Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Circ Res ; 135(5): 575-592, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39034919

RESUMEN

BACKGROUND: The SPAN trial (Stroke Preclinical Assessment Network) is the largest preclinical study testing acute stroke interventions in experimental focal cerebral ischemia using endovascular filament middle cerebral artery occlusion (MCAo). Besides testing interventions against controls, the prospective design captured numerous biological and procedural variables, highlighting the enormous heterogeneity introduced by the multicenter structure that might influence stroke outcomes. Here, we leveraged the unprecedented sample size achieved by the SPAN trial and the prospective design to identify the biological and procedural variables that affect experimental stroke outcomes in transient endovascular filament MCAo. METHODS: The study cohort included all mice enrolled and randomized in the SPAN trial (N=1789). Mice were subjected to 60-minute MCAo and followed for a month. Thirteen biological and procedural independent variables and 4 functional (weight loss and 4-point neuroscore on days 1 and 2, corner test on days 7 and 28, and mortality) and 3 tissue (day 2, magnetic resonance imaging infarct volumes and swelling; day 30, magnetic resonance imaging tissue loss) outcome variables were prospectively captured. Multivariable regression with stepwise elimination was used to identify the predictors and their effect sizes. RESULTS: Older age, active circadian stage at MCAo, and thinner and longer filament silicone tips predicted higher mortality. Older age, larger body weight, longer anesthesia duration, and longer filament tips predicted worse neuroscores, while high-fat diet and blood flow monitoring predicted milder neuroscores. Older age and a high-fat diet predicted worse corner test performance. While shorter filament tips predicted more ipsiversive turning, longer filament tips appeared to predict contraversive turning. Age, sex, and weight interacted when predicting the infarct volume. Older age was associated with smaller infarcts on day 2 magnetic resonance imaging, especially in animals with larger body weights; this association was most conspicuous in females. High-fat diet also predicted smaller infarcts. In contrast, the use of cerebral blood flow monitoring and more severe cerebral blood flow drop during MCAo, longer anesthesia, and longer filament tips all predicted larger infarcts. Bivariate analyses among the dependent variables highlighted a disconnect between tissue and functional outcomes. CONCLUSIONS: Our analyses identified variables affecting endovascular filament MCAo outcome, an experimental stroke model used worldwide. Multiple regression refuted some commonly reported predictors and revealed previously unrecognized associations. Given the multicenter prospective design that represents a sampling of real-world conditions, the degree of heterogeneity mimicking clinical trials, the large number of predictors adjusted for in the multivariable model, and the large sample size, we think this is the most definitive analysis of the predictors of preclinical stroke outcome to date. Future multicenter experimental stroke trials should standardize or at least ensure a balanced representation of the biological and procedural variables identified herein as potential confounders.


Asunto(s)
Infarto de la Arteria Cerebral Media , Animales , Masculino , Infarto de la Arteria Cerebral Media/diagnóstico por imagen , Infarto de la Arteria Cerebral Media/patología , Ratones , Femenino , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Accidente Cerebrovascular/diagnóstico por imagen , Imagen por Resonancia Magnética , Estudios Prospectivos , Accidente Cerebrovascular Isquémico/diagnóstico por imagen
2.
Stroke ; 54(2): 620-631, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36601951

RESUMEN

The Stroke Preclinical Assessment Network (SPAN) is a multicenter preclinical trial platform using rodent models of transient focal cerebral ischemia to address translational failure in experimental stroke. In addition to centralized randomization and blinding and large samples, SPAN aimed to introduce heterogeneity to simulate the heterogeneity embodied in clinical trials for robust conclusions. Here, we report the heterogeneity introduced by allowing the 6 SPAN laboratories to vary most of the biological and experimental model variables and the impact of this heterogeneity on middle cerebral artery occlusion (MCAo) performance. We included the modified intention-to-treat population of the control mouse cohort of the first SPAN trial (n=421) and examined the biological and procedural independent variables and their covariance. We then determined their impact on the dependent variables cerebral blood flow drop during MCAo, time to achieve MCAo, and total anesthesia duration using multivariable analyses. We found heterogeneity in biological and procedural independent variables introduced mainly by the site. Consequently, all dependent variables also showed heterogeneity among the sites. Multivariable analyses with the site as a random effect variable revealed filament choice as an independent predictor of cerebral blood flow drop after MCAo. Comorbidity, sex, use of laser Doppler flow to monitor cerebral blood flow, days after trial onset, and maintaining anesthesia throughout the MCAo emerged as independent predictors of time to MCAo. Total anesthesia duration was predicted by most independent variables. We present with high granularity the heterogeneity introduced by the biological and model selections by the testing sites in the first trial of cerebroprotection in rodent transient filament MCAo by SPAN. Rather than trying to homogenize all variables across all sites, we embraced the heterogeneity to better approximate clinical trials. Awareness of the heterogeneity, its sources, and how it impacts the study performance may further improve the study design and statistical modeling for future multicenter preclinical trials.


Asunto(s)
Ataque Isquémico Transitorio , Accidente Cerebrovascular , Ratones , Animales , Modelos Animales de Enfermedad , Infarto de la Arteria Cerebral Media , Proyectos de Investigación , Circulación Cerebrovascular/fisiología , Estudios Multicéntricos como Asunto
3.
Stroke ; 53(5): 1802-1812, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35354299

RESUMEN

Cerebral ischemia and reperfusion initiate cellular events in brain that lead to neurological disability. Investigating these cellular events provides ample targets for developing new treatments. Despite considerable work, no such therapy has translated into successful stroke treatment. Among other issues-such as incomplete mechanistic knowledge and faulty clinical trial design-a key contributor to prior translational failures may be insufficient scientific rigor during preclinical assessment: nonblinded outcome assessment; missing randomization; inappropriate sample sizes; and preclinical assessments in young male animals that ignore relevant biological variables, such as age, sex, and relevant comorbid diseases. Promising results are rarely replicated in multiple laboratories. We sought to address some of these issues with rigorous assessment of candidate treatments across 6 independent research laboratories. The Stroke Preclinical Assessment Network (SPAN) implements state-of-the-art experimental design to test the hypothesis that rigorous preclinical assessment can successfully reduce or eliminate common sources of bias in choosing treatments for evaluation in clinical studies. SPAN is a randomized, placebo-controlled, blinded, multilaboratory trial using a multi-arm multi-stage protocol to select one or more putative stroke treatments with an implied high likelihood of success in human clinical stroke trials. The first stage of SPAN implemented procedural standardization and experimental rigor. All participating research laboratories performed middle cerebral artery occlusion surgery adhering to a common protocol and rapidly enrolled 913 mice in the first of 4 planned stages with excellent protocol adherence, remarkable data completion and low rates of subject loss. SPAN stage 1 successfully implemented treatment masking, randomization, prerandomization inclusion/exclusion criteria, and blinded assessment to exclude bias. Our data suggest that a large, multilaboratory, preclinical assessment effort to reduce known sources of bias is feasible and practical. Subsequent SPAN stages will evaluate candidate treatments for potential success in future stroke clinical trials using aged animals and animals with comorbid conditions.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular , Anciano , Animales , Encéfalo , Isquemia Encefálica/terapia , Estudios de Factibilidad , Humanos , Infarto de la Arteria Cerebral Media/terapia , Masculino , Ratones , Accidente Cerebrovascular/terapia
4.
Sci Transl Med ; 15(714): eadg8656, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37729432

RESUMEN

Human diseases may be modeled in animals to allow preclinical assessment of putative new clinical interventions. Recent, highly publicized failures of large clinical trials called into question the rigor, design, and value of preclinical assessment. We established the Stroke Preclinical Assessment Network (SPAN) to design and implement a randomized, controlled, blinded, multi-laboratory trial for the rigorous assessment of candidate stroke treatments combined with intravascular thrombectomy. Efficacy and futility boundaries in a multi-arm multi-stage statistical design aimed to exclude from further study highly effective or futile interventions after each of four sequential stages. Six independent research laboratories performed a standard focal cerebral ischemic insult in five animal models that included equal numbers of males and females: young mice, young rats, aging mice, mice with diet-induced obesity, and spontaneously hypertensive rats. The laboratories adhered to a common protocol and efficiently enrolled 2615 animals with full data completion and comprehensive animal tracking. SPAN successfully implemented treatment masking, randomization, prerandomization inclusion and exclusion criteria, and blinded assessment of outcomes. The SPAN design and infrastructure provide an effective approach that could be used in similar preclinical, multi-laboratory studies in other disease areas and should help improve reproducibility in translational science.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Femenino , Humanos , Masculino , Ratas , Animales , Ratones , Roedores , Laboratorios , Reproducibilidad de los Resultados , Accidente Cerebrovascular/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA