RESUMEN
Wnt signaling plays critical roles in development of various organs and pathogenesis of many diseases, and augmented Wnt signaling has recently been implicated in mammalian aging and aging-related phenotypes. We here report that complement C1q activates canonical Wnt signaling and promotes aging-associated decline in tissue regeneration. Serum C1q concentration is increased with aging, and Wnt signaling activity is augmented during aging in the serum and in multiple tissues of wild-type mice, but not in those of C1qa-deficient mice. C1q activates canonical Wnt signaling by binding to Frizzled receptors and subsequently inducing C1s-dependent cleavage of the ectodomain of Wnt coreceptor low-density lipoprotein receptor-related protein 6. Skeletal muscle regeneration in young mice is inhibited by exogenous C1q treatment, whereas aging-associated impairment of muscle regeneration is restored by C1s inhibition or C1qa gene disruption. Our findings therefore suggest the unexpected role of complement C1q in Wnt signal transduction and modulation of mammalian aging.
Asunto(s)
Envejecimiento/metabolismo , Complemento C1q/metabolismo , Vía de Señalización Wnt , Animales , Complemento C1s/metabolismo , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Ratones , Suero/metabolismoRESUMEN
BACKGROUND: Adipose tissue is one of the sources of mesenchymal stem cells, which have the potential to differentiate into various types of cells, including myocytes. Whether brown adipose tissue (BAT)-derived cells might differentiate into the cardiac pacemaking-conducting cells, and have the potential to regenerate the cardiac conduction system (CCS), is investigated in this study. METHODSâANDâRESULTS: BAT was isolated from the interscapular area of mice and enzymatically digested before culture. Round or fusiform cells showed spontaneous beating at 4-7 days after culturing of BAT-derived cells. Reverse transcriptase-polymerase chain reaction analysis and immunocytochemical analysis revealed that BAT-derived cells expressed several cardiomyocytes, the CCS and pacemaker (PM) cell marker genes and proteins. Patch-clamp techniques revealed that spontaneous electrical activity and the shape of the action potential showed properties of cardiac PM cells. Next, a complete atrioventricular (AV) block was created in mice and green fluorescent protein-positive (GFP (+)) BAT-derived cells were injected intramyocardially around the AV node. At 1 week after transplantation, 50% of BAT-derived cells injected mice showed a sinus rhythm or a 2:1 AV block. Immunohistochemical analysis revealed that injected GFP (+) cells were engrafted and some GFP (+) cells co-expressed several cardiac PM cell marker proteins. CONCLUSIONS: BAT-derived cells differentiate into the CCS and PM-like cells in vitro and in vivo, and may become a useful cell source for arrhythmia therapy.
Asunto(s)
Tejido Adiposo Pardo/metabolismo , Sistema de Conducción Cardíaco/metabolismo , Trasplante de Células Madre , Células Madre/metabolismo , Aloinjertos , Animales , Masculino , RatonesRESUMEN
Insulin-like growth-factor-binding proteins (IGFBPs) bind to and modulate the actions of insulin-like growth factors (IGFs). Although some of the actions of IGFBPs have been reported to be independent of IGFs, the precise mechanisms of IGF-independent actions of IGFBPs are largely unknown. Here we report a previously unknown function for IGFBP-4 as a cardiogenic growth factor. IGFBP-4 enhanced cardiomyocyte differentiation in vitro, and knockdown of Igfbp4 attenuated cardiomyogenesis both in vitro and in vivo. The cardiogenic effect of IGFBP-4 was independent of its IGF-binding activity but was mediated by the inhibitory effect on canonical Wnt signalling. IGFBP-4 physically interacted with a Wnt receptor, Frizzled 8 (Frz8), and a Wnt co-receptor, low-density lipoprotein receptor-related protein 6 (LRP6), and inhibited the binding of Wnt3A to Frz8 and LRP6. Although IGF-independent, the cardiogenic effect of IGFBP-4 was attenuated by IGFs through IGFBP-4 sequestration. IGFBP-4 is therefore an inhibitor of the canonical Wnt signalling required for cardiogenesis and provides a molecular link between IGF signalling and Wnt signalling.
Asunto(s)
Corazón/embriología , Proteína 4 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Transducción de Señal , Animales , Diferenciación Celular , Línea Celular Tumoral , Embrión no Mamífero/embriología , Proteínas Relacionadas con Receptor de LDL/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad , Ratones , Receptores Acoplados a Proteínas G/metabolismo , Somatomedinas/metabolismo , Proteínas Wnt/antagonistas & inhibidores , Proteínas Wnt/metabolismo , Proteína Wnt3 , Proteína Wnt3A , Proteínas de Xenopus , Xenopus laevis , beta Catenina/metabolismoRESUMEN
Many studies have explored cardiac progenitor cell (CPC) therapy for heart disease. However, optimal scaffolds are needed to ensure the engraftment of transplanted cells. We produced a three-dimensional hydrogel scaffold (CPC-PRGmx) in which high-viability CPCs were cultured for up to 8 weeks. CPC-PRGmx contained an RGD peptide-conjugated self-assembling peptide with insulin-like growth factor-1 (IGF-1). Immediately after creating myocardial infarction (MI), we transplanted CPC-PRGmx into the pericardial space on to the surface of the MI area. Four weeks after transplantation, red fluorescent protein-expressing CPCs and in situ hybridization analysis in sex-mismatched transplantations revealed the engraftment of CPCs in the transplanted scaffold (which was cellularized with host cells). The average scar area of the CPC-PRGmx-treated group was significantly smaller than that of the non-treated group (CPC-PRGmx-treated group = 46 ± 5.1%, non-treated MI group = 59 ± 4.5%; p < 0.05). Echocardiography showed that the transplantation of CPC-PRGmx improved cardiac function and attenuated cardiac remodeling after MI. The transplantation of CPCs-PRGmx promoted angiogenesis and inhibited apoptosis, compared to the untreated MI group. CPCs-PRGmx secreted more vascular endothelial growth factor than CPCs cultured on two-dimensional dishes. Genetic fate mapping revealed that CPC-PRGmx-treated mice had more regenerated cardiomyocytes than non-treated mice in the MI area (CPC-PRGmx-treated group = 0.98 ± 0.25%, non-treated MI group = 0.25 ± 0.04%; p < 0.05). Our findings reveal the therapeutic potential of epicardial-transplanted CPC-PRGmx. Its beneficial effects may be mediated by sustainable cell viability, paracrine function, and the enhancement of de novo cardiomyogenesis.
Asunto(s)
Infarto del Miocardio , Factor A de Crecimiento Endotelial Vascular , Ratones , Animales , Factor A de Crecimiento Endotelial Vascular/metabolismo , Células Cultivadas , Diferenciación Celular , Infarto del Miocardio/terapia , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Péptidos/metabolismo , Células Madre/metabolismo , Pericardio/metabolismoRESUMEN
Despite significant advances in pharmacological and clinical treatment, heart failure (HF) remains a leading cause of morbidity and mortality worldwide. Many new therapeutic strategies, including cell transplantation, gene delivery, and cytokines or other small molecules, have been explored to treat HF. Recent advancement of our understanding of the molecules that regulate cardiac function uncover many of the therapeutic key molecules to treat HF. Furthermore, a theory of paracrine mechanism, which underlies the beneficial effects of cell therapy, leads us to search novel target molecules for genetic or pharmacological strategy. Gene therapy means delivery of genetic materials into cells to achieve therapeutic effects. Recently, gene transfer technology in the cardiovascular system has been improved and several therapeutic target genes have been started to examine in clinical research, and some of the promising results have been emerged. Among the various bioactive reagents, cytokines such as granulocyte colony-stimulating factor and erythropoietin have been well examined, and a number of clinical trials for acute myocardial infarction and chronic HF have been conducted. Although further research is needed in both preclinical and clinical areas in terms of molecular mechanisms, safety, and efficiency, both gene and cytokine therapy have a great possibility to open the new era of the treatment of HF.
Asunto(s)
Cardiotónicos/uso terapéutico , Citocinas/uso terapéutico , Terapia Genética/métodos , Insuficiencia Cardíaca/terapia , Animales , Acoplamiento Excitación-Contracción/genética , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Humanos , Contracción Miocárdica/genética , Miocardio/patología , Recuperación de la Función , Regeneración , Resultado del TratamientoRESUMEN
Side population (SP) cells, which can be identified by their ability to exclude Hoechst 33342 dye, are one of the candidates for somatic stem cells. Although bone marrow SP cells are known to be long-term repopulating hematopoietic stem cells, there is little information about the characteristics of cardiac SP cells (CSPs). When cultured CSPs from neonatal rat hearts were treated with oxytocin or trichostatin A, some CSPs expressed cardiac-specific genes and proteins and showed spontaneous beating. When green fluorescent protein-positive CSPs were intravenously infused into adult rats, many more ( approximately 12-fold) CSPs were migrated and homed in injured heart than in normal heart. CSPs in injured heart differentiated into cardiomyocytes, endothelial cells, or smooth muscle cells (4.4%, 6.7%, and 29% of total CSP-derived cells, respectively). These results suggest that CSPs are intrinsic cardiac stem cells and involved in the regeneration of diseased hearts.
Asunto(s)
Movimiento Celular/fisiología , Miocardio/citología , Miocitos Cardíacos/citología , Células Madre/citología , Adipocitos/citología , Animales , Animales Recién Nacidos , Diferenciación Celular/fisiología , Células Cultivadas , Células Endoteliales/citología , Expresión Génica/efectos de los fármacos , Expresión Génica/fisiología , Proteínas Fluorescentes Verdes/genética , Ácidos Hidroxámicos/farmacología , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Miocitos del Músculo Liso/citología , Osteocitos/citología , Oxitocina/farmacología , Inhibidores de la Síntesis de la Proteína/farmacología , Ratas , Ratas Wistar , Células Madre/efectos de los fármacosRESUMEN
RATIONALE: The number of patients with coronary heart disease, including myocardial infarction, is increasing and novel therapeutic strategy is awaited. Tumor suppressor protein p53 accumulates in the myocardium after myocardial infarction, causes apoptosis of cardiomyocytes, and plays an important role in the progression into heart failure. OBJECTIVES: We investigated the molecular mechanisms of p53 accumulation in the heart after myocardial infarction and tested whether anti-p53 approach would be effective against myocardial infarction. METHODS AND RESULTS: Through expression screening, we found that CHIP (carboxyl terminus of Hsp70-interacting protein) is an endogenous p53 antagonist in the heart. CHIP suppressed p53 level by ubiquitinating and inducing proteasomal degradation. CHIP transcription was downregulated after hypoxic stress and restoration of CHIP protein level prevented p53 accumulation after hypoxic stress. CHIP overexpression in vivo prevented p53 accumulation and cardiomyocyte apoptosis after myocardial infarction. Promotion of CHIP function by heat shock protein (Hsp)90 inhibitor, 17-allylamino-17-demethoxy geldanamycin (17-AAG), also prevented p53 accumulation and cardiomyocyte apoptosis both in vitro and in vivo. CHIP-mediated p53 degradation was at least one of the cardioprotective effects of 17-AAG. CONCLUSIONS: We found that downregulation of CHIP level by hypoxia was responsible for p53 accumulation in the heart after myocardial infarction. Decreasing the amount of p53 prevented myocardial apoptosis and ameliorated ventricular remodeling after myocardial infarction. We conclude that anti-p53 approach would be effective to treat myocardial infarction.
Asunto(s)
Infarto del Miocardio/terapia , Miocitos Cardíacos/enzimología , Complejo de la Endopetidasa Proteasomal/metabolismo , Procesamiento Proteico-Postraduccional , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Animales Recién Nacidos , Apoptosis , Secuencia de Bases , Benzoquinonas/farmacología , Células COS , Hipoxia de la Célula , Chlorocebus aethiops , Modelos Animales de Enfermedad , Terapia Genética/métodos , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Lactamas Macrocíclicas/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Mutación , Infarto del Miocardio/enzimología , Infarto del Miocardio/genética , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Regiones Promotoras Genéticas , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Procesamiento Proteico-Postraduccional/genética , Interferencia de ARN , Ratas , Ratas Wistar , Activación Transcripcional , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Remodelación VentricularRESUMEN
Granulocyte colony-stimulating factor (G-CSF) was reported to induce myocardial regeneration by promoting mobilization of bone marrow stem cells to the injured heart after myocardial infarction, but the precise mechanisms of the beneficial effects of G-CSF are not fully understood. Here we show that G-CSF acts directly on cardiomyocytes and promotes their survival after myocardial infarction. G-CSF receptor was expressed on cardiomyocytes and G-CSF activated the Jak/Stat pathway in cardiomyocytes. The G-CSF treatment did not affect initial infarct size at 3 d but improved cardiac function as early as 1 week after myocardial infarction. Moreover, the beneficial effects of G-CSF on cardiac function were reduced by delayed start of the treatment. G-CSF induced antiapoptotic proteins and inhibited apoptotic death of cardiomyocytes in the infarcted hearts. G-CSF also reduced apoptosis of endothelial cells and increased vascularization in the infarcted hearts, further protecting against ischemic injury. All these effects of G-CSF on infarcted hearts were abolished by overexpression of a dominant-negative mutant Stat3 protein in cardiomyocytes. These results suggest that G-CSF promotes survival of cardiac myocytes and prevents left ventricular remodeling after myocardial infarction through the functional communication between cardiomyocytes and noncardiomyocytes.
Asunto(s)
Factor Estimulante de Colonias de Granulocitos/farmacología , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/fisiología , Remodelación Ventricular/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Proteínas de Unión al ADN/biosíntesis , Activación Enzimática , Factor Estimulante de Colonias de Granulocitos/administración & dosificación , Factor Estimulante de Colonias de Granulocitos/metabolismo , Factor Estimulante de Colonias de Granulocitos/uso terapéutico , Movilización de Célula Madre Hematopoyética , Janus Quinasa 2 , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Proteínas Tirosina Quinasas/biosíntesis , Proteínas Proto-Oncogénicas/biosíntesis , Ratas , Receptores de Factor Estimulante de Colonias de Granulocito/biosíntesis , Factor de Transcripción STAT3 , Transducción de Señal , Factores de Tiempo , Transactivadores/biosíntesis , Función Ventricular/efectos de los fármacosAsunto(s)
Hipertrofia Ventricular Derecha/fisiopatología , Contracción Miocárdica/fisiología , Miocitos Cardíacos/fisiología , Presión Ventricular/fisiología , Remodelación Ventricular/fisiología , Animales , Animales Recién Nacidos , Proliferación Celular , Modelos Animales de Enfermedad , Distribución Aleatoria , Ratas , Sensibilidad y EspecificidadRESUMEN
The angiotensin II type 1 (AT1) receptor has a crucial role in load-induced cardiac hypertrophy. Here we show that the AT1 receptor can be activated by mechanical stress through an angiotensin-II-independent mechanism. Without the involvement of angiotensin II, mechanical stress not only activates extracellular-signal-regulated kinases and increases phosphoinositide production in vitro, but also induces cardiac hypertrophy in vivo. Mechanical stretch induces association of the AT1 receptor with Janus kinase 2, and translocation of G proteins into the cytosol. All of these events are inhibited by the AT1 receptor blocker candesartan. Thus, mechanical stress activates AT1 receptor independently of angiotensin II, and this activation can be inhibited by an inverse agonist of the AT1 receptor.
Asunto(s)
Angiotensina II/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas , Receptor de Angiotensina Tipo 1/metabolismo , Regulación hacia Arriba/fisiología , Bloqueadores del Receptor Tipo 1 de Angiotensina II , Animales , Bencimidazoles/farmacología , Compuestos de Bifenilo , Células COS , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatología , Citosol/metabolismo , Proteínas de Unión al GTP/metabolismo , Humanos , Janus Quinasa 2 , Ratones , Ratones Noqueados , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Contracción Muscular/fisiología , Fosfatidilinositoles/metabolismo , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología , Proteínas Tirosina Quinasas/metabolismo , Ratas , Ratas Wistar , Estrés Mecánico , Tetrazoles/farmacologíaRESUMEN
Implantation of various types of cells into the heart has been reported to be effective for heart failure, however, it is unknown what kinds of cells are most suitable for myocardial repair. To examine which types of cells are most effective, we injected cell-Puramatrix™ (PM) complex into the border area and overlaid the cell-PM patch on the myocardial infarction (MI) area. We compared cardiac morphology and function at 2 weeks after transplantation. Among clonal stem cell antigen-1 positive cardiac progenitors with PM (cSca-1/PM), bone marrow mononuclear cells with PM (BM/PM), skeletal myoblasts with PM (SM/PM), adipose tissue-derived mesenchymal cells with PM (AMC/PM), PM alone (PM), and non-treated MI group (MI), the infarct area of cSca-1/PM was smaller than that of BM/PM, SM/PM, PM and MI. cSca-1/PM and AMC/PM attenuated ventricular enlargement and restored cardiac function in comparison with MI. Capillary density in the infarct area of cSca-1/PM was higher than that of other five groups. The percentage of TUNEL positive cardiomyocytes in the infarct area of cSca-1/PM was lower than that of MI and PM. cSca-1 secreted VEGF and some of them differentiated into cardiomyocytes and vascular smooth muscle cells. These results suggest that transplantation of cSca-1/PM most effectively prevents cardiac remodeling and dysfunction through angiogenesis, inhibition of apoptosis and myocardial regeneration.
Asunto(s)
Pruebas de Función Cardíaca/efectos de los fármacos , Infarto del Miocardio/fisiopatología , Infarto del Miocardio/terapia , Miocardio/citología , Péptidos/farmacología , Trasplante de Células Madre , Células Madre/citología , Actinas/metabolismo , Inductores de la Angiogénesis/metabolismo , Animales , Antígenos Ly/metabolismo , Apoptosis/efectos de los fármacos , Capilares/efectos de los fármacos , Capilares/metabolismo , Capilares/patología , Línea Celular , Transdiferenciación Celular/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Ratones , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Células Madre/efectos de los fármacos , Sístole/efectos de los fármacos , Ultrasonografía , Remodelación Ventricular/efectos de los fármacos , Factor de von Willebrand/metabolismoRESUMEN
The cardiac homeobox transcription factor CSX/NKX2-5 plays an important role in vertebrate heart development. Using a yeast two-hybrid screening, we identified a novel LIM domain-containing protein, named CSX-associated LIM protein (Cal), that interacts with CSX/NKX2-5. CSX/NKX2-5 and Cal associate with each other both in vivo and in vitro, and the LIM domains of Cal and the homeodomain of CSX/NKX2-5 were necessary for mutual binding. Cal itself possessed the transcription-promoting activity, and cotransfection of Cal enhanced CSX/NKX2-5-induced activation of atrial natriuretic peptide gene promoter. Cal contained a functional nuclear export signal and shuttled from the cytoplasm into the nucleus in response to calcium. Accumulation of Cal in the nucleus of P19CL6 cells promoted myocardial cell differentiation accompanied by increased expression levels of the target genes of CSX/NKX2-5. These results suggest that a novel LIM protein Cal induces cardiomyocyte differentiation through its dynamic intracellular shuttling and association with CSX/NKX2-5.
Asunto(s)
Diferenciación Celular/fisiología , Corazón/crecimiento & desarrollo , Proteínas de Homeodominio/metabolismo , Miocitos Cardíacos/fisiología , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Transporte Activo de Núcleo Celular/fisiología , Secuencia de Aminoácidos , Animales , Factor Natriurético Atrial/genética , Factor Natriurético Atrial/metabolismo , Calcio/metabolismo , Moléculas de Adhesión Celular , Células Cultivadas , Proteínas del Citoesqueleto , Embrión de Mamíferos/anatomía & histología , Embrión de Mamíferos/fisiología , Proteína Homeótica Nkx-2.5 , Proteínas de Homeodominio/genética , Humanos , Proteínas con Dominio LIM , Sustancias Macromoleculares , Ratones , Datos de Secuencia Molecular , Miocitos Cardíacos/citología , Regiones Promotoras Genéticas , Unión Proteica , Ratas , Ratas Wistar , Proteínas Recombinantes de Fusión/metabolismo , Distribución Tisular , Transactivadores/genética , Factores de Transcripción/genética , Técnicas del Sistema de Dos HíbridosRESUMEN
The concept of the plasticity or transdifferentiation of adult stem cells has been challenged by the phenomenon of cell fusion. In this work, we examined whether neonatal cardiomyocytes fuse with various somatic cells including endothelial cells, cardiac fibroblasts, bone marrow cells, and endothelial progenitor cells spontaneously in vitro. When cardiomyocytes were cocultured with endothelial cells or cardiac fibroblasts, they fused and showed phenotypes of cardiomyocytes. Furthermore, cardiomyocytes reentered the G2-M phase in the cell cycle after fusing with proliferative noncardiomyocytes. Transplanted endothelial cells or skeletal muscle-derived cells fused with adult cardiomyocytes in vivo. In the cryoinjured heart, there were Ki67-positive cells that expressed both cardiac and endothelial lineage marker proteins. These results suggest that cardiomyocytes fuse with other cells and enter the cell cycle by maintaining their phenotypes.
Asunto(s)
Miocitos Cardíacos/metabolismo , Adenoviridae/genética , Animales , Animales Modificados Genéticamente , Comunicación Celular , Ciclo Celular , Diferenciación Celular , División Celular , Linaje de la Célula , Proliferación Celular , Trasplante de Células , Células Cultivadas , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Fibroblastos/metabolismo , Fase G2 , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica , Antígeno Ki-67/biosíntesis , Operón Lac , Masculino , Ratones , Modelos Genéticos , Músculo Esquelético/citología , Nocodazol/farmacología , Fenotipo , Ratas , Ratas Wistar , Recombinación Genética , Factores de Tiempo , TransgenesRESUMEN
The discovery of bone marrow-derived endothelial progenitors in the peripheral blood has promoted intensive studies on the potential of cell therapy for various human diseases. Accumulating evidence has suggested that implantation of bone marrow mononuclear cells effectively promotes neovascularization in ischemic tissues. It has also been reported that the implanted cells are incorporated not only into the newly formed vessels but also secrete angiogenic factors. However, the mechanism by which cell therapy improves tissue ischemia remains obscure. We enrolled 29 "no-option" patients with critical limb ischemia and treated ischemic limbs by implantation of peripheral mononuclear cells. Cell therapy using peripheral mononuclear cells was very effective for the treatment of limb ischemia, and its efficacy was associated with increases in the plasma levels of angiogenic factors, in particular interleukin-1beta (IL-1beta). We then examined an experimental model of limb ischemia using IL-1beta-deficient mice. Implantation of IL-1beta-deficient mononuclear cells improved tissue ischemia as efficiently as that of wild-type cells. Both wild-type and IL-1beta-deficient mononuclear cells increased expression of IL-1beta and thus induced angiogenic factors in muscle cells of ischemic limbs to a similar extent. In contrast, inability of muscle cells to secrete IL-1beta markedly reduces induction of angiogenic factors and impairs neovascularization by cell implantation. Implanted cells do not secret angiogenic factors sufficient for neovascularization but, instead, stimulate muscle cells to produce angiogenic factors, thereby promoting neovascularization in ischemic tissues. Further studies will allow us to develop more effective treatments for ischemic vascular disease.
Asunto(s)
Inductores de la Angiogénesis/metabolismo , Extremidades/irrigación sanguínea , Isquemia/cirugía , Monocitos/trasplante , Músculo Esquelético/metabolismo , Neovascularización Fisiológica , Anciano , Animales , Células Cultivadas , Femenino , Humanos , Interleucina-1/sangre , Interleucina-1/deficiencia , Isquemia/sangre , Isquemia/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Monocitos/metabolismo , Músculo Esquelético/citologíaRESUMEN
BACKGROUND: Angiotensin II (Ang II) has been reported to contribute to the pathogenesis of various human diseases including atherosclerosis, and inhibition of Ang II activity has been shown to reduce the morbidity and mortality of cardiovascular diseases. We have previously demonstrated that vascular cell senescence contributes to the pathogenesis of atherosclerosis; however, the effects of Ang II on vascular cell senescence have not been examined. METHODS AND RESULTS: Ang II significantly induced premature senescence of human vascular smooth muscle cells (VSMCs) via the p53/p21-dependent pathway in vitro. Inhibition of this pathway effectively suppressed induction of proinflammatory cytokines and premature senescence of VSMCs by Ang II. Ang II also significantly increased the number of senescent VSMCs and induced the expression of proinflammatory molecules and of p21 in a mouse model of atherosclerosis. Loss of p21 markedly ameliorated the induction of proinflammatory molecules by Ang II, thereby preventing the development of atherosclerosis. Replacement of p21-deficient bone marrow cells with wild-type cells had little influence on the protective effect of p21 deficiency against the progression of atherogenesis induced by Ang II. CONCLUSIONS: We demonstrated that Ang II promotes vascular inflammation by inducing premature senescence of VSMCs both in vitro and in vivo. Our results suggest a critical role of p21-dependent premature senescence of VSMCs in the pathogenesis of atherosclerosis.
Asunto(s)
Envejecimiento Prematuro/fisiopatología , Angiotensina II/farmacología , Aterosclerosis/fisiopatología , Músculo Liso Vascular/crecimiento & desarrollo , Animales , Aorta , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Presión Sanguínea , Células Cultivadas , Modelos Animales de Enfermedad , Genes Reporteros , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/efectos de los fármacos , TransfecciónRESUMEN
We have recently reported that activation of phosphatidylinositol 3-kinase (PI3K) plays a critical role in the early stage of cardiomyocyte differentiation of P19CL6 cells. We here examined molecular mechanisms of how PI3K is involved in cardiomyocyte differentiation. DNA chip analysis revealed that expression levels of Wnt-3a were markedly increased and that the Wnt/beta-catenin pathway was activated temporally during the early stage of cardiomyocyte differentiation of P19CL6 cells. Activation of the Wnt/beta-catenin pathway during this period was required and sufficient for cardiomyocyte differentiation of P19CL6 cells. Inhibition of the PI3K/Akt pathway suppressed the Wnt/beta-catenin pathway by activation of glycogen synthase kinase-3beta (GSK-3beta) and degradation of beta-catenin. Suppression of cardiomyocyte differentiation by inhibiting the PI3K/Akt pathway was rescued by forced expression of a nonphosphorylated, constitutively active form of beta-catenin. These results suggest that the PI3K pathway regulates cardiomyocyte differentiation through suppressing the GSK-3beta activity and maintaining the Wnt/beta-catenin activity.
Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/fisiología , Miocitos Cardíacos/citología , Fosfatidilinositol 3-Quinasas/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Proto-Oncogénicas/fisiología , Transducción de Señal/fisiología , Animales , Diferenciación Celular , Células Cultivadas , Proteínas del Citoesqueleto/metabolismo , Dimetilsulfóxido/farmacología , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/fisiología , Glucógeno Sintasa Quinasa 3 beta , Ratones , Proteínas Proto-Oncogénicas c-akt , Transactivadores/metabolismo , Proteínas Wnt , beta CateninaRESUMEN
Cardiac stem cells or precursor cells regenerate cardiomyocytes; however, the mechanism underlying this effect remains unclear. We generated CreLacZ mice in which more than 99.9% of the cardiomyocytes in the left ventricular field were positive for 5-bromo-4-chloro-3-indolyl-ß-d-galactoside (X-gal) staining immediately after tamoxifen injection. Three months after myocardial infarction (MI), the MI mice had more X-gal-negative (newly generated) cells than the control mice (3.04 ± 0.38/mm2, MI; 0.47 ± 0.16/mm2, sham; p < 0.05). The cardiac side population (CSP) cell fraction contained label-retaining cells, which differentiated into X-gal-negative cardiomyocytes after MI. We injected a leukemia inhibitory factor (LIF)-expression construct at the time of MI and identified a significant functional improvement in the LIF-treated group. At 1 month after MI, in the MI border and scar area, the LIF-injected mice had 31.41 ± 5.83 X-gal-negative cardiomyocytes/mm2, whereas the control mice had 12.34 ± 2.56 X-gal-negative cardiomyocytes/mm2 (p < 0.05). Using 5-ethynyl-2'-deoxyurinide (EdU) administration after MI, the percentages of EdU-positive CSP cells in the LIF-treated and control mice were 29.4 ± 2.7% and 10.6 ± 3.7%, respectively, which suggests that LIF influenced CSP proliferation. Moreover, LIF activated the Janus kinase (JAK)signal transducer and activator of transcription (STAT), mitogen-activated protein kinase/extracellular signal-regulated (MEK)extracellular signal-regulated kinase (ERK), and phosphatidylinositol 3-kinase (PI3K)-AKT pathways in CSPs in vivo and in vitro. The enhanced green fluorescent protein (EGFP)-bone marrow-chimeric CreLacZ mouse results indicated that LIF did not stimulate cardiogenesis via circulating bone marrow-derived cells during the 4 weeks following MI. Thus, LIF stimulates, in part, stem cell-derived cardiomyocyte regeneration by activating cardiac stem or precursor cells. This approach may represent a novel therapeutic strategy for cardiogenesis.
Asunto(s)
Factor Inhibidor de Leucemia/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Infarto del Miocardio/tratamiento farmacológico , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Regeneración/efectos de los fármacos , Animales , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Quinasas Janus/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones , Ratones Transgénicos , Infarto del Miocardio/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factores de Transcripción STAT/metabolismo , Células Madre/metabolismoRESUMEN
BACKGROUND: Peroxisome proliferator-activated receptors (PPARs) are transcription factors of the nuclear receptor superfamily. It has been reported that the thiazolidinediones, which are antidiabetic agents and high-affinity ligands for PPARgamma, regulate growth of vascular cells. In the present study, we examined the role of PPARgamma in angiotensin II (Ang II)-induced hypertrophy of neonatal rat cardiac myocytes and in pressure overload-induced cardiac hypertrophy of mice. METHODS AND RESULTS: Treatment of cultured cardiac myocytes with PPARgamma ligands such as troglitazone, pioglitazone, and rosiglitazone inhibited Ang II-induced upregulation of skeletal alpha-actin and atrial natriuretic peptide genes and an increase in cell surface area. Treatment of mice with a PPARgamma ligand, pioglitazone, inhibited pressure overload-induced increases in the heart weight-to-body weight ratio, wall thickness, and myocyte diameter in wild-type mice and an increase in the heart weight-to-body weight ratio in heterozygous PPARgamma-deficient mice. In contrast, pressure overload-induced increases in the heart weight-to-body weight ratio and wall thickness were more prominent in heterozygous PPARgamma-deficient mice than in wild-type mice. CONCLUSIONS: These results suggest that the PPARgamma-dependent pathway is critically involved in the inhibition of cardiac hypertrophy.