Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 145(6): 1916-1923, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35202461

RESUMEN

The Kennedy pathways catalyse the de novo synthesis of phosphatidylcholine and phosphatidylethanolamine, the most abundant components of eukaryotic cell membranes. In recent years, these pathways have moved into clinical focus because four of ten genes involved have been associated with a range of autosomal recessive rare diseases such as a neurodevelopmental disorder with muscular dystrophy (CHKB), bone abnormalities and cone-rod dystrophy (PCYT1A) and spastic paraplegia (PCYT2, SELENOI). We identified six individuals from five families with bi-allelic variants in CHKA presenting with severe global developmental delay, epilepsy, movement disorders and microcephaly. Using structural molecular modelling and functional testing of the variants in a cell-based Saccharomyces cerevisiae model, we determined that these variants reduce the enzymatic activity of CHKA and confer a significant impairment of the first enzymatic step of the Kennedy pathway. In summary, we present CHKA as a novel autosomal recessive gene for a neurodevelopmental disorder with epilepsy and microcephaly.


Asunto(s)
Colina Quinasa , Epilepsia , Microcefalia , Malformaciones del Sistema Nervioso , Trastornos del Neurodesarrollo , Alelos , Colina Quinasa/genética , Epilepsia/genética , Humanos , Microcefalia/complicaciones , Microcefalia/genética , Malformaciones del Sistema Nervioso/genética , Trastornos del Neurodesarrollo/genética
2.
Ecotoxicol Environ Saf ; 255: 114819, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36963188

RESUMEN

Ascophyllum nodosum extract (ANE) is considered as an effective source of biostimulants that have the potential of ameliorating the negative impact of different abiotic stresses in plants. Considering the growth-promoting ability and other regulatory roles of ANE, the present investigation was executed to evaluate the role of ANE in conferring arsenic (As) tolerance in rice (Oryza sativa L. cv. BRRI dhan89). Rice seedlings (35-d-old) were exposed to two doses of sodium arsenate (As1 - 50 mg As kg-1 soil; As2 - 100 mg As kg-1 soil) at 25 days after transplanting through irrigation, whereas only water was applied to the control. Foliar application of 0.1% ANE was also supplemented under control as well as As-stressed conditions at 7 days intervals for 5 times. Arsenic-induced oxidative stress was evident through a sharp increase in lipid peroxidation, hydrogen peroxide, methylglyoxal, and electrolyte leakage in the As-treated plants. As a consequence, plant growth and biomass, leaf relative water content, as well as yield attributes were reduced noticeably. On the other hand, ANE supplemented plants accumulated enhanced levels of ascorbate and glutathione, their redox balance, and the activities of antioxidant and glyoxalase enzymes viz. ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase, catalase, glutathione peroxidase, and activities of glyoxalase I and glyoxalase II, respectively. Furthermore, relative water content, plant growth, yield attributes and yield were increased in the As-treated rice plants with ANE supplementation. The results reflected that foliar spray with ANE alleviated As-induced oxidative stress in rice plants by modulating the antioxidative defense and glyoxalase system.


Asunto(s)
Arsénico , Ascophyllum , Lactoilglutatión Liasa , Oryza , Oryza/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Arsénico/metabolismo , Ascophyllum/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Estrés Oxidativo , Oxidación-Reducción , Lactoilglutatión Liasa/metabolismo , Suplementos Dietéticos , Agua/metabolismo
3.
Plant Dis ; 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36627803

RESUMEN

A survey on field pea (Pisum sativum) root rot was carried out in Prince Edward Island (PEI) and New Brunswick (NB), Canada, between July and August, 2018. The average disease incidence was 75% and 78%, and severity was 3.5 and 2.8 on a 1 to 7 scale for NB and PEI, respectively (Schneider and Kelly 2000). Symptoms included seedling stunting, root rot, and wilting. Surface sterilized diseased root segments were incubated on water agar at 25°C for 5 days. Pure isolates were obtained by single spore culturing. A total of 210 isolates were identified as Fusarium spp. Five isolates were identified as F. commune by morphological and molecular characteristics (Leslie and Summerell, 2006; Skovgaard et al. 2003). The isolates on Potato Dextrose Agar produced whitish fluffy mycelia on the upper surface and grayish yellow coloration on the bottom surface of the colony cultured at 25°C in darkness. The isolates on carnation leaf agar at 25°C in darkness formed abundant chlamydospores and macroconidia but rare microconidia with 0 to1 septa, measuring 6.2 to 12.5 x 2.7 to 3.6 µm (n = 5). Macroconidia were typically fusiform with a slightly curved apical cell and a foot-shaped basal cell, bending equally toward both ends. Three-septate conidia were 26.8 to 39.3 x 3.6 to 4.5 µm (n = 20) and five-septate conidia were 56.2 to 64.3 x 4.5 to 5.4 µm in size (n = 10). Chlamydospores were smooth, terminal, and single, 7 to 12.5 µm in diameter (n = 20). Genomic DNA of the five isolates were used to amplify and sequence the translation elongation factor 1α (TEF-1α) and the mitochondrial small subunit ribosomal DNA (mtSSU rDNA) using EF1/EF2 and NSM1/NSM2 primer pairs (White et al 1990; O'Donnell et al 2000), respectively, which were used to define the F. commune (Skovgaard et al. 2003). The mtSSU rDNA sequences were deposited in GenBank, OP752229 to OP752232 and OP752234 for isolates GR11-8, GR11-9, GR1-21, FRDC11-1 and FRDC11-2, respectively, and the TEF-1α sequences were assigned OP831956 to OP831959 and OP831961 for GR11-8, GR11-9, GR1-21, FRDC11-1, and FRDC11-2, respectively. The sequence similarities of the five isolates with ex holotype culture NRRL 31076 ranged from 98.69% to 99.79% for the TEF-1α (AF362263.1), with the matching base pairs of 526/533, 523/528, 483/484, 497/502 and 527/533, respectively, and 99.83 to 100% for the mtSSU rDNA (AF362279.1), with the matching base pairs of 633/634, 633/634, 600/601, 633/634, and 621/621, respectively. The sequences of mtSSU rDNA and TEF-1α for the F. commune type species and related Fusarium species were retrieved from NCBI. A phylogenetic tree constructed using the combined sequences of mtSSU rDNA and TEF-1α showed the five isolates clustered with F. commune. Three isolates (GR11-8, GR11-9, GR1-21) were used for pathogenicity testing with four replicates of four plants each and the trial was repeated twice. Seeds of field pea (CDC Limerick) were soaked in 2% sodium hypochlorite for 2 minutes, washed three times with sterilized distilled water, and then were soaked in conidial suspension at 2 × 106 conidia / mL or in sterilized distilled water as a control for 16 h in darkness at 20°C. Seeds were placed in sterilized vermiculite in a greenhouse at 24 / 18°C day / night temperature with a 16 h photoperiod. Three weeks after planting, the tested isolates were observed to cause seed decay, root rot, and seedling stunting, with disease severity ranging from 5 to 7 based on 1 to 7 scale in repeated trials. No symptoms were observed on the control plants. F. commune isolates were re-isolated and confirmed by sequencing the mtSSU rDNA and TEF-1α. F. commune was reported in Alberta causing soybean root rot (Zhou et al. 2018) but this is the first report of F. commune causing root rot of field pea in Canada. Considering its high pathogenicity in field pea and in soybean, the prevalence, host range and geographic distribution of this pathogen need further study.

4.
J Clin Lab Anal ; 36(2): e24203, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34942043

RESUMEN

BACKGROUND: Globally, real-time reverse transcription-polymerase chain reaction (rRT-PCR) is the reference detection technique for SARS-CoV-2, which is expensive, time consuming, and requires trained laboratory personnel. Thus, a cost-effective, rapid antigen test is urgently needed. This study evaluated the performance of the rapid antigen tests (RATs) for SARS-CoV-2 compared with rRT-PCR, considering different influencing factors. METHODS: We enrolled a total of 214 symptomatic individuals with known COVID-19 status using rRT-PCR. We collected and tested paired nasopharyngeal (NP) and nasal swab (NS) specimens (collected from same individual) using rRT-PCR and RATs (InTec and SD Biosensor). We assessed the performance of RATs considering specimen types, viral load, the onset of symptoms, and presenting symptoms. RESULTS: We included 214 paired specimens (112 NP and 100 NS SARS-CoV-2 rRT-PCR positive) to the analysis. For NP specimens, the average sensitivity, specificity, and accuracy of the RATs were 87.5%, 98.6%, and 92.8%, respectively, when compared with rRT-PCR. While for NS, the overall kit performance was slightly lower than that of NP (sensitivity 79.0%, specificity 96.1%, and accuracy 88.3%). We observed a progressive decline in the performance of RATs with increased Ct values (decreased viral load). Moreover, the RAT sensitivity using NP specimens decreased over the time of the onset of symptoms. CONCLUSION: The RATs showed strong performance under field conditions and fulfilled the minimum performance limit for rapid antigen detection kits recommended by World Health Organization. The best performance of the RATs can be achieved within the first week of the onset of symptoms with high viral load.


Asunto(s)
Antígenos Virales/análisis , Prueba Serológica para COVID-19 , COVID-19/diagnóstico , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Prueba Serológica para COVID-19/métodos , Prueba Serológica para COVID-19/normas , Prueba Serológica para COVID-19/estadística & datos numéricos , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Nasofaringe/virología , Juego de Reactivos para Diagnóstico/virología , SARS-CoV-2/aislamiento & purificación , Sensibilidad y Especificidad , Factores de Tiempo , Carga Viral , Adulto Joven
5.
Am J Potato Res ; 99(3): 229-242, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35437344

RESUMEN

Biofumigation has been proposed as an alternative to soil fumigation to manage soil-borne diseases including potato early dying disease complex (PED). This study examined the potential of using brown mustard (Mustard juncea) biofumigation to manage PED under rain-fed potato production in New Brunswick, Canada in two trials between 2017 and 2020 in comparison with chloropicrin fumigation and a conventional barley rotation. Biofumigation increased yield in one trial, but not in a second trial where the potato crop experienced severe drought, whereas chloropicrin fumigation increased yield in both trials. Biofumigation was effective in suppressing root-lesion nematode (RLN, Pratylenchus spp.) counts in both trials, but was ineffective in suppressing V. dahliae population density. Chloropicrin fumigation was effective in suppressing RLN counts and V. dahliae population density only in the hill where injected, but the effect was short-lived as the population density of V. dahliae in the hill increased to the level of the control in one potato growing season. Biofumigation may be an alternative to chloropicrin fumigation in managing PED, particularly in fields with high RLN population but relatively low Verticillium population density. However, neither biofumigation nor fumigation used alone may be sustainable in the short-term potato rotations commonly used in New Brunswick, and additional beneficial practices are required to sustain productivity in the long-term.


La biofumigación se ha propuesto como una alternativa a la fumigación del suelo para manejar las enfermedades transmitidas por el suelo, incluido el complejo de enfermedades de muerte prematura de la papa (PED). Este estudio examinó el potencial del uso de la biofumigación de mostaza marrón (Mustard juncea) para manejar la PED bajo la producción de papa de secano en New Brunswick, Canadá, en dos ensayos entre 2017 y 2020 en comparación con la fumigación con cloropicrina y una rotación de cebada convencional. La biofumigación aumentó el rendimiento en un ensayo, pero no en un segundo ensayo en el que el cultivo de papa experimentó una sequía severa, mientras que la fumigación con cloropicrina aumentó el rendimiento en ambos ensayos. La biofumigación fue efectiva para suprimir los conteos del nematodo lesionador de la raíz (RLN, Pratylenchus spp.) en ambos ensayos, pero fue ineficaz para suprimir la densidad de población de V. dahliae. La fumigación con cloropicrina fue efectiva para suprimir los conteos de RLN y la densidad de población de V. dahliae solo en el lomo del surco donde se inyectó, pero el efecto fue de corta duración ya que la densidad de población de V. dahliae en el surco aumentó al nivel del testigo en un ciclo de cultivo de papa. La biofumigación puede ser una alternativa a la fumigación con cloropicrina en el manejo de la PED, particularmente en campos con alta población de RLN pero densidad de población de Verticillium relativamente baja. Sin embargo, ni la biofumigación ni la fumigación utilizadas por sí solas pueden ser sustentables en las rotaciones de papa a corto plazo comúnmente utilizadas en New Brunswick, y se requieren prácticas benéficas adicionales para mantener la productividad a largo plazo.

6.
Int J Mol Sci ; 22(17)2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34502233

RESUMEN

The generation of oxygen radicals and their derivatives, known as reactive oxygen species, (ROS) is a part of the signaling process in higher plants at lower concentrations, but at higher concentrations, those ROS cause oxidative stress. Salinity-induced osmotic stress and ionic stress trigger the overproduction of ROS and, ultimately, result in oxidative damage to cell organelles and membrane components, and at severe levels, they cause cell and plant death. The antioxidant defense system protects the plant from salt-induced oxidative damage by detoxifying the ROS and also by maintaining the balance of ROS generation under salt stress. Different plant hormones and genes are also associated with the signaling and antioxidant defense system to protect plants when they are exposed to salt stress. Salt-induced ROS overgeneration is one of the major reasons for hampering the morpho-physiological and biochemical activities of plants which can be largely restored through enhancing the antioxidant defense system that detoxifies ROS. In this review, we discuss the salt-induced generation of ROS, oxidative stress and antioxidant defense of plants under salinity.


Asunto(s)
Antioxidantes/metabolismo , Estrés Oxidativo , Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Salinidad , Estrés Fisiológico , Transducción de Señal
7.
Bull Environ Contam Toxicol ; 106(4): 707-713, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33527146

RESUMEN

In this study, we determined the effect of manure application on net nitrification rates (NNRs), heavy metal concentrations (HMCs), and abundance of ammonia-oxidizing archaea (AOA)/bacteria (AOB), and nitrite-oxidizing bacteria (NOB) in soil. HMCs were measured by atomic absorption spectroscopy. Abundance of AOA, AOB, and NOB was enumerated by q-PCR. NNRs ranged from 2.8 to 14.7 mg kg-1 h-1 and were significantly (p < 0.05) increased in manure soils as compared to control soils. NNRs were affected by pH 7 and temperature 30°C. Cd, Fe and Pb concentrations were classified as excessively polluted, moderate contamination and slight pollution, respectively, in the manure soils. NNRs and concentrations of Fe and Pb were significantly (p < 0.00) positive correlated, but Cu and Cd were significantly (p < 0.00) negative correlated with NNRs. Application of manure significantly (p < 0.05) increased HMCs (Fe, Cu, and Pb), which have indirect and direct effects on NNRs and nitrifying bacteria.


Asunto(s)
Archaea , Metales Pesados , Amoníaco , Bacterias/genética , Estiércol , Nitrificación , Oxidación-Reducción , Filogenia , Suelo , Microbiología del Suelo
8.
BMC Pediatr ; 20(1): 284, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32513141

RESUMEN

BACKGROUND: Histoplasmosis is a rare infectious condition with mainly pulmonary involvement. Disseminated histoplasmosis may occur in immunocompromised condition. It can present in different ways but jaundice and ascites is very uncommon. CASE PRESENTATION: A 8- year old girl visited to department of pediatric gastroenterology & nutrition, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh. Child presented with fever, jaundice and abdominal distension for 2 ½ months. There was no history of contact with tuberculosis patient and travelling to kala-azar, malaria endemic zone and no history of previous jaundice, blood or blood product transfusion, history of sib death, family history of jaundice or neuropsychiatric disorder, significant weight loss. On general examination she was fretful, febrile, moderately icteric, mildly pale, vitally stable, severely wasted and moderately stunted, skin survey revealed infected scabies, BCG vaccine mark was absent, generalized lymphadenopathy, hepato-splenomegaly and ascites present. After evaluating the physical findings, several investigations was done including lymphnode biopsy, then the case was finally diagnosed as Disseminated histoplasmosis with portal hypertension. Child was treated with injectable Deoxycholate Amphotericin B for 28 days and improved on follow up. CONCLUSION: We suggest that children presenting with fever, jaundice, lymphadenopathy and hepatosplenomegaly and portal hypertension, disseminated histoplasmosis can be one differential.


Asunto(s)
Histoplasmosis , Hipertensión Portal , Anfotericina B/uso terapéutico , Bangladesh , Niño , Femenino , Fiebre , Histoplasmosis/complicaciones , Histoplasmosis/diagnóstico , Histoplasmosis/tratamiento farmacológico , Humanos , Hipertensión Portal/complicaciones , Hipertensión Portal/diagnóstico
9.
Int J Mol Sci ; 21(22)2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33218014

RESUMEN

Various environmental stresses singly or in combination generate excess amounts of reactive oxygen species (ROS), leading to oxidative stress and impaired redox homeostasis. Generation of ROS is the obvious outcome of abiotic stresses and is gaining importance not only for their ubiquitous generation and subsequent damaging effects in plants but also for their diversified roles in signaling cascade, affecting other biomolecules, hormones concerning growth, development, or regulation of stress tolerance. Therefore, a good balance between ROS generation and the antioxidant defense system protects photosynthetic machinery, maintains membrane integrity, and prevents damage to nucleic acids and proteins. Notably, the antioxidant defense system not only scavenges ROS but also regulates the ROS titer for signaling. A glut of studies have been executed over the last few decades to discover the pattern of ROS generation and ROS scavenging. Reports suggested a sharp threshold level of ROS for being beneficial or toxic, depending on the plant species, their growth stages, types of abiotic stresses, stress intensity, and duration. Approaches towards enhancing the antioxidant defense in plants is one of the vital areas of research for plant biologists. Therefore, in this review, we accumulated and discussed the physicochemical basis of ROS production, cellular compartment-specific ROS generation pathways, and their possible distressing effects. Moreover, the function of the antioxidant defense system for detoxification and homeostasis of ROS for maximizing defense is also discussed in light of the latest research endeavors and experimental evidence.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Estrés Oxidativo , Fotosíntesis , Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
10.
Bull Environ Contam Toxicol ; 104(6): 828-833, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32385520

RESUMEN

In this study, we investigated the effect of long-term pesticides and chemical fertilizers application on the microbial communities specifically anammox and denitrification bacteria in rice field soils. The abundances of microbial communities (16S rDNA), anammox (hszB), and denitrification (narG, nirK, nirS, and nosZ) genes were quantified by q-PCR. 10 pesticides (5 insecticides, 3 fungicides and 2 herbicides) and chemical fertilizers urea, potassium, phosphate, DAP (di-ammonium phosphate), gypsum, and boric acid were used by local farmers. Nitrate, SOC (ammonia, soil organic carbon), N and C content significantly (p < 0.05) decreased in the rice field soils as compared to the upland soils. Abundance of 16S rDNA, hszB, narG, nirK, nirS, and nosZ genes significantly (p < 0.05) decreased in the rice field soils and positively correlated with chemical properties of soils. Our results provide useful information and further maintenance should be instilled to the potential of chemical and biological factors decreased in rice field soils.


Asunto(s)
Fertilizantes/análisis , Genes Bacterianos , Microbiota/efectos de los fármacos , Oryza/crecimiento & desarrollo , Plaguicidas/toxicidad , Suelo/química , Amoníaco/análisis , Carbono , Desnitrificación/genética , Microbiota/genética , Nitratos/análisis , Plaguicidas/análisis , Microbiología del Suelo
11.
Physiol Mol Biol Plants ; 26(6): 1139-1154, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32549679

RESUMEN

Fungicides are widely used for controlling fungi in crop plants. However, their roles in conferring abiotic stress tolerance are still elusive. In this study, the effect of tebuconazole (TEB) and trifloxystrobin (TRI) on wheat seedlings (Triticum aestivum L. cv. Norin 61) was investigated under salt stress. Seedlings were pre-treated for 48 h with fungicide (1.375 µM TEB + 0.5 µM TRI) and then subjected to salt stress (250 mM NaCl) for 5 days. Salt treatment alone resulted in oxidative damage and increased lipid peroxidation as evident by higher malondialdehyde (MDA) and hydrogen peroxide (H2O2) content. Salt stress also decreased the chlorophyll and relative water content and increased the proline (Pro) content. Furthermore, salt stress increased the dehydroascorbate (DHA) and glutathione disulfide (GSSG) content while ascorbate (AsA), the AsA/DHA ratio, reduced glutathione (GSH) and the GSH/GSSG ratio decreased. However, a combined application of TEB and TRI significantly alleviated growth inhibition, photosynthetic pigments and leaf water status improved under salt stress. Application of TEB and TRI also decreased MDA, electrolyte leakage, and H2O2 content by modulating the contents of AsA and GSH, and enzymatic antioxidant activities. In addition, TEB and TRI regulated K+/Na+ homeostasis by improving the K+/Na+ ratio under salt stress. These results suggested that exogenous application of TEB and TRI rendered the wheat seedling more tolerant to salinity stress by controlling ROS and methylglyoxal (MG) production through the regulation of the antioxidant defense and MG detoxification systems.

12.
Ecotoxicology ; 28(3): 261-276, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30761430

RESUMEN

Nickel (Ni), an essential nutrient of plant but very toxic to plant at supra-optimal concentration that causes inhibition of seed germination emergence and growth of plants as a consequence of physiological disorders. Hence, the present study investigates the possible mechanisms of Ni tolerance in rice seedlings by exogenous application of silicon (Si). Thirteen-day-old hydroponically grown rice (Oryza sativa L. cv. BRRI dhan54) were treated with Ni (NiSO4.7H2O, 0.25 and 0.5 mM) sole or in combination with 0.50 mM Na2SiO3 for a period of 3 days to investigate the effect of Si supply for revoking the Ni stress. Nickel toxicity gave rise to reactive oxygen species (ROS) and cytotoxic methylglyoxal (MG), accordingly, initiated oxidative stress in rice leaves, and accelerated peroxidation of lipids and consequent damage to membranes. Reduced growth, biomass accumulation, chlorophyll (chl) content, and water balance under Ni-stress were also found. However, free proline (Pro) content increased in Ni-exposed plants. In contrast, the Ni-stressed seedlings fed with supplemental Si reclaimed the seedlings from chlorosis, water retrenchment, growth inhibition, and oxidative stress. Silicon up-regulated most of the antioxidant defense components as well as glyoxalase systems, which helped to improve ROS scavenging and MG detoxification. Hence, these results suggest that the exogenous Si application can improve rice seedlings' tolerance to Ni-toxicity.


Asunto(s)
Antioxidantes/metabolismo , Níquel/farmacología , Oryza/efectos de los fármacos , Piruvaldehído/metabolismo , Plantones/efectos de los fármacos , Silicio/farmacología , Peroxidación de Lípido/efectos de los fármacos , Níquel/metabolismo , Oryza/fisiología , Estrés Oxidativo , Hojas de la Planta/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico
13.
Int J Mol Sci ; 20(13)2019 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-31261998

RESUMEN

Polyamines (PAs) are found in all living organisms and serve many vital physiological processes. In plants, PAs are ubiquitous in plant growth, physiology, reproduction, and yield. In the last decades, PAs have been studied widely for exploring their function in conferring abiotic stresses (salt, drought, and metal/metalloid toxicity) tolerance. The role of PAs in enhancing antioxidant defense mechanism and subsequent oxidative stress tolerance in plants is well-evident. However, the enzymatic regulation in PAs biosynthesis and metabolism is still under research and widely variable under various stresses and plant types. Recently, exogenous use of PAs, such as putrescine, spermidine, and spermine, was found to play a vital role in enhancing stress tolerance traits in plants. Polyamines also interact with other molecules like phytohormones, nitric oxides, trace elements, and other signaling molecules to providing coordinating actions towards stress tolerance. Due to the rapid industrialization metal/metalloid(s) contamination in the soil and subsequent uptake and toxicity in plants causes the most significant yield loss in cultivated plants, which also hamper food security. Finding the ways in enhancing tolerance and remediation mechanism is one of the critical tasks for plant biologists. In this review, we will focus the recent update on the roles of PAs in conferring metal/metalloid(s) tolerance in plants.


Asunto(s)
Metaloides/toxicidad , Metales/toxicidad , Plantas/metabolismo , Poliaminas/metabolismo , Estrés Fisiológico , Contaminación Ambiental , Regulación de la Expresión Génica de las Plantas , Metaloides/farmacocinética , Metales/farmacocinética , Plantas/efectos de los fármacos , Plantas/genética
14.
New Phytol ; 218(2): 646-660, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29464725

RESUMEN

Gibberellin (GA) regulates various plant growth and developmental processes, but its role in pathogen attack, and especially nematode-plant interactions, still remains to be elucidated. An in-depth characterization of the role of GA in nematode infection was conducted using mutant lines of rice, chemical inhibitors, and phytohormone measurements. Our results showed that GA influences rice-Meloidogyne graminicola interactions in a concentration-dependent manner. Foliar spray of plants with a low concentration of gibberellic acid enhanced nematode infection. Biosynthetic and signaling mutants confirmed the importance of gibberellin for rice susceptibility to M. graminicola infection. Our study also demonstrates that GA signaling suppresses jasmonate (JA)-mediated defense against M. graminicola, and likewise the JA-induced defense against M. graminicola requires SLENDER RICE1 (SLR1)-mediated repression of the GA pathway. In contrast to observations from other plant-pathogen interactions, GA plays a dominant role over JA in determining susceptibility to M. graminicola in rice. This GA-induced nematode susceptibility was largely independent of auxin biosynthesis, but relied on auxin transport. In conclusion, we showed that GA-JA antagonistic crosstalk is at the forefront of the interaction between rice and M. graminicola, and SLR1 plays a central role in the JA-mediated defense response in rice against this nematode.


Asunto(s)
Ciclopentanos/farmacología , Giberelinas/farmacología , Oryza/inmunología , Oryza/parasitología , Oxilipinas/farmacología , Tylenchoidea/fisiología , Animales , Transporte Biológico/efectos de los fármacos , Susceptibilidad a Enfermedades , Ácidos Indolacéticos/metabolismo , Modelos Biológicos , Oryza/efectos de los fármacos , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/parasitología , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/efectos de los fármacos , Proteínas de Plantas/metabolismo , Brotes de la Planta/efectos de los fármacos , Tumores de Planta/parasitología , Tylenchoidea/efectos de los fármacos
15.
Mol Pharm ; 15(5): 1755-1765, 2018 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-29528655

RESUMEN

We investigated the feasibility of a combination therapy comprising fasudil, a Rho-kinase inhibitor, and DETA NONOate (diethylenetriamine NONOate, DN), a long-acting nitric oxide donor, both loaded in liposomes modified with a homing peptide, CAR (CARSKNKDC), in the treatment of pulmonary arterial hypertension (PAH). We first prepared and characterized unmodified and CAR-modified liposomes of fasudil and DN. Using individual drugs alone or a mixture of fasudil and DN as controls, we studied the efficacy of the two liposomal preparations in reducing mean pulmonary arterial pressure (mPAP) in monocrotaline (MCT) and SUGEN-hypoxia-induced PAH rats. We also conducted morphometric studies (degree of muscularization, arterial medial wall thickness, and collagen deposition) after treating the PAH rats with test and control formulations. When the rats were treated acutely and chronically, the reduction in mPAP was more pronounced in the liposomal formulation-treated rats than in plain drug-treated rats. CAR-modified liposomes were more selective in reducing mPAP than unmodified liposomes of the drugs. Both drugs, formulated in CAR-modified liposomes, reduced the degree of muscularization, medial arterial wall thickness, and collagen deposition more than the combination of plain drugs did. As seen with the in vivo data, CAR-modified liposomes of fasudil or DN increased the levels of the vasodilatory signaling molecule, cGMP, in the smooth muscle cells of PAH-afflicted human pulmonary arteries. Overall, fasudil and DN, formulated in liposomes, could be used as a combination therapy for a better management of PAH.


Asunto(s)
1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , Hipertensión Pulmonar/tratamiento farmacológico , Liposomas/química , Pulmón/efectos de los fármacos , Donantes de Óxido Nítrico/farmacología , Péptidos/farmacología , Poliaminas/farmacología , Arteria Pulmonar/efectos de los fármacos , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacología , Animales , Química Farmacéutica/métodos , Progresión de la Enfermedad , Hipertensión Pulmonar/metabolismo , Pulmón/metabolismo , Masculino , Monocrotalina/farmacología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Arteria Pulmonar/metabolismo , Ratas , Ratas Sprague-Dawley , Vasodilatadores/farmacología , Quinasas Asociadas a rho/metabolismo
16.
Phytopathology ; 108(9): 1046-1055, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29658842

RESUMEN

Potato cultivars vary in their tolerance to common scab; however, how they affect common scab-causing Streptomyces spp. populations over time is poorly understood. This study investigated the effects of potato cultivar on pathogenic Streptomyces spp. abundance, measured using quantitative PCR, in three spatial locations in a common scab-infested field: (i) soil close to the plant (SCP); (ii) rhizosphere soil (RS); and (iii) geocaulosphere soil (GS). Two tolerant (Gold Rush, Hindenburg) and two susceptible cultivars (Green Mountain, Agria) were tested. The abundance of pathogenic Streptomyces spp. significantly increased in late August compared with other dates in RS of susceptible cultivars in both years. Abundance of pathogenic Streptomyces spp., when averaged over locations and time, was significantly greater in susceptible cultivars compared with tolerant cultivars in 2014. Principal coordinates analysis showed that SCP and RS soil properties (pH, organic carbon, and nitrogen concentrations) explained 68 and 76% of total variation in Streptomyces spp. abundance among cultivars in 2013, respectively, suggesting that cultivars influenced common scab pathogen growth conditions. The results suggested that the genetic background of potato cultivars influenced the abundance of pathogenic Streptomyces spp., with five to six times more abundant Streptomyces spp. in RS of susceptible cultivars compared with tolerant cultivars, which would result in substantially more inoculum left in the field after harvest.


Asunto(s)
Enfermedades de las Plantas/microbiología , Microbiología del Suelo , Solanum tuberosum/microbiología , Streptomyces/aislamiento & purificación , Tubérculos de la Planta/genética , Tubérculos de la Planta/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Rizosfera , Solanum tuberosum/genética , Streptomyces/genética
17.
Ecotoxicol Environ Saf ; 147: 990-1001, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29976011

RESUMEN

Cadmium (Cd) is a serious environmental threat because it accumulates in plants from soil and is subsequently transported into the food cycle. Increased Cd uptake in plants disrupts plant metabolism and hampers crop growth and development. Therefore, remediation of Cd from soil and enhancing plant tolerance to metal toxicity is vital. In the present study, we investigated the function of different doses of citric acid (CA) on Cd toxicity in terms of metal accumulation and stress tolerance in mustard (Brassica juncea L.). Brassica juncea seedlings (12-day-old) were treated with Cd (0.5mMCd and 1.0mM CdCl2) alone and in combination with CA (0.5mM and 1.0mM) in a semi-hydroponic medium for three days. Cadmium accumulation in the roots and shoots of the mustard seedlings increased in a dose-dependent manner and was higher in the roots. Increasing the Cd concentration led to reduced growth, biomass, water status, and chlorophyll (chl) content resulting from increased oxidative damage (elevated malondialdehyde, MDA content; hydrogen peroxide, H2O2 level; superoxide, O2•- generation; lipoxygenase, LOX activity; and methylglyoxal, MG content) and downregulating of the major enzymes of the antioxidant defense and glyoxalase systems. Under Cd stress, both doses of CA improved the growth of the plants by enhancing leaf relative water content (RWC) and chl content; reducing oxidative damage; enhancing the pool of ascorbate (AsA) and glutathione (GSH) and the activities of the antioxidant enzymes (ascorbate peroxidase, APX; monodehydroascorbate reductase, MDHAR; dehydroascorbate reductase, DHAR; glutathione reductase, GR; glutathione peroxidase, GPX; superoxide dismutase, SOD; catalase, CAT); improving the performance of the glyoxalase system (glyoxalase I, Gly I and glyoxalase II, Gly II activity); and increasing the phytochelatin (PC) content. Exogenous CA also increased the root and shoot Cd content and Cd translocation from the roots to the shoots in a dose-dependent manner. Our findings suggest that CA plays a dual role in mustard seedlings by increasing phytoremediation and enhancing stress tolerance through upregulating the antioxidant defense and glyoxalase systems.


Asunto(s)
Antioxidantes/metabolismo , Cadmio/metabolismo , Lactoilglutatión Liasa/metabolismo , Planta de la Mostaza/metabolismo , Ascorbato Peroxidasas/metabolismo , Ácido Ascórbico/metabolismo , Biodegradación Ambiental , Cadmio/toxicidad , Catalasa/metabolismo , Ácido Cítrico/metabolismo , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Glutatión Reductasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Malondialdehído/metabolismo , Planta de la Mostaza/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Oxidorreductasas , Fitoquelatinas/metabolismo , Piruvaldehído/metabolismo , Plantones/efectos de los fármacos , Plantones/metabolismo , Superóxido Dismutasa/metabolismo , Tioléster Hidrolasas/metabolismo
18.
BMC Complement Altern Med ; 18(1): 35, 2018 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-29378554

RESUMEN

BACKGROUND: It has been observed that the various part of Baccaurea ramiflora plant is used in rheumatoid arthritis, cellulitis, abscesses, constipation and injuries. This plant also has anticholinergic, hypolipidemic, hypoglycemic, antiviral, antioxidant, diuretic and cytotoxic activities. The present studyaimed to assess the cytotoxic, analgesic, anti-inflammatory, CNS depressant and antidiarrheal activities of methanol extract of Baccaurea ramiflora pulp and seeds in mice model. METHODS: The cytotoxic activity was determined by brine shrimp lethality bioassay; anti-nociceptive activity was determined by acetic acid-induced writhing, formalin- induced licking and biting, and tail immersion methods. The anti-inflammatory, CNS depressant and anti-diarrheal activities were assessed by carrageenan-induced hind paw edema, the open field and hole cross tests, and castor oil-induced diarrheal methods, respectively. The data were analyzed by one way ANOVA (analysis of variance) followed by Dunnett's test. RESULTS: In brine shrimp lethality bioassay, the LC50 values of the methanol extracts of Baccaurea ramiflora pulp and seed were 40 µg/mL and 10 µg/mL, respectively. Our investigation showed that Baccaurea ramiflora pulp and seed extracts (200 mg/kg) inhibited acetic acid induced pain 67.51 and 66.08%, respectively (p < 0.05) that was strongly comparable with that of Ibuprofen (72%) (p < 0.05). The Baccaurea ramiflora pulp and seed extracts (200 mg/kg) significantly (p < 0.05) reduced 58.5 and 53.4 in early and 80.8%, 76.61% in late phase of formalin-induced licking and biting. At 60 and 90 min pulp and seed extracts (200 mg/kg) inhibited nociception of thermal stimulus 50.16 and 62.4%, respectively (p < 0.05) which was comparable with the standard (morphine, 75.9% inhibition). The pulp and seed extracts (200 mg/kg) significantly (p < 0.05) reduced inflammation (42.00 and 55.22%, respectively) in carrageenan-induced hind paw edema and defecations (59.7 and 63.03%, respectively) in castor oil induced diarrhea. Both the extracts showed high sedative activity at 30, 60, 90, and 120 min. CONCLUSION: Our investigation demonstrated significant cytotoxic, analgesic, anti-inflammatory, CNS depressant and antidiarrheal activities of methanol extract of Baccaurea ramiflora pulp and seeds (200 mg/kg).


Asunto(s)
Analgésicos/farmacología , Antiinflamatorios/farmacología , Antidiarreicos/farmacología , Depresores del Sistema Nervioso Central/farmacología , Extractos Vegetales/farmacología , Analgésicos/química , Animales , Antiinflamatorios/química , Antidiarreicos/química , Artemia/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Depresores del Sistema Nervioso Central/química , Diarrea , Masculino , Ratones , Manejo del Dolor , Extractos Vegetales/química
19.
Physiol Mol Biol Plants ; 24(6): 993-1004, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30425418

RESUMEN

Nitric oxide (NO) is an important plant signaling molecule that has a vital role in abiotic stress tolerance. In the present study, we assessed drought-induced (15 and 30% PEG, polyethylene glycol) damage in wheat (Triticum aestivum L. cv. Prodip) seedlings and mitigation by the synergistic effect of exogenous Arg (0.5 mM l-Arginine) and an NO donor (0.5 mM sodium nitroprusside, SNP). Drought stress sharply decreased the leaf relative water content (RWC) but markedly increased the proline (Pro) content in wheat seedlings. Drought stress caused overproduction of reactive oxygen species (ROS) and methylglyoxal (MG) due to the inefficiency of antioxidant enzymes, the glyoxalase system, and the ascorbate-glutathione pool. However, supplementation with the NO donor and Arg enhanced the antioxidant defense system (both non-enzymatic and enzymatic components) in drought-stressed seedlings. Application of the NO donor and Arg also enhanced the glyoxalase system and reduced the MG content by increasing the activities of the glyoxalase system enzymes (Gly I and Gly II), which restored the leaf RWC and further increased the Pro content under drought stress conditions. Exogenous NO donor and Arg application enhanced the endogenous NO content, which positively regulated the antioxidant system and reduced ROS production. Thus, the present study reveals the crucial roles of Arg and NO in enhancing drought stress tolerance in wheat seedlings by upgrading their water status and reducing oxidative stress and MG toxicity.

20.
J Infect Dis ; 216(suppl_4): S520-S528, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28934459

RESUMEN

Background: In March 2011, a multidisciplinary team investigated 2 human cases of highly pathogenic avian influenza A(H5N1) virus infection, detected through population-based active surveillance for influenza in Bangladesh, to assess transmission and contain further spread. Methods: We collected clinical and exposure history of the case patients and monitored persons coming within 1 m of a case patient during their infectious period. Nasopharyngeal wash specimens from case patients and contacts were tested with real-time reverse-transcription polymerase chain reaction, and virus culture and isolates were characterized. Serum samples were tested with microneutralization and hemagglutination inhibition assays. We tested poultry, wild bird, and environmental samples from case patient households and surrounding areas for influenza viruses. Results: Two previously healthy case patients, aged 13 and 31 months, had influenzalike illness and fully recovered. They had contact with poultry 7 and 10 days before illness onset, respectively. None of their 57 contacts were subsequently ill. Clade 2.2.2.1 highly pathogenic avian influenza H5N1 viruses were isolated from the case patients and from chicken fecal samples collected at the live bird markets near the patients' dwellings. Conclusion: Identification of H5N1 cases through population-based surveillance suggests possible additional undetected cases throughout Bangladesh and highlights the importance of surveillance for mild respiratory illness among populations frequently exposed to infected poultry.


Asunto(s)
Brotes de Enfermedades , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/epidemiología , Infecciones del Sistema Respiratorio/epidemiología , Animales , Animales Salvajes/virología , Bangladesh/epidemiología , Preescolar , Heces/virología , Femenino , Estudios de Seguimiento , Humanos , Lactante , Masculino , Vigilancia de la Población , Aves de Corral/virología , Infecciones del Sistema Respiratorio/virología , Manejo de Especímenes , Encuestas y Cuestionarios
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA