Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
2.
Nature ; 539(7629): 390-395, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27799657

RESUMEN

Intermediary metabolism generates substrates for chromatin modification, enabling the potential coupling of metabolic and epigenetic states. Here we identify a network linking metabolic and epigenetic alterations that is central to oncogenic transformation downstream of the liver kinase B1 (LKB1, also known as STK11) tumour suppressor, an integrator of nutrient availability, metabolism and growth. By developing genetically engineered mouse models and primary pancreatic epithelial cells, and employing transcriptional, proteomics, and metabolic analyses, we find that oncogenic cooperation between LKB1 loss and KRAS activation is fuelled by pronounced mTOR-dependent induction of the serine-glycine-one-carbon pathway coupled to S-adenosylmethionine generation. At the same time, DNA methyltransferases are upregulated, leading to elevation in DNA methylation with particular enrichment at retrotransposon elements associated with their transcriptional silencing. Correspondingly, LKB1 deficiency sensitizes cells and tumours to inhibition of serine biosynthesis and DNA methylation. Thus, we define a hypermetabolic state that incites changes in the epigenetic landscape to support tumorigenic growth of LKB1-mutant cells, while resulting in potential therapeutic vulnerabilities.


Asunto(s)
Transformación Celular Neoplásica , Metilación de ADN , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/metabolismo , Serina/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP , Animales , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Células Epiteliales/metabolismo , Silenciador del Gen , Genes Supresores de Tumor , Glicina/metabolismo , Glucólisis , Humanos , Ratones , Conductos Pancreáticos/citología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Retroelementos/genética , S-Adenosilmetionina/metabolismo , Serina/biosíntesis , Serina-Treonina Quinasas TOR/metabolismo , Transaminasas/metabolismo
3.
Nature ; 480(7378): 561-4, 2011 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-22121021

RESUMEN

Most retroviruses require translational recoding of a viral messenger RNA stop codon to maintain a precise ratio of structural (Gag) and enzymatic (Pol) proteins during virus assembly. Pol is expressed exclusively as a Gag-Pol fusion either by ribosomal frameshifting or by read-through of the gag stop codon. Both of these mechanisms occur infrequently and only affect 5-10% of translating ribosomes, allowing the virus to maintain the critical Gag to Gag-Pol ratio. Although it is understood that the frequency of the recoding event is regulated by cis RNA motifs, no mechanistic explanation is currently available for how the critical protein ratio is maintained. Here we present the NMR structure of the murine leukaemia virus recoding signal and show that a protonation-dependent switch occurs to induce the active conformation. The equilibrium is such that at physiological pH the active, read-through permissive conformation is populated at approximately 6%: a level that correlates with in vivo protein quantities. The RNA functions by a highly sensitive, chemo-mechanical coupling tuned to ensure an optimal read-through frequency. Similar observations for a frameshifting signal indicate that this novel equilibrium-based mechanism may have a general role in translational recoding.


Asunto(s)
Regulación Viral de la Expresión Génica , Genes de Cambio , Virus de la Leucemia Murina/fisiología , ARN Viral/metabolismo , Virus de la Leucemia Murina/genética , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación de Ácido Nucleico , Estructura Terciaria de Proteína
4.
Proc Natl Acad Sci U S A ; 111(30): E3091-100, 2014 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-25024225

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) is the most lethal of common human malignancies, with no truly effective therapies for advanced disease. Preclinical studies have suggested a therapeutic benefit of targeting the Hedgehog (Hh) signaling pathway, which is activated throughout the course of PDA progression by expression of Hh ligands in the neoplastic epithelium and paracrine response in the stromal fibroblasts. Clinical trials to test this possibility, however, have yielded disappointing results. To further investigate the role of Hh signaling in the formation of PDA and its precursor lesion, pancreatic intraepithelial neoplasia (PanIN), we examined the effects of genetic or pharmacologic inhibition of Hh pathway activity in three distinct genetically engineered mouse models and found that Hh pathway inhibition accelerates rather than delays progression of oncogenic Kras-driven disease. Notably, pharmacologic inhibition of Hh pathway activity affected the balance between epithelial and stromal elements, suppressing stromal desmoplasia but also causing accelerated growth of the PanIN epithelium. In striking contrast, pathway activation using a small molecule agonist caused stromal hyperplasia and reduced epithelial proliferation. These results indicate that stromal response to Hh signaling is protective against PDA and that pharmacologic activation of pathway response can slow tumorigenesis. Our results provide evidence for a restraining role of stroma in PDA progression, suggesting an explanation for the failure of Hh inhibitors in clinical trials and pointing to the possibility of a novel type of therapeutic intervention.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Proteínas Hedgehog/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal , Animales , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Proteínas Hedgehog/antagonistas & inhibidores , Proteínas Hedgehog/genética , Humanos , Ratones , Ratones Noqueados , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética
5.
Cell Rep ; 10(10): 1692-1707, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25772357

RESUMEN

Defective Hippo/YAP signaling in the liver results in tissue overgrowth and development of hepatocellular carcinoma (HCC). Here, we uncover mechanisms of YAP-mediated hepatocyte reprogramming and HCC pathogenesis. YAP functions as a rheostat in maintaining metabolic specialization, differentiation, and quiescence within the hepatocyte compartment. Increased or decreased YAP activity reprograms subsets of hepatocytes to different fates associated with deregulation of the HNF4A, CTNNB1, and E2F transcriptional programs that control hepatocyte quiescence and differentiation. Importantly, treatment with small interfering RNA-lipid nanoparticles (siRNA-LNPs) targeting YAP restores hepatocyte differentiation and causes pronounced tumor regression in a genetically engineered mouse HCC model. Furthermore, YAP targets are enriched in an aggressive human HCC subtype characterized by a proliferative signature and absence of CTNNB1 mutations. Thus, our work reveals Hippo signaling as a key regulator of the positional identity of hepatocytes, supports targeting of YAP using siRNA-LNPs as a paradigm of differentiation-based therapy, and identifies an HCC subtype that is potentially responsive to this approach.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA