of E. bieneusi, establishing their role in maintaining the sylvatic cycle of this parasite while representing a potential source of infection for humans and domestic animals.


The identification of human-pathogenic genotypes of fungi-related Enterocytozoon bieneusi in wild carnivores and ungulates in Portugal suggests cross-species infection events and overlapping of the sylvatic and domestic transmission cycles, demonstrating a potential transmission risk to humans.


Asunto(s)
Enfermedades de los Perros , Enterocytozoon , Microsporidiosis , Enfermedades de las Ovejas , Enfermedades de los Porcinos , Humanos , Porcinos , Animales , Perros , Ovinos , Animales Domésticos , Enterocytozoon/genética , Portugal , Microsporidiosis/epidemiología , Microsporidiosis/veterinaria , Filogenia , Sus scrofa , Genotipo , China/epidemiología , Prevalencia , Heces , Zoonosis/epidemiología , Enfermedades de las Ovejas/epidemiología
6.
Oecologia ; 203(3-4): 421-433, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37955713

RESUMEN

Heterogeneous aggregation of parasites between individual hosts is common and regarded as an important factor in understanding transmission dynamics of vector-borne diseases. Lyme disease is vectored by generalist tick species, yet we have a limited understanding of how individual heterogeneities within small mammal host populations affect the aggregation of ticks and likelihood of infection. Male hosts often have higher parasite and infection levels than females, but whether this is linked to sexual body size dimorphism remains uncertain. Here, we analysed how host species, sex, and body mass influenced Ixodes ricinus tick infestations and the infection prevalence of Borrelia burgdorferi sensu lato (s.l.) in three species of small mammals involved in the enzootic transmission cycle of Lyme disease in Norway from 2018 to 2022. Larval and nymphal ticks were found on 98% and 34% of all individual hosts, respectively. In bank voles and wood mice, both larval and nymphal tick infestation and infection probability increased with body mass, and it increased more with mass for males than for females. Tick infestation in the common shrew increased with body mass and was higher in males, while pathogen infection was higher in females. Sex-biases in infestation did not correspond with level of sexual body mass dimorphism across species. This study contributes to our understanding of how individual heterogeneity among small mammalian hosts influences I. ricinus tick aggregation and prevalence of B. burgdorferi s.l. at northern latitudes.


Asunto(s)
Borrelia burgdorferi , Ixodes , Enfermedad de Lyme , Parásitos , Infestaciones por Garrapatas , Femenino , Animales , Masculino , Ratones , Infestaciones por Garrapatas/epidemiología , Infestaciones por Garrapatas/veterinaria , Infestaciones por Garrapatas/parasitología , Prevalencia , Enfermedad de Lyme/epidemiología , Enfermedad de Lyme/veterinaria , Mamíferos , Ninfa , Larva
7.
Ecol Lett ; 24(10): 2178-2191, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34311513

RESUMEN

The forage maturation hypothesis (FMH) states that energy intake for ungulates is maximised when forage biomass is at intermediate levels. Nevertheless, metabolic allometry and different digestive systems suggest that resource selection should vary across ungulate species. By combining GPS relocations with remotely sensed data on forage characteristics and surface water, we quantified the effect of body size and digestive system in determining movements of 30 populations of hindgut fermenters (equids) and ruminants across biomes. Selection for intermediate forage biomass was negatively related to body size, regardless of digestive system. Selection for proximity to surface water was stronger for equids relative to ruminants, regardless of body size. To be more generalisable, we suggest that the FMH explicitly incorporate contingencies in body size and digestive system, with small-bodied ruminants selecting more strongly for potential energy intake, and hindgut fermenters selecting more strongly for surface water.


Asunto(s)
Sistema Digestivo , Rumiantes , Animales , Tamaño Corporal
8.
Glob Chang Biol ; 2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33231361

RESUMEN

Arctic ungulates are experiencing the most rapid climate warming on Earth. While concerns have been raised that more frequent icing events may cause die-offs, and earlier springs may generate a trophic mismatch in phenology, the effects of warming autumns have been largely neglected. We used 25 years of individual-based data from a growing population of wild Svalbard reindeer, to test how warmer autumns enhance population growth. Delayed plant senescence had no effect, but a six-week delay in snow-onset (the observed data range) was estimated to increase late winter body mass by 10%. Because average late winter body mass explains 90% of the variation in population growth rates, such a delay in winter-onset would enable a population growth of r = 0.20, sufficient to counteract all but the most extreme icing events. This study provides novel mechanistic insights into the consequences of climate change for Arctic herbivores, highlighting the positive impact of warming autumns on population viability, offsetting the impacts of harsher winters. Thus, the future for Arctic herbivores facing climate change may be brighter than the prevailing view.

9.
Proc Biol Sci ; 286(1899): 20190442, 2019 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-30890094

RESUMEN

With climate change, the effect of global warming on snow cover is expected to cause range expansion and enhance habitat suitability for species at their northern distribution limits. However, how this depends on landscape topography and sex in size-dimorphic species remains uncertain, and is further complicated for migratory animals following climate-driven seasonal resource fluctuations across vast landscapes. Using 11 years of data from a partially migratory ungulate at their northern distribution ranges, the red deer ( Cervus elaphus), we predicted sex-specific summer and winter habitat suitability in diverse landscapes under medium and severe global warming. We found large increases in future winter habitat suitability, resulting in expansion of winter ranges as currently unsuitable habitat became suitable. Even moderate warming decreased snow cover substantially, with no suitability difference between warming scenarios. Winter ranges will hence not expand linearly with warming, even for species at their northern distribution limits. Although less pronounced than in winter, summer ranges also expanded and more so under severe warming. Summer habitat suitability was positively correlated with landscape topography and ranges expanded more for females than males. Our study highlights the complexity of predicting future habitat suitability for conservation and management of size-dimorphic, migratory species under global warming.


Asunto(s)
Migración Animal , Cambio Climático , Ciervos/fisiología , Ecosistema , Distribución Animal , Animales , Conservación de los Recursos Naturales , Femenino , Fenómenos de Retorno al Lugar Habitual , Masculino , Noruega , Estaciones del Año
10.
Proc Biol Sci ; 286(1903): 20190759, 2019 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-31138073

RESUMEN

Many vector-borne diseases are transmitted through complex pathogen-vector-host networks, which makes it challenging to identify the role of specific host groups in disease emergence. Lyme borreliosis in humans is now the most common vector-borne zoonosis in the Northern Hemisphere. The disease is caused by multiple genospecies of Borrelia burgdorferi sensu lato bacteria transmitted by ixodid (hard) ticks, and the major host groups transmit Borrelia genospecies with different pathogenicity, causing variable clinical symptoms in humans. The health impact of a given host group is a function of the number of ticks it infects as well as the pathogenicity of the genospecies it carries. Borrelia afzelii, with mainly small mammals as reservoirs, is the most common pathogen causing Lyme borreliosis, and it is often responsible for the largest proportion of infected host-seeking tick nymphs in Europe. The bird-borne Borrelia garinii, though less prevalent in nymphal ticks, is more likely to cause Lyme neuroborreliosis, but whether B. garinii causes disseminated disease more frequently has not been documented. Based on extensive data of annual disease incidence across Norway from 1995 to 2017, we show here that 69% of disseminated Lyme borreliosis cases were neuroborreliosis, which is three times higher than predicted from the infection prevalence of B. garinii in host-seeking ticks (21%). The population estimate of migratory birds, mainly of thrushes, explained part of the annual variation in cases of neuroborreliosis, with a one-year time lag. We highlight the important role of the genospecies' pathogenicity and the host associations for understanding the epidemiology of disseminated Lyme borreliosis.


Asunto(s)
Enfermedades de las Aves/epidemiología , Aves , Grupo Borrelia Burgdorferi/aislamiento & purificación , Neuroborreliosis de Lyme/veterinaria , Animales , Enfermedades de las Aves/microbiología , Neuroborreliosis de Lyme/epidemiología , Neuroborreliosis de Lyme/microbiología , Noruega/epidemiología , Dinámica Poblacional , Prevalencia
11.
Oecologia ; 190(1): 115-126, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31062166

RESUMEN

The pathogens causing Lyme disease are all vectored by generalist tick species found on a wide range of vertebrates, but spatial and annual variation in host use has rarely been quantified. We here compare the load of Ixodes ricinus (the vector) on small mammals and investigate the infection prevalence of Borrelia burgdorferi s.l. (the pathogen) involved in the enzootic transmission cycle of Lyme disease in two contrasting ecosystems in Norway from 2014 to 2016. The most common larval tick host in the eastern region was the bank vole, while the common shrew dominated in the western region of Norway. However, the wood mouse and the bank vole had consistently higher larval tick loads than the common shrew in both ecosystems. Hence, the evidence indicated that species are differently suitable as hosts, regardless of their abundances. The pathogen infection prevalence was similar among small mammal species, but markedly higher in the region with larger small mammal populations and higher tick loads, while the seasonal and annual variation was less marked. Our study indicated that the generalist I. ricinus shows consistent patterns of load on species of small vertebrate hosts, while B. burgdorferi s.l. (B. afzelii) was a true generalist. The similar roles of host species across regions suggest that disease dynamics can be predicted from host community composition, but predicting the role of host community composition for disease dynamics requires a detailed understanding of the different species population limitations under global change.


Asunto(s)
Grupo Borrelia Burgdorferi , Ixodes , Enfermedad de Lyme , Parásitos , Animales , Ecosistema , Europa (Continente) , Mamíferos , Ratones , Noruega
12.
Oecologia ; 189(3): 601-609, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30725371

RESUMEN

The costs of reproduction are important in shaping individual life histories, and hence population dynamics, but the mechanistic pathways of such costs are often unknown. Female reindeer have evolved antlers possibly due to interference competition on winter-feeding grounds. Here, we investigate if variation in antler size explains part of the cost of reproduction in late winter mass of female reindeer. We captured 440 individual Svalbard reindeer a total of 1426 times over 16 years and measured antler size and body mass in late winter, while presence of a 'calf-at-heel' was observed in summer. We found that reproductive females grew smaller antlers and weighed 4.3 kg less than non-reproductive females. Path analyses revealed that 14% of this cost of reproduction in body mass was caused by the reduced antler size. Our study is therefore consistent with the hypothesis that antlers in female Rangifer have evolved due to interference competition and provides evidence for antler growth as a cost of reproduction in females. Antler growth was constrained more by life history events than by variation in the environment, which contrasts markedly with studies on male antlers and horns, and hence increases our understanding of constraints on ornamentation and life history trade-offs.


Asunto(s)
Cuernos de Venado , Ciervos , Cuernos , Reno , Animales , Femenino , Masculino , Reproducción , Svalbard
13.
Proc Natl Acad Sci U S A ; 113(50): 14450-14455, 2016 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-27911775

RESUMEN

Hunting is the predominant way of controlling many wildlife populations devoid of large carnivores. It subjects animals to mortality rates that far exceed natural rates and that differ markedly in which age, sex, or size classes are removed relative to those of natural predators. To explain the emerging selection pattern we develop behavioral microfoundations for a hunting model, emphasizing in particular the constraints given by the formal and informal norms, rules, and regulations that govern the hunter's choice. We show how a shorter remaining season, competition among hunters, lower sighting probabilities, and higher costs all lead to lower reservation values, i.e., an increased likelihood of shooting a particular animal. Using a unique dataset on seen and shot deer from Norway, we test and confirm the theoretical predictions in a recreational and meat-motivated hunting system. To achieve sustainability, future wildlife management should account for this predictable selection pressure.


Asunto(s)
Conservación de los Recursos Naturales , Ciervos , Armas de Fuego , Animales , Animales Salvajes , Conservación de los Recursos Naturales/legislación & jurisprudencia , Conservación de los Recursos Naturales/estadística & datos numéricos , Bases de Datos Factuales , Toma de Decisiones , Ecosistema , Femenino , Humanos , Masculino , Modelos Psicológicos , Noruega , Recreación , Carne Roja , Estaciones del Año , Condiciones Sociales
14.
J Anim Ecol ; 87(4): 1069-1079, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29676473

RESUMEN

Selective hunting can affect demographic characteristics and phenotypic traits of the targeted species. Hunting systems often involve harvesting quotas based on sex, age and/or size categories to avoid selective pressure. However, it is difficult to assess whether such regulations deter hunters from targeting larger "trophy" animals with longer horns that may have evolutionary consequences. Here, we compile 44,088 annually resolved and absolutely dated measurements of Alpine ibex (Capra ibex) horn growth increments from 8,355 males, harvested between 1978 and 2013, in the eastern Swiss Canton of Grisons. We aim to determine whether male ibex with longer horns were preferentially targeted, causing animals with early rapid horn growth to have shorter lives, and whether such hunting selection translated into long-term trends in horn size over the past four decades. Results show that medium- to longer-horned adult males had a higher probability of being harvested than shorter-horned individuals of the same age and that regulations do affect the hunters' behaviour. Nevertheless, phenotypic traits such as horn length, as well as body size and weight, remained stable over the study period. Although selective trophy hunting still occurs, it did not cause a measurable evolutionary response in Grisons' Alpine ibex populations; managed and surveyed since 1978. Nevertheless, further research is needed to understand whether phenotypic trait development is coinfluenced by other, potentially compensatory factors that may possibly mask the effects of selective, long-term hunting pressure.


Asunto(s)
Cabras/crecimiento & desarrollo , Cabras/genética , Cuernos/crecimiento & desarrollo , Actividades Humanas , Selección Genética , Animales , Masculino , Fenotipo , Deportes , Suiza
15.
Oecologia ; 187(1): 47-60, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29610976

RESUMEN

Much research on large herbivore movement has focused on the annual scale to distinguish between resident and migratory tactics, commonly assuming that individuals are sedentary at the within-season scale. However, apparently sedentary animals may occupy a number of sub-seasonal functional home ranges (sfHR), particularly when the environment is spatially heterogeneous and/or temporally unpredictable. The roe deer (Capreolus capreolus) experiences sharply contrasting environmental conditions due to its widespread distribution, but appears markedly sedentary over much of its range. Using GPS monitoring from 15 populations across Europe, we evaluated the propensity of this large herbivore to be truly sedentary at the seasonal scale in relation to variation in environmental conditions. We studied movement using net square displacement to identify the possible use of sfHR. We expected that roe deer should be less sedentary within seasons in heterogeneous and unpredictable environments, while migratory individuals should be seasonally more sedentary than residents. Our analyses revealed that, across the 15 populations, all individuals adopted a multi-range tactic, occupying between two and nine sfHR during a given season. In addition, we showed that (i) the number of sfHR was only marginally influenced by variation in resource distribution, but decreased with increasing sfHR size; and (ii) the distance between sfHR increased with increasing heterogeneity and predictability in resource distribution, as well as with increasing sfHR size. We suggest that the multi-range tactic is likely widespread among large herbivores, allowing animals to track spatio-temporal variation in resource distribution and, thereby, to cope with changes in their local environment.


Asunto(s)
Ciervos , Herbivoria , Animales , Europa (Continente) , Fenómenos de Retorno al Lugar Habitual , Estaciones del Año
16.
Ecology ; 97(12): 3547-3553, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27912000

RESUMEN

The forage maturation hypothesis (FMH) states that herbivores should follow the onset of growth in spring to obtain access to forage of higher quality and quantity, the so-called "green wave surfing." Several studies have found correlative evidence in support of this by associating animal movement with plant phenology. However, experimental manipulation of vast natural systems determining causes of large herbivore movement is usually beyond reach. The unique management system involving winter enclosures for wild red deer (Cervus elaphus) in Germany facilitated an opportunity for an experimental approach. We manipulated release dates of red deer into free-ranging conditions in spring, predicting increased overall access to high quality forage if released early (1 April), and more rapid initial movement speed towards higher elevation if released late (15 May). The latter had lower access to high quality forage than individuals released early, as they missed parts of the green wave. In strong support of the FMH, individuals released late moved at faster initial speed than early released individuals which tracked the green wave more closely, both settling when reaching similar elevations. This shows that red deer were flexible in their movements, and they can adapt to new patterns of phenology by phenotypic plasticity.


Asunto(s)
Migración Animal/fisiología , Ciervos/fisiología , Herbivoria/fisiología , Sistemas de Identificación Animal , Animales , Femenino , Estaciones del Año
17.
Ecology ; 97(4): 1058-1068, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28792596

RESUMEN

Autumn has to a large extent been neglected in the climate effect literature, yet autumn events, e.g., plant senescence and animal migration, affect fitness of animals differently than spring events. Understanding how variables including plant phenology influence timing of autumn migrations is important to gain a comprehensive understanding of the full annual cycle of migratory species. Here we use 13 yr of data from 60 male and 168 female red deer (Cervus elaphus) to identify triggers of autumn migration. We relate the timing of autumn migration to environmental variables like snow fall, temperature, and plant phenology (NDVI), and to onset of hunting, sex, and migration distance. Severe weather has been suggested as the main trigger of autumn migration, but we found that the majority of the individuals had left the summer range well before snow fall (80.3%) and frost (70.5%), and also before the peak deterioration in forage quality (71.9%). Declining temperatures were associated with a higher daily migration potential. Onset of hunting showed the largest effect on migration potential, with a marked increase during the first days of hunting. Individuals still present in the summer range when snow fall, frost, or peak forage deterioration occurred showed a significantly higher migration potential around these events. Males were less responsive to environmental cues, suggesting rutting activity, starting earlier in males, initiate movement prior to such conditions. Also, individuals with longer migration distances had a higher migration potential late in the season than individuals with shorter migration distances. Our study shows that factors beyond weather and plant phenology, such as onset of hunting, may be important triggers of autumn migration. Severe weather and forage deterioration were important triggers for the individuals experiencing this, which suggests a hierarchical response to environmental cues. The trade-off between staying longer in the summer range and increased energy expenditures if surprised by severe weather is asymmetric, and leaving well in advance can be seen as a risk-averse tactic.


Asunto(s)
Migración Animal , Ciervos/fisiología , Monitoreo del Ambiente , Animales , Clima , Femenino , Masculino , Estaciones del Año , Nieve
18.
Ecology ; 97(4): 1058-68, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27220221

RESUMEN

Autumn has to a large extent been neglected in the climate effect literature, yet autumn events, e.g., plant senescence and animal migration, affect fitness of animals differently than spring events. Understanding how variables including plant phenology influence timing of autumn migrations is important to gain a comprehensive understanding of the full annual cycle of migratory species. Here we use 13 yr of data from 60 male and 168 female red deer (Cervus elaphus) to identify triggers of autumn migration. We relate the timing of autumn migration to environmental variables like snow fall, temperature, and plant phenology (NDVI), and to onset of hunting, sex, and migration distance. Severe weather has been suggested as the main trigger of autumn migration, but we found that the majority of the individuals had left the summer range well before snow fall (80.3%) and frost (70.5%), and also before the peak deterioration in forage quality (71.9%). Declining temperatures were associated with a higher daily migration potential. Onset of hunting showed the largest effect on migration potential, with a marked increase during the first days of hunting. Individuals still present in the summer range when snow fall, frost, or peak forage deterioration occurred showed a significantly higher migration potential around these events. Males were less responsive to environmental cues, suggesting rutting activity, starting earlier in males, initiate movement prior to such conditions. Also, individuals with longer migration distances had a higher migration potential late in the season than individuals with shorter migration distances. Our study shows that factors beyond weather and plant phenology, such as onset of hunting, may be important triggers of autumn migration. Severe weather and forage deterioration were important triggers for the individuals experiencing this, which suggests a hierarchical response to environmental cues. The trade-off between staying longer in the summer range and increased energy expenditures if surprised by severe weather is asymmetric, and leaving well in advance can be seen as a risk-averse tactic.


Asunto(s)
Migración Animal , Ciervos/fisiología , Actividades Humanas , Estaciones del Año , Animales , Femenino , Masculino , Noruega , Conducta Sexual Animal , Factores de Tiempo
19.
J Anim Ecol ; 85(1): 54-68, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26412564

RESUMEN

Decreasing rate of migration in several species as a consequence of climate change and anthropic pressure, together with increasing evidence of space-use strategies intermediate between residency and complete migration, are very strong motivations to evaluate migration occurrence and features in animal populations. The main goal of this paper was to perform a relative comparison between methods for identifying and characterizing migration at the individual and population level on the basis of animal location data. We classified 104 yearly individual trajectories from five populations of three deer species as migratory or non-migratory, by means of three methods: seasonal home range overlap, spatio-temporal separation of seasonal clusters and the Net Squared Displacement (NSD) method. For migratory cases, we also measured timing and distance of migration and residence time on the summer range. Finally, we compared the classification in migration cases across methods and populations. All methods consistently identified migration at the population level, that is, they coherently distinguished between complete or almost complete migratory populations and partially migratory populations. However, in the latter case, methods coherently classified only about 50% of the single cases, that is they classified differently at the individual-animal level. We therefore infer that the comparison of methods may help point to 'less-stereotyped' cases in the residency-to-migration continuum. For cases consistently classified by all methods, no significant differences were found in migration distance, or residence time on summer ranges. Timing of migration estimated by NSD was earlier than by the other two methods, both for spring and autumn migrations. We suggest three steps to identify improper inferences from migration data and to enhance understanding of intermediate space-use strategies. We recommend (i) classifying migration behaviours using more than one method, (ii) performing sensitivity analysis on method parameters to identify the extent of the differences and (iii) investigating inconsistently classified cases as these may often be ecologically interesting (i.e. less-stereotyped migratory behaviours).


Asunto(s)
Migración Animal , Ciervos/fisiología , Ecología/métodos , Etología/métodos , Fenómenos de Retorno al Lugar Habitual , Animales , Alemania , Movimiento , Noruega , Reno/fisiología , Tecnología de Sensores Remotos/veterinaria , Estaciones del Año
20.
Oecologia ; 180(2): 401-7, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26450650

RESUMEN

Northern deer populations are typically partially migratory, but the relationship between migratory movements and parasites has received little attention. Migration often involves movement from a low-elevation winter range towards a summer range at higher elevation. In Europe these movements may also involve a gradient in abundance of Ixodes ricinus ticks, but whether tick loads on deer differ depending on migration tactic has not been quantified. Based on the examination of ears from 49 red deer (Cervus elaphus) marked with global positioning system collars, we provide the first evidence that the tick loads of deer covering longer distances between their winter and summer range, resulting in higher difference in elevation, are lower. Our study highlights that only the resident part of the red deer population will be available as year-round hosts to ticks, while a large part of the red deer population is unavailable to ticks for most of the tick questing season due to seasonal migration to higher elevation. Predicted changes in the migratory behaviour of ungulates could hence affect the proportion of the host population available to ticks in the future.


Asunto(s)
Migración Animal/fisiología , Ciervos/parasitología , Ixodes/fisiología , Carga de Parásitos , Estaciones del Año , Animales , Conducta Animal/fisiología , Europa (Continente) , Infestaciones por Garrapatas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA