Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; 251(Pt 1): 118593, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38447607

RESUMEN

Although studies dealing with adsorption/desorption (and/or retention/release) of pollutants present in environmental compartments is a classical field of research, recent papers are focusing on some weak points of investigations and publications within the area. In addition, an increasing number of works are being published related to new possibilities and alternatives in this kind of research works, many of them in relation to the use of artificial intelligence (AI). Considering the existence of eventual controversies, eventual mistakes, and the convenience of suggesting alternatives to go ahead in the future, in this work, after taking into account some relevant publications in the previous literature, a simple workflow is proposed as a kind of protocol to revise successive steps that could guide the direction to follow when programing research dealing with the retention/release of pollutants in soils and sorbent materials.


Asunto(s)
Contaminantes del Suelo , Adsorción , Contaminantes del Suelo/análisis , Contaminantes del Suelo/química , Suelo/química , Inteligencia Artificial , Monitoreo del Ambiente/métodos
2.
Environ Res ; 251(Pt 2): 118738, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38518909

RESUMEN

Soil adsorption, which could be seen as a crucial ecosystem service, plays a pivotal role in regulating environmental quality and climate dynamics. However, despite its significance, it is often undervalued within the realms of research and policy frameworks. This article delves into the multifaceted aspects of soil adsorption, incorporating insights from chemistry and material science, ecological perspectives, and recent advancements in the field. In exploring soil components and their adsorption capacities, the review highlights how organic and inorganic constituents orchestrate soil's aptitude for pollutant mitigation and nutrient retention/release. Innovative materials and technologies such as biochar are evaluated for their efficacy in enhancing these natural processes, drawing a link with the sustainability of agricultural systems. The symbiosis between soil microbial diversity and adsorption mechanisms is examined, emphasizing the potential for leveraging this interaction to bolster soil health and resilience. The impact of soil adsorption on global nutrient cycles and water quality underscores the environmental implications, portraying it as a sentinel in the face of escalating anthropogenic activities. The complex interplay between soil adsorption mechanisms and climate change is elaborated, identifying research gaps and advocating for future investigations to elucidate the dynamics underpinning this relation. Policy and socioeconomic aspects form a crucial counterpart to the scientific discourse, with the review assessing how effective governance, incentivization, and community engagement are essential for translating soil adsorption's functionality into tangible climate change mitigation and sustainable land-use strategies. Integrating these diverse but interconnected strata, the article presents a comprehensive overview that not only charts the current state of soil adsorption research but also casts a vision for its future trajectory. It calls for an integrated approach combining scientific inquiry, technological innovation, and proactive policy to leverage soil adsorption's full potential to address environmental challenges and catalyze a transition towards a more sustainable and resilient future.


Asunto(s)
Cambio Climático , Gases de Efecto Invernadero , Suelo , Suelo/química , Adsorción , Gases de Efecto Invernadero/análisis , Microbiología del Suelo
3.
Environ Res ; 250: 118455, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38367838

RESUMEN

Cork oak and pine bark, two of the most prolific byproducts of the European forestry sector, were assessed as biosorbents for eliminating potentially toxic elements (PTEs) from water-based solutions. Our research suggests that bioadsorption stands out as a viable and environmental eco-friendly technology, presenting a sustainable method for the extraction of PTEs from polluted water sources. This study aimed to evaluate and compare the efficiency of cork powder and pine bark powder as biosorbents. Specifically, the adsorption of Fe, Cu, Zn, Cd, Ni, Pb and Sn at equilibrium were studied through batch experiments by varying PTEs concentrations, pH, and ionic strength. Results from adsorption-desorption experiments demonstrate the remarkable capacity of both materials to retain the studied PTE. Cork powder and pine bark powder exhibited the maximum retention capacity for Fe and Cd, while they performed poorly for Pb and Sn, respectively. Nevertheless, pine bark showed a slightly lower retention capacity than cork. Increasing the pH resulted in cork showing the highest adsorption for Zn and the lowest for Sn, while for pine bark, Cd was the most adsorbed, and Sn was the least adsorbed, respectively. The highest adsorption of both materials occurred at pH 3.5-5, depending on the PTE tested. The ionic strength also influenced the adsorption of the various PTEs for both materials, with decreased adsorption as ionic strength increased. The findings suggest that both materials could be effective for capturing and eliminating the examined PTEs, albeit with different efficiencies. Remarkably, pine bark demonstrated superior adsorption capabilities, which were observed to vary based on the specific element and the experimental conditions. These findings contribute to elucidating the bio-adsorption potential of these natural materials, specifically their suitability in mitigating PTEs pollution, and favoring the recycling and revalorization of byproducts that might otherwise be considered residue.


Asunto(s)
Pinus , Corteza de la Planta , Quercus , Contaminantes Químicos del Agua , Pinus/química , Quercus/química , Corteza de la Planta/química , Adsorción , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Polvos/química , Concentración de Iones de Hidrógeno , Metales Pesados/análisis , Metales Pesados/química
4.
Environ Res ; 252(Pt 3): 119048, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38697595

RESUMEN

Adsorption is considered an interesting option for removing antibiotics from the environment because of its simple design, low cost, and potential efficiency. In this work we evaluated three by-products (pine bark, oak ash, and mussel shell) as bio-adsorbents for the antibiotic azithromycin (AZM). Furthermore, they were added at doses of 48 t ha-1 to four different soils, then comparing AZM removal for soils with and without bio-adsorbents. Batch-type experiments were used, adding AZM concentrations between 2.5 and 600 µmol L-1 to the different bio-adsorbents and soil + bio-adsorbent mixtures. Regarding the bio-adsorbents, oak ash showed the best adsorption scores (9600 µmol kg-1, meaning >80% retention), followed by pine bark (8280 µmol kg-1, 69%) and mussel shell (between 3000 and 6000 µmol kg-1, 25-50% retention). Adsorption data were adjusted to different models (Linear, Freundlich and Langmuir), showing that just mussel shell presented an acceptable fitting to the Freundlich equation, while pine bark and oak ash did not present a good adjustment to any of the three models. Regarding desorption, the values were always below the detection limit, indicating a rather irreversible adsorption of AZM onto these three by-products. Furthermore, the results showed that when the lowest concentrations of AZM were added to the not amended soils they adsorbed 100% of the antibiotic, whereas when the highest concentrations of AZM were spread, the adsorption decreased to 55%. However, when any of the three bio-adsorbents was added to the soils, AZM adsorption reached 100% for all the antibiotic concentrations used. Desorption was null in all cases for both soils with and without bio-adsorbents. These results, corresponding to an investigation carried out for the first time for the antibiotic AZM, can be seen as relevant in the search of low-cost alternative treatments to face environmental pollution caused by this emerging contaminant.


Asunto(s)
Antibacterianos , Azitromicina , Bivalvos , Pinus , Corteza de la Planta , Quercus , Animales , Adsorción , Quercus/química , Corteza de la Planta/química , Antibacterianos/química , Antibacterianos/análisis , Azitromicina/química , Azitromicina/análisis , Pinus/química , Bivalvos/química , Contaminantes del Suelo/análisis , Contaminantes del Suelo/química , Exoesqueleto/química
5.
Environ Res ; 242: 117536, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38000635

RESUMEN

Clay-based adsorbents have applications in environmental remediation, particularly in the removal of emerging pollutants such as antibiotics. Taking that into account, we studied the adsorption/desorption process of tetracycline (TC) using three raw and acid- or base-activated clays (AM, HJ1 and HJ2) collected, respectively, from Aleg (Mazzouna), El Haria (Jebess, Maknessy), and Chouabine (Jebess, Maknessy) formations, located in the Maknessy-Mazzouna basin, center-western of Tunisia. The main physicochemical properties of the clays were determined using standard procedures, where the studied clays presented a basic pH (8.39-9.08) and a high electrical conductivity (446-495 dS m-1). Their organic matter contents were also high (14-20%), as well as the values of the effective cation exchange capacity (80.65-97.45 cmolckg-1). In the exchange complex, the predominant cations were Na and Ca, in the case of clays HJ1 and AM, while Mg and Ca were dominant in the HJ2 clay. The sorption experimental setup consisted in performing batch tests, using 0.5 g of each clay sample, adding the selected TC concentrations, then carrying out quantification of the antibiotic by means of HPL-UV equipment. Raw clays showed high adsorption potential for TC (close to 100%) and very low desorption (generally less than 5%). This high adsorption capacity was also present in the clays after being activated with acid or base, allowing them to adsorb TC in a rather irreversible way for a wide range of pH (3.3-10) and electrical conductivity values (3.03-495 dS m-1). Adsorption experimental data were studied as regards their fitting to the Freundlich, Langmuir, Linear and Sips isotherms, being the Sips model the most appropriate to explain the adsorption of TC in these clays (natural or activated). These results could help to improve the overall knowledge on the application of new low-cost methods, using clay based adsorbents, to reduce risks due to emerging pollutants (and specifically TC) affecting the environment.


Asunto(s)
Contaminantes Ambientales , Tetraciclina , Arcilla , Adsorción , Tetraciclina/química , Antibacterianos , Silicatos de Aluminio/química
6.
Environ Res ; 248: 118309, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38301763

RESUMEN

In recent years, the increasing detection of emerging pollutants (particularly antibiotics, such as sulfonamides) in agricultural soils and water bodies has raised growing concern about related environmental and health problems. In the current research, sulfadiazine (SDZ) adsorption was studied for three raw and chemically modified clays. The experiments were carried out for increasing doses of the antibiotic (0, 1, 5, 10, 20, and 40 µmol L-1) at ambient temperature and natural pH with a contact time of 24 h. The eventual fitting to Freundlich, Langmuir and Linear adsorption models, as well as residual concentrations of antibiotics after adsorption, was assessed. The results obtained showed that one of the clays (HJ1) adsorbed more SDZ (reaching 99.9 % when 40 µmol L-1 of SDZ were added) than the other clay materials, followed by the acid-activated AM clay (which reached 99.4 % for the same SDZ concentration added). The adsorption of SDZ followed a linear adsorption isotherm, suggesting that hydrophobic interactions, rather than cation exchange, played a significant role in SDZ retention. Concerning the adsorption data, the best adjustment corresponded to the Freundlich model. The highest Freundlich KF scores were obtained for the AM acid-treated and raw HJ1 clays (606.051 and 312.969 Ln µmol1-n kg-1, respectively). The Freundlich n parameter ranged between 0.047 and 1.506. Regarding desorption, the highest value corresponded to the AM clay, being generally <10 % for raw clays, <8 % for base-activated clays, and <6 % for acid-activated clays. Chemical modifications contributed to improve the adsorption capacity of the AM clay, especially when the highest concentrations of the antibiotic were added. The results of this research can be considered relevant as regard environmental and public health assessment since they estimate the feasibility of three Tunisian clays in SDZ removal from aqueous solutions.


Asunto(s)
Antibacterianos , Sulfadiazina , Arcilla , Adsorción , Túnez
7.
J Environ Manage ; 370: 122842, 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39405865

RESUMEN

Antibiotics in the environment are considered emerging pollutants, with special relevance and concern due to the proliferation of antibiotic-resistant bacteria and genes. Therefore, finding ways to remediate antibiotics-contaminated soil and water through the use of bio-adsorbents is imperative. In this research, we investigate three by-products (hemp waste, oak ash, and mussel shell) as potential low-cost bio-adsorbents for the antibiotics Ciprofloxacin (CIP), Clarithromycin (CLA), and Trimethoprim (TRI), using batch-type and stirred flow chamber experiments to study their retention and release. The results indicate that hemp waste has higher sorption capacity for CIP and TRI (20891.8 and 2481.6 µmol L-1, respectively), while oak ash yields the highest retention for CLA (3078.4 µmol L-1). In addition, it was shown that the pH value significantly influences the sorption of these pollutants onto hemp waste. Among the three antibiotics, CLA was the most mobile, given the release experiments (903.9-1758.9 µmol kg-1), while ciprofloxacin (440.3-542.4 µmol kg-1) and trimethoprim (639.4-1652.1 µmol kg-1) are released less. Overall, the results of this research (the first of this kind including these antibiotics and sorbents simultaneously) suggest that while the individual antibiotics retention on each of the three by-products may not be entirely satisfactory, its potential combination (among them and/or with other low-cost sorbents) could significantly contribute to addressing antibiotics environmental pollution, favouring recycling and promoting a circular economy, which is a matter of global relevance.

8.
J Environ Manage ; 368: 122158, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39151338

RESUMEN

Antibiotics in the environment represent a substantial pollution threat. Among these emerging pollutants, ionophore anticoccidials are of special concern due to their potential ecological impact, persistence in the environment, and role in promoting antimicrobial resistance. To investigate the adsorption/desorption of the ionophore antibiotic salinomycin (SAL) on/from raw and modified clay adsorbents, batch-type experiments were performed using 0.5 g of clay adsorbent mixed with 10 mL of increasing doses of SAL solutions for each sample, at room temperature, with a contact time of 24 h. All measurements were conducted in triplicate employing HPLC-UV equipment. Three different natural (raw) and modified clay samples were investigated, which were denominated as follows: AM (with 51% calcite), HJ1 (with 32% kaolinite), and HJ2 (with 32% microcline). The experiments were carried out using three pH ranges: between 3.33 and 4.49 for acid-activated clays, 8.39-9.08 for natural clays, and 9.99-10.18 for base-activated clays. The results indicated that, when low concentrations of the antibiotic were added (from 5 to 20 µmol L-1), more than 98% of SAL was strongly adsorbed by almost all clays, irrespective of the physicochemical and mineralogical composition of the clays or their pH values. When higher SAL concentrations were added (40 and 100 µmol L-1), the adsorption of the antibiotic showed pH-dependent ligand adsorption mechanisms: (i) highly decreased as the pH raised (for the raw and base-activated AM and HJ1 clays), while (ii) slightly decreased as the pH decreased (on the acid-activated clays). Among the adsorption equations tested (Freundlich, Langmuir, and Linear), the Freundlich model was identified as the most suitable for fitting the data corresponding to SAL adsorption onto the studied clays. SAL desorption from clays was consistently below 10% for all the clay samples, especially for the acid-activated clays, due to cation bridging adsorption mechanisms, when the lowest concentration of the antibiotic was added. Additionally, it should be stressed that the desorption values can increase with rising SAL concentrations, but they always remain below 20%. Overall, the clays here investigated (both raw and modified) provide a cost-effective and efficient alternative for the removal of the veterinary anticoccidial antibiotic SAL, with potential positive and practical implications in environmental remediation and antibiotic pollution management, particularly by serving as amendments for contaminated soils to enhance their adsorption capacities against SAL. Additionally, using these clays in water treatment processes could improve the efficiency of mitigating antibiotic contamination in aquatic systems.


Asunto(s)
Arcilla , Piranos , Piranos/química , Adsorción , Arcilla/química , Antibacterianos/química , Concentración de Iones de Hidrógeno , Policétidos Poliéteres
9.
J Environ Sci (China) ; 137: 237-244, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37980011

RESUMEN

Arsenic is a ubiquitous environmental pollutant. Microbe-mediated arsenic bio-transformations significantly influence arsenic mobility and toxicity. Arsenic transformations by soil and aquatic organisms have been well documented, while little is known regarding effects due to endophytic bacteria. An endophyte Pseudomonas putida ARS1 was isolated from rice grown in arsenic contaminated soil. P. putida ARS1 shows high tolerance to arsenite (As(III)) and arsenate (As(V)), and exhibits efficient As(V) reduction and As(III) efflux activities. When exposed to 0.6 mg/L As(V), As(V) in the medium was completely converted to As(III) by P. putida ARS1 within 4 hr. Genome sequencing showed that P. putida ARS1 has two chromosomal arsenic resistance gene clusters (arsRCBH) that contribute to efficient As(V) reduction and As(III) efflux, and result in high resistance to arsenicals. Wolffia globosa is a strong arsenic accumulator with high potential for arsenic phytoremediation, which takes up As(III) more efficiently than As(V). Co-culture of P. putida ARS1 and W. globosa enhanced arsenic accumulation in W. globosa by 69%, and resulted in 91% removal of arsenic (at initial concentration of 0.6 mg/L As(V)) from water within 3 days. This study provides a promising strategy for in situ arsenic phytoremediation through the cooperation of plant and endophytic bacterium.


Asunto(s)
Arsénico , Pseudomonas putida , Arseniatos , Arsénico/análisis , Pseudomonas putida/genética , Biodegradación Ambiental , Suelo
10.
Environ Res ; 216(Pt 2): 114619, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36272587

RESUMEN

As indicated in the presentation of this Virtual Special Issue (VSI), as well as in its Call for Papers, the occurrence, fate, dynamics, effects and overall repercussions of the enormous variety of microorganisms present in soils and other environmental compartments on Earth, is of huge importance, and particularly it is fundamental to the conditioning of life and even to the time-course evolution of non-living constituents of our planet. With that in mind, shedding further light on some selected fields within this broad spectrum of research themes could be seen as an ambitious objective, but achievable when limited to progressing just a few steps forward, even if the long-term aim could be to reach a final and complete characterization and solution of all issues related to these broad lines of research and fields of knowledge. In view of this, the Editors of the Special Issue made a specific Call to receive contributions to increase the knowledge on the matter, which could stimulate future additional research. With a total number of 45 manuscripts received and 16 high-quality contributions published, we think this main objective was reached with the resulting papers now available.


Asunto(s)
Suelo
11.
Environ Res ; 235: 116640, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37453505

RESUMEN

Multi-metals/metalloids contaminated soil has received extensive attention because of their adverse health effects on the safety of the food chain and environmental health. In order to provide additional insight and aid in mitigating environmental risks, a pot experiment was directed to assess the impacts of biochars derived from rice straw (BC), and modified biochars i-e., hydroxyapatite modified (HAP-BC) and oxidized biochars (Ox-BC) on the redistribution, phytoavailability and bioavailability of phosphorus (P), lead (Pb), and Arsenic (As), as well as their effects on the growth of maize (Zea mays L.) in a Lead (Pb)/Arsenic (As) contaminated soil. The results showed that HAP-BC increased the soil total and available P, compared with raw biochar and control treatment. HAP-BC improved soil properties by elevating soil pH and electric conductivity (EC). The Hedley fractionation scheme revealed that HAP-BC enhanced the labile and moderately labile P species in soil. Both HAP-BC and Ox-BC assisted in the P build-up in plant roots and shoots. The BCR (European Community Bureau of Reference) sequential extraction data for Pb and As in soil showed the pronounced effects of HAP-BC towards the transformation of labile Pb and As forms into more stable species. Compared with control, HAP-BC significantly (P ≤ 0.05) decreased the DTPA-extractable Pb and As by 55% and 28%, respectively, subsequently, resulting in reduced Pb and As plant uptakes. HAP-BC application increased the plant fresh and dry root/shoot biomass by 239%, 72%, 222% and 190%, respectively. The Pb/As immobilization by HAP-BC was mainly driven by precipitation, ion exchange and surface complexation mechanisms in soil. In general, HAP-BC application indicated a great capability to be employed as an effective alternative soil amendment for improving P acquisition in soil, simultaneously immobilizing Pb and As in the soil-plant systems.


Asunto(s)
Arsénico , Contaminantes del Suelo , Plomo , Fósforo , Durapatita , Contaminantes del Suelo/análisis , Cadmio/análisis , Suelo/química , Zea mays
12.
Environ Res ; 216(Pt 3): 114692, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36374794

RESUMEN

In the Call for Papers corresponding to this Virtual Special Issue (VSI), the Editors indicated that, as is well known, emerging pollutants include a variety of substances that pose remarkable risks for the environment and public health. In fact, emerging pollutants are considered a matter of concern deserving increasing efforts to elucidate their occurrence, fate, repercussions, and alternatives to their removal from the various environmental compartments where they can be found after spreading as contaminants. Also, the Editors commented that, among the various alternatives that can be considered for achieving their successful removal, some of them are based on the use of sorbent materials, and, specifically, bioadsorbents, which are attractive due to the efficacy and low cost associated with some of them. Another alternative is related to the utilization of nanoparticle-based systems, which may be considered a promising field of research in this way. In both cases, obtaining new research results, as well as designing and programming new ways of going steps ahead in the investigation of both kinds of materials, would be key objectives. According to the previous considerations, the Editors of the VSI invited researchers having new data concerning these aspects to submit manuscripts with experimental results, discussion, reflections and prospective related to their work. With the Special Issue closed, the number of submissions received was 83, with 40 high-quality works being accepted for publication, increasing the overall knowledge on this topic by providing results that we are sure will be of value for the scientific community and the society.


Asunto(s)
Contaminantes Ambientales , Nanopartículas , Estudios Prospectivos
13.
Environ Res ; 216(Pt 2): 114631, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36272589

RESUMEN

Even reaching the end of the year 2022, there is still a controversy on the origin of the SARS-CoV-2 virus. This Virtual Special Issue (VSI), focused on the "Scientific evidence on the origin of SARS-CoV-2", was launched some months ago with the aim of stimulating the submission of new high quality scientific research papers on the matter, to shed light on it. As indicated in the call for papers, the Editors involved in the VSI were aware of the difficulties of presenting concluding facts on that issue, however, bearing in mind that some teams of researchers had started investigations regarding this subject, a VSI like this (searching for stimulating the scientific controversy while requiring scientific evidence), could help to elucidate complicated aspects, going a step ahead in this way. The Editors made a call encouraging interested teams of researchers having solid results to submit high quality manuscripts dealing with this crucial theme. We thought -and we still think-that it is of maximum interest for the scientific community, as well as for the whole society, now and probably for the future. The VSI have received 50 submissions, which could be considered a limited number highlighting the difficulties of elaborating new high-quality manuscripts providing solid evidence on the matter. After a careful peer-review, those manuscripts considered to reach the highest scientific value were accepted for publication. The Editors think that the set of papers included in this VSI constitute interesting and high-quality contributions, providing further scientific knowledge on this issue. In this editorial piece, the Editors make some comments on the papers published, including some additional reflections.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos
14.
Environ Res ; 224: 115393, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36740153

RESUMEN

Saline and alkaline soils are a challenge for sustainable crop production. The use of organic and inorganic amendments is a common practice to increase the fertility of salt-affected soils that can trigger faster carbon (C) and nitrogen (N) cycling. We examined the effects of gypsum (Gyps), farm manure (Manure) and rice straw (Straw) on enzyme activities, organic matter mineralization and CO2 emissions in two salt-affected soils [Solonchak (saline); pH: 8, electrical conductivity (EC): 6.5, sodium adsorption ratio (SAR): 2.5, and Solonetz (alkaline sodic); pH: 8.9, EC: 1.6, SAR: 17]. Gypsum addition decreased soil pH up to 0.62 and 0.30 units, SAR 1.2 and 5.2 units, and EC 2.9 and 1.4 units in Solonchak and Solonetz, respectively. Dissolved organic C, microbial biomass C, dissolved organic N, mineral N (NO3- and NH4+), enzyme activities (urease, invertase, catalase, phosphatase, phenol-oxidase), alkali extractable phenols, and available phosphorous increased with the application of all amendments in both soils. Solonetz released more CO2 than Solonchak, whereas maximum CO2 emissions were common after manure application (3140 mg kg-1 in Solonchak, and 3890 mg kg-1 in Solonetz). We conclude that high SAR and low EC increase CO2 emissions through accelerated C and N cycling and manure decomposition in Solonetz soils.


Asunto(s)
Oryza , Suelo , Suelo/química , Sulfato de Calcio , Estiércol , Dióxido de Carbono , Cloruro de Sodio , Carbono
15.
Environ Res ; 227: 115737, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36972776

RESUMEN

As indicated in the call for papers posted for this Special Issue, Soil Science deals with various environmental compartments, so it is closely related to Environmental Research. It is clear that synergisms and collaboration are keys to reach the most fruitful relations among different sciences and scientists, and especially in all that focused on the Environment. In this line, considering Soil Science, Environmental Research, and the multiple and complex eventual combinations involving them, could give new highly interesting works focused on any of the specific subjects covered, as well as on relations among these sciences. The main objective should be going further in positive interactions that could help in protecting the Environment, proposing solutions to face hazards that are drastically threatening our planet. In view of that, the Editors of this Special Issue invited researchers to submit high-quality manuscripts including new experimental data, as well as scientifically founded discussion and reflections on the matter. The VSI has received 171 submissions, with 27% of them being accepted after peer-review. The Editors think that the papers included in this VSI have high scientific value and provide scientific knowledge on the field. In this editorial piece the Editors include comments and reflections on the papers published in the SI.

16.
Environ Res ; 233: 116520, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37390951

RESUMEN

Antibiotics pollution is a growing environmental issue, as high amounts of these compounds are found in soil, water and sediments. This work studies the adsorption/desorption of the macrolide antibiotic clarithromycin (CLA) for 17 agricultural soils with different edaphic characteristics. The research was carried out using batch-type experiments, with an additional assessment of the specific influence of pH for 6 of the soils. The results show that CLA adsorption reaches between 26 and 95%. In addition, the fit of the experimental data to adsorption models provided values between 1.9 and 19.7 Ln µmol1-n kg-1 for the KF, Freundlich affinity coefficient, and between 2.5 and 10.5 L kg-1 for Kd, distribution constant of Linear model. Regarding the linearity index, n, it varied between 0.56 and 1.34. Desorption showed lower scores than adsorption, with an average of 20%, and with values of 3.1 and 93.0 Ln µmol1-n kg-1 for KF(des) and 4.4 and 95.0 L kg-1 for Kd(des). The edaphic characteristics with the highest influence on adsorption were the silt fraction content and the exchangeable Ca content, while in the case of desorption, they were the total nitrogen, organic carbon, and exchangeable Ca and Mg contents. Regarding the pH, within the range studied (between 3 and 10), its value did not decisively affect the adsorption/desorption process. Overall, the set of these results could be of help to program appropriate measures leading to the retention/elimination of this antibiotic when it reaches the environment as a pollutant.


Asunto(s)
Contaminantes Ambientales , Contaminantes del Suelo , Suelo/química , Claritromicina , Adsorción , Contaminantes del Suelo/análisis , Antibacterianos , Concentración de Iones de Hidrógeno
17.
Environ Res ; 216(Pt 3): 114632, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36347397

RESUMEN

The ubiquitous distribution of plastics and microplastics (MPs) and their resistance to biological and chemical decay is adversely affecting the environment. MPs are considered as emerging contaminants of concern in all the compartments, including terrestrial, aquatic, and atmospheric environments. Efficient monitoring, detection, and removal technologies require reliable methods for a qualitative and quantitative analysis of MPs, considering point-of-need testing a new evolution and a great trend at the market level. In the last years, portable spectrometers have gained popularity thanks to the excellent capability for fast and on-site measurements. Ultra-compact spectrometers coupled with chemometric tools have shown great potential in the polymer analysis, showing promising applications in the environmental field. Nevertheless, systematic studies are still required, in particular for the identification and quantification of fragments at the microscale. This study demonstrates the proof-of-concept of a Miniaturized Near-Infrared (MicroNIR) spectrometer coupled with chemometrics for the quantitative analysis of ternary mixtures of MPs. Polymers were chosen representing the three most common polymers found in the environment (polypropylene, polyethene, and polystyrene). Daily used plastic items were mechanically fragmented at laboratory scale mimicking the environmental breakdown process and creating "true-to-life" MPs for the assessment of analytical methods for MPs identification and quantification. The chemical nature of samples before and after fragmentation was checked by Raman spectroscopy. Sixty three different mixtures were prepared: 42 for the training set and 21 for the test set. Blends were investigated by the MicroNIR spectrometer, and the dataset was analysed using Principal Component Analysis (PCA) and Partial Least Square (PLS) Regression. PCA score plot showed a samples distribution consistent with their composition. Quantitative analysis by PLS showed the great capability prediction of the polymer's percentage in the mixtures, with R2 greater than 0.9 for the three analytes and a low and comparable Root-Mean Square Error. In addition, the developed model was challenged with environmental weathered materials to validate the system with real plastic pollution. The findings show the feasibility of employing a portable tool in conjunction with chemometrics to quantify the most abundant forms of MPs found in the environment.


Asunto(s)
Microplásticos , Plásticos , Plásticos/análisis , Quimiometría , Espectroscopía Infrarroja Corta/métodos , Análisis de los Mínimos Cuadrados
18.
Environ Res ; 239(Pt 2): 117391, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37852463

RESUMEN

Environmental discharge of wastewater represents a source of chemical and biological pollutants. This study firstly evaluates the microbiological and physicochemical quality of treated wastewaters collected from two wastewater treatment plants (WWTPs) located in two different Tunisian cities namely Sidi Bouzid (SB) and Gafsa (G). Then, the capacity of three raw and acid/base-activated local clays to enhance the quality of wastewaters was assessed. The results indicate that the quantities of enteric bacteria (oscillating from 1.381 × 103 to 1.4 × 108 CFU/100 mL), fungi (between 1.331 × 103 and 1.781 × 104 CFU/100 mL), as well as SARS-CoV-2 (between 4.25 × 103 and 5.05 × 105 CFU/100 mL) and Hepatitis A virus RNA (form 4.25 × 103 to 7.4 × 104 CFU/100 mL) detected in effluent wastewaters were not in compliance with the Tunisian standards for both studied WWTPs. Likewise for other indicators such as electrical conductivity (ranging 4.9-5.4 mS/cm), suspended matter (145-160 g l-1), chemical oxygen demand (123-160 mg l-1), biological oxygen demand 5 (172-195 mg l-1), chloride, Total Kjeldahl nitrogen (TKN) and phosphorus contents (710, 58-66 and 9.47-10.83 mg l-1 respectively), the registered values do not agree with the set standards established for wastewater treatment. On the other hand, the pH values fitted (oscillating from 6.86 (at G) to 7.24 (at SB) with the Tunisian standards for both WWTPs. After treatment, wastewaters showed better values for the microbiological parameters, especially for the clays designed as AM and HJ1, which eliminated 100% of viruses. In addition, when acid-activated AM clays were applied, a marked improvement in the quality of physicochemical parameters was obtained, especially for suspended matter (2 and 4 g l-1 for SB and G, respectively), TKN (5.2 (SB) and 6.40 (G) mg/l), phosphorus (1.01 (SB) and 0.81 (G) mg/l). Our results open perspectives for the possibility of efficiently using these specific clays in the enhancement of the quality of treated wastewaters.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Arcilla , Túnez , Contaminantes Químicos del Agua/análisis , Fósforo , Eliminación de Residuos Líquidos
19.
Environ Res ; 233: 116360, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37295584

RESUMEN

Antibiotic consumption at high levels in both human and veterinary populations pose a risk to their eventual entry into the food chain and/or water bodies, which will adversely affect the health of living organisms. In this work, three materials from forestry and agro-food industries (pine bark, oak ash and mussel shell) were investigated as regards their potential use as bio-adsorbents in the retention of the antibiotics amoxicillin (AMX), ciprofloxacin (CIP) and trimethoprim (TMP). Batch adsorption/desorption tests were conducted, adding increasing concentrations of the pharmaceuticals individually (from 25 to 600 µmol L-1), reaching maximum adsorption capacities of ≈ 12000 µmol kg-1 for the three antibiotics, with removal percentages of ≈ 100% for CIP, 98-99% adsorption for TMP onto pine bark, and 98-100% adsorption for AMX onto oak ash. The presence of high calcium contents and alkaline conditions in the ash favored the formation of cationic bridges with AMX, whereas the predominance of hydrogen bonds between pine bark and TMP and CIP functional groups explain the strong affinity and retention of these antibiotics. The Freundlich's model provided the best prediction for AMX adsorption onto oak ash and mussel shell (heterogeneous adsorption), whereas the Langmuir's model described well AMX adsorption onto pine bark, as well as CIP adsorption onto oak ash (homogeneous and monolayer adsorption), while all three models provided satisfactory results for TMP. In the present study, the results obtained were crucial in terms of valorization of these adsorbents and their subsequent use to improve the retention of antibiotics of emerging concern in soils, thereby preventing contamination of waters and preserving environment quality.


Asunto(s)
Antibacterianos , Contaminantes Químicos del Agua , Humanos , Agricultura Forestal , Adsorción , Amoxicilina , Ciprofloxacina
20.
Environ Res ; : 117535, 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-39492492

RESUMEN

The presence of pharmaceuticals in agricultural soils, like amoxicillin (AMX) and ciprofloxacin (CIP), poses a significant environmental challenge with potential implications for ecosystems and human well-being. This study explores the simultaneous adsorption of AMX and CIP on crop soils and bio-adsorbents, focusing on competitive adsorption dynamics. Tests were conducted with varying pharmaceutical concentrations in six soils and three bio-adsorbents. CIP consistently exhibited higher adsorption than AMX, particularly at higher concentrations. In the binary system, AMX's adsorption exceeded the individual system at higher concentrations, implying a synergistic effect. Bio-adsorbents, especially pine bark and oak ash, displayed superior adsorption capacities compared to soils. Some soils exhibited enhanced adsorption and retention of both antibiotics simultaneously, aligning with the cooperative adsorption model. Freundlich's adsorption model described the competitive adsorption systems well. These findings have implications for addressing antibiotic contamination in agricultural ecosystems, offering insights into complex interactions in soil environments amid rising pharmaceutical concerns.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA