Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(6): 107395, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38768812

RESUMEN

B2 haplotype major histocompatibility complex (MHC) has been extensively reported to confer resistance to various avian diseases. But its peptide-binding motif is unknown, and the presenting peptide is rarely identified. Here, we identified its peptide-binding motif (X-A/V/I/L/P/S/G-X-X-X-X-X-X-V/I/L) in vitro using Random Peptide Library-based MHC I LC-MS/MS analysis. To further clarify the structure basis of motif, we determined the crystal structure of the BF2∗02:01-PB2552-560 complex at 1.9 Å resolution. We found that BF2∗02:01 had a relatively wide antigen-binding groove, and the structural characterization of pockets was consistent with the characterization of peptide-binding motif. The wider features of the peptide-binding motif and increased number of peptides bound by BF2∗02:01 than BF2∗04:01 might resolve the puzzles for the presence of potential H9N2 resistance in B2 chickens. Afterward, we explored the H9N2 avian influenza virus (AIV)-induced cellular immune response in B2 haplotype chickens in vivo. We found that ratio of CD8+ T cell and kinetic expression of cytotoxicity genes including Granzyme K, interferon-γ, NK lysin, and poly-(ADP-ribose) polymerase in peripheral blood mononuclear cells were significantly increased in defending against H9N2 AIV infection. Especially, we selected 425 epitopes as candidate epitopes based on the peptide-binding motif and further identified four CD8+ T-cell epitopes on H9N2 AIV including NS198-106, PB2552-560, NP182-190, and NP455-463 via ELI-spot interferon-γ detections after stimulating memory lymphocytes with peptides. More importantly, these epitopes were found to be conserved in H7N9 AIV and H9N2 AIV. These findings provide direction for developing effective T cell epitope vaccines using well-conserved internal viral antigens in chickens.


Asunto(s)
Pollos , Epítopos de Linfocito T , Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Subtipo H9N2 del Virus de la Influenza A/inmunología , Animales , Epítopos de Linfocito T/inmunología , Gripe Aviar/inmunología , Gripe Aviar/virología , Linfocitos T CD8-positivos/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo
2.
J Virol ; 98(3): e0189723, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38411946

RESUMEN

Ferroptosis, a form of programmed cell death characterized by iron-dependent lipid peroxidation, has recently gained considerable attention in the field of cancer therapy. There is significant crosstalk between ferroptosis and several classical signaling pathways, such as the Hippo pathway, which suppresses abnormal growth and is frequently aberrant in tumor tissues. Yes-associated protein 1 (YAP), the core effector molecule of the Hippo pathway, is abnormally expressed and activated in a variety of malignant tumor tissues. We previously proved that the oncolytic Newcastle disease virus (NDV) activated ferroptosis to kill tumor cells. NDV has been used in tumor therapy; however, its oncolytic mechanism is not completely understood. In this study, we demonstrated that NDV exacerbated ferroptosis in tumor cells by inducing ubiquitin-mediated degradation of YAP at Lys90 through E3 ubiquitin ligase parkin (PRKN). Blocking YAP degradation suppressed NDV-induced ferroptosis by suppressing the expression of Zrt/Irt-like protein 14 (ZIP14), a metal ion transporter that regulates iron uptake. These findings demonstrate that NDV exacerbated ferroptosis in tumor cells by inducing YAP degradation. Our study provides new insights into the mechanism of NDV-induced ferroptosis and highlights the critical role that oncolytic viruses play in the treatment of drug-resistant cancers.IMPORTANCEThe oncolytic Newcastle disease virus (NDV) is being developed for use in cancer treatment; however, its oncolytic mechanism is still not completely understood. The Hippo pathway, which is a tumor suppressor pathway, is frequently dysregulated in tumor tissues due to aberrant yes-associated protein 1 (YAP) activation. In this study, we have demonstrated that NDV degrades YAP to induce ferroptosis and promote virus replication in tumor cells. Notably, NDV was found to induce ubiquitin-mediated degradation of YAP at Lys90 through E3 ubiquitin ligase parkin (PRKN). Our study reveals a new mechanism by which NDV induces ferroptosis and provides new insights into NDV as an oncolytic agent for cancer treatment.


Asunto(s)
Ferroptosis , Neoplasias , Virus de la Enfermedad de Newcastle , Viroterapia Oncolítica , Proteínas Señalizadoras YAP , Animales , Humanos , Proteínas Adaptadoras Transductoras de Señales , Línea Celular Tumoral , Hierro , Neoplasias/terapia , Virus Oncolíticos/fisiología , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas , Ubiquitinas
3.
PLoS Pathog ; 19(10): e1011685, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37819993

RESUMEN

Chicken lung is an important target organ of avian influenza virus (AIV) infection, and different pathogenic virus strains lead to opposite prognosis. Using a single-cell RNA sequencing (scRNA-seq) assay, we systematically and sequentially analyzed the transcriptome of 16 cell types (19 clusters) in the lung tissue of chickens infected with H5N1 highly pathogenic avian influenza virus (HPAIV) and H9N2 low pathogenic avian influenza virus (LPAIV), respectively. Notably, we developed a valuable catalog of marker genes for these cell types. Compared to H9N2 AIV infection, H5N1 AIV infection induced extensive virus replication and the immune reaction across most cell types simultaneously. More importantly, we propose that infiltrating inflammatory macrophages (clusters 0, 1, and 14) with massive viral replication, pro-inflammatory cytokines (IFN-ß, IL1ß, IL6 and IL8), and emerging interaction of various cell populations through CCL4, CCL19 and CXCL13, potentially contributed to the H5N1 AIV driven inflammatory lung injury. Our data revealed complex but distinct immune response landscapes in the lung tissue of chickens after H5N1 and H9N2 AIV infection, and deciphered the potential mechanisms underlying AIV-driven inflammatory reactions in chicken. Furthermore, this article provides a rich database for the molecular basis of different cell-type responses to AIV infection.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Lesión Pulmonar , Animales , Pollos/metabolismo , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/genética , Análisis de la Célula Individual
4.
J Immunol ; 210(5): 668-680, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36695776

RESUMEN

The chicken MHC is known to confer decisive resistance or susceptibility to various economically important pathogens, including the iconic oncogenic herpesvirus that causes Marek's disease (MD). Only one classical class I gene, BF2, is expressed at a high level in chickens, so it was relatively easy to discern a hierarchy from well-expressed thermostable fastidious specialist alleles to promiscuous generalist alleles that are less stable and expressed less on the cell surface. The class I molecule BF2*1901 is better expressed and more thermostable than the closely related BF2*1501, but the peptide motif was not simpler as expected. In this study, we confirm for newly developed chicken lines that the chicken MHC haplotype B15 confers resistance to MD compared with B19. Using gas phase sequencing and immunopeptidomics, we find that BF2*1901 binds a greater variety of amino acids in some anchor positions than does BF2*1501. However, by x-ray crystallography, we find that the peptide-binding groove of BF2*1901 is narrower and shallower. Although the self-peptides that bound to BF2*1901 may appear more various than those of BF2*1501, the structures show that the wider and deeper peptide-binding groove of BF2*1501 allows stronger binding and thus more peptides overall, correlating with the expected hierarchies for expression level, thermostability, and MD resistance. Our study provides a reasonable explanation for greater promiscuity for BF2*1501 compared with BF2*1901, corresponding to the difference in resistance to MD.


Asunto(s)
Enfermedad de Marek , Animales , Alelos , Aminoácidos , Membrana Celular , Pollos , Enfermedad de Marek/genética , Antígenos de Histocompatibilidad Clase I/inmunología
5.
J Virol ; 97(11): e0115223, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37902396

RESUMEN

IMPORTANCE: 3'UTRs can affect gene transcription and post-transcriptional regulation in multiple ways, further influencing the function of proteins in a unique manner. Recently, ALV-J has been mutating and evolving rapidly, especially the 3'UTR of viral genome. Meanwhile, clinical symptoms caused by ALV-J have changed significantly. In this study, we found that the ALV-J strains containing △-r-TM-type 3'UTR are the most abundant. By constructing ALV-J infectious clones and subgenomic vectors containing different 3'UTRs, we prove that 3'UTRs directly affect viral tissue preference and can promote virus replication as an enhancer. ALV-J strain containing 3'UTR of △-r-TM proliferated fastest in primary cells. All five forms of 3'UTRs can assist intron-containing viral mRNA nuclear export, with similar efficiency. ALV-J mRNA half-life is not influenced by different 3'UTRs. Our results dissect the roles of 3'UTR on regulating viral replication and pathogenicity, providing novel insights into potential anti-viral strategies.


Asunto(s)
Regiones no Traducidas 3' , Transporte Activo de Núcleo Celular , Virus de la Leucosis Aviar , Replicación Viral , Expresión Génica , Regulación de la Expresión Génica , Virus de la Leucosis Aviar/genética , Virus de la Leucosis Aviar/fisiología
6.
J Virol ; 97(10): e0071623, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37737586

RESUMEN

IMPORTANCE: Marek's disease virus (MDV) is a ubiquitous chicken pathogen that inflicts a large economic burden on the poultry industry, despite worldwide vaccination programs. MDV is only partially controlled by available vaccines, and the virus retains the ability to replicate and spread between vaccinated birds. Following an initial infection, MDV enters a latent state and integrates into host telomeres and this may be a prerequisite for malignant transformation, which is usually fatal. To understand the mechanism that underlies the dynamic relationship between integrated-latent and reactivated MDV, we have characterized integrated MDV (iMDV) genomes and their associated telomeres. This revealed a single orientation among iMDV genomes and the loss of some terminal sequences that is consistent with integration by homology-directed recombination and excision via a telomere-loop-mediated process.


Asunto(s)
Pollos , Genoma Viral , Herpesvirus Gallináceo 2 , Recombinación Homóloga , Enfermedad de Marek , Telómero , Integración Viral , Animales , Pollos/virología , Genoma Viral/genética , Herpesvirus Gallináceo 2/genética , Enfermedad de Marek/genética , Enfermedad de Marek/virología , Enfermedades de las Aves de Corral/genética , Enfermedades de las Aves de Corral/virología , Telómero/genética , Vacunas Virales/inmunología , Activación Viral , Latencia del Virus , Integración Viral/genética
7.
J Immunol ; 209(5): 979-990, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35940633

RESUMEN

Domestic ducks are the important host for H5N1 highly pathogenic avian influenza virus (HPAIV) infection and epidemiology, but little is known about the duck T cell response to H5N1 AIV infection. In infection experiments of mallard ducks, we detected significantly increased CD8+ cells and augmented expression of cytotoxicity-associated genes, including granzyme A and IFN-γ, in PBMCs from 5 to 9 d postinfection when the virus shedding was clearly decreased, which suggested the importance of the duck cytotoxic T cell response in eliminating H5N1 infection in vivo. Intriguingly, we found that a CD8high+ population of PBMCs was clearly upregulated in infected ducks from 7 to 9 d postinfection compared with uninfected ducks. Next, we used Smart-Seq2 technology to investigate the heterogeneity and transcriptional differences of the duck CD8+ cells. Thus, CD8high+ cells were likely to be more responsive to H5N1 AIV infection, based on the high level of expression of genes involved in T cell responses, activation, and proliferation, including MALT1, ITK, LCK, CD3E, CD247, CFLAR, IL-18R1, and IL-18RAP. More importantly, we have also successfully cultured H5N1 AIV-specific duck T cells in vitro, to our knowledge, for the first time, and demonstrated that the CD8high+ population was increased with the duck T cell activation and response in vitro, which was consistent with results in vivo. Thus, the duck CD8high+ cells represent a potentially effective immune response to H5N1 AIV infection in vivo and in vitro. These findings provide novel insights and direction for developing effective H5N1 AIV vaccines.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Animales , Linfocitos T CD8-positivos/patología , Patos , Granzimas
8.
J Virol ; 96(6): e0202721, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35107377

RESUMEN

Marek's disease virus (MDV) is a member of the genus Mardivirus in the subfamily Alphaherpesvirinae. There are three different serotypes of MDV designated as MDV-1 (Gallid herpesvirus type 2), MDV-2 (Gallid herpesvirus type 3), and MDV-3 (Meleagrid herpesvirus 1, herpesvirus of turkeys, HVT). MDV-1 is the only serotype that induces Marek's disease (MD), a lymphoproliferative disorder resulting in aggressive T-cell lymphomas and paralytic symptoms. In the lymphomas and lymphoblastoid cell lines (LCL) derived from them, MDV establishes latent infection with limited viral gene expression. The latent viral genome in LCL can be activated by co-cultivation with chicken embryo fibroblast (CEF) monolayers. MSB-1, one of the first MDV-transformed LCL established from the splenic lymphoma, is distinct in harboring both the oncogenic MDV-1 and non-oncogenic MDV-2 viruses. Following the successful application of CRISPR/Cas9 editing approach for precise knockdown of the MDV-1 genes in LCL, we describe here the targeted deletion of MDV-2 glycoprotein B (gB) in MSB-1 cells. Due to the essential nature of gB for infectivity, the production of MDV-2 plaques on CEF was completely abolished in the MDV-2-gB-deleted MSB-1 cells. Our study has demonstrated that the CRISPR/Cas9 system can be used for targeted inactivation of the co-infecting MDV-2 without affecting the MDV-1 in the MSB-1 cell line. Successful inactivation of MDV-2 demonstrated here also points toward the possibility of using targeted gene editing as an antiviral strategy against pathogenic MDV-1 and other viruses infecting chickens. IMPORTANCE Marek's disease (MD) is a lymphoproliferative disease of chickens characterized by rapid-onset lymphomas in multiple organs and by infiltration into peripheral nerves, causing paralysis. Lymphoblastoid cell lines (LCL) derived from MD lymphomas have served as valuable resources to improve understanding of distinct aspects of virus-host interactions in transformed cells including transformation, latency, and reactivation. MDV-transformed LCL MSB-1, derived from spleen lymphoma induced by the BC-1 strain of MDV, has a unique feature of harboring an additional non-pathogenic MDV-2 strain HPRS-24. By targeted deletion of essential gene glycoprotein B from the MDV-2 genome within the MSB-1 cells, we demonstrated the total inhibition of MDV-2 virus replication on co-cultivated CEF, with no effect on MDV-1 replication. The identified viral genes critical for reactivation/inhibition of viruses will be useful as targets for development of de novo disease resistance in chickens to avian pathogens.


Asunto(s)
Herpesvirus Gallináceo 3 , Linfoma , Enfermedad de Marek , Proteínas del Envoltorio Viral , Animales , Sistemas CRISPR-Cas , Línea Celular , Embrión de Pollo , Pollos , Herpesvirus Gallináceo 3/genética , Linfoma/veterinaria , Linfoma/virología , Proteínas del Envoltorio Viral/genética
9.
J Virol ; 96(4): e0154921, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-34878920

RESUMEN

Glycans on envelope glycoprotein (Env) of the subgroup J avian leukosis virus (ALV-J) play an essential role in the virion integrity and infection process. In this study, we found that, among the 13 predicted N-linked glycosylation sites (NGSs) in gp85 of Tibetan chicken strain TBC-J6, N17, and N193/N191 are pivotal for virus replication. Further research illustrated that a mutation at N193 weakened Env-receptor binding in a blocking assay of the viral entrance, coimmunoprecipitation, and ELISA. Our studies also showed that N17 was involved in Env protein processing and later virion incorporation based on the detection of p27 and Env protein in the supernatant and gp37 in the cell culture. This report is systematic research on clarifying the biological function of NGSs on ALV-J gp85, which would provide valuable insight into the role of gp85 in the ALV life cycle and anti-ALV-J strategies. IMPORTANCE ALV-J is a retrovirus that can cause multiple types of tumors in chickens. Among all the viral proteins, the heavily glycosylated envelope protein is especially crucial. Glycosylation plays a major role in Env protein function, including protein processing, receptor attachment, and immune evasion. Notably, viruses isolated recently seem to lose their 6th and 11th NGS, which proved to be important in receptor binding. In our study, the 1st (N17) and 8th (N193) NGS of gp85 of the strain TBC-J6 can largely influence the titer of this virus. Deglycosylation at N193 weakened Env-receptor binding while mutation at N17 influenced Env protein processing. This study systemically analyzed the function of NGSs in ALV-J in different aspects, which may help us to understand the life cycle of ALV-J and provide antiviral targets for the control of ALV-J.


Asunto(s)
Virus de la Leucosis Aviar/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Animales , Virus de la Leucosis Aviar/crecimiento & desarrollo , Línea Celular , Pollos , Glicosilación , Mutación , Unión Proteica , Procesamiento Proteico-Postraduccional , Receptores Virales/metabolismo , Proteínas del Envoltorio Viral/genética , Carga Viral/genética , Virión/metabolismo
10.
J Med Virol ; 95(1): e28324, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36401345

RESUMEN

Dynamic alteration of the epitranscriptome exerts regulatory effects on the lifecycle of oncogenic viruses in vitro. However, little is known about these effects in vivo because of the general lack of suitable animal infection models of these viruses. Using a model of rapid-onset Marek's disease lymphoma in chickens, we investigated changes in viral and host messenger RNA (mRNA) N6-methyladenosine (m6 A) modification during Marek's disease virus (MDV) infection in vivo. We found that the expression of major epitranscriptomic proteins varies among viral infection phases, reprogramming both the viral and the host epitranscriptomes. Specifically, the methyltransferase-like 3 (METTL3)/14 complex was suppressed during the lytic and reactivation phases of the MDV lifecycle, whereas its expression was increased during the latent phase and in MDV-induced tumors. METTL3/14 overexpression inhibits, whereas METTL3/14 knockdown enhances, MDV gene expression and replication. These findings reveal the dynamic features of the mRNA m6 A modification program during viral replication in vivo, especially in relation to key pathways involved in tumorigenesis.


Asunto(s)
Enfermedad de Marek , Animales , Enfermedad de Marek/genética , Virus Oncogénicos/genética , Pollos , ARN Mensajero/genética , ARN Mensajero/metabolismo
11.
J Basic Microbiol ; 63(12): 1383-1396, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37821414

RESUMEN

Newcastle disease (ND) is an endemic viral disease affecting poultry and causing massive economic losses. This cross-sectional purposive study detected coinfections that are associated with the Newcastle disease virus among poultry from selected regions in Kenya. Cloacal (n = 599) and oral-pharyngeal (n = 435) swab samples were collected and pooled into 17 and 15 samples, respectively. A total of 17,034,948 and 7,751,974 paired-end reads with an average of 200 nucleotides were generated from the cloacal and oral-pharyngeal swab samples, respectively. Analysis of the de novo assembled contigs identified 177 and 18 cloacal and oral-pharyngeal contigs, respectively with hits to viral sequences, as determined by BLASTx and BLASTn analyses. Several known and unknown representatives of Coronaviridae, Picobirnaviridae, Reoviridae, Retroviridae, and unclassified Deltavirus were identified in the cloacal swab samples. However, no Newcastle disease virus (family Paramyxoviridae) was detected in the cloacal swabs, although they were detected in the oropharyngeal swabs of chickens sampled in Nairobi, Busia, and Trans Nzoia. Additionally, sequences representative of Paramyxoviridae, Coronaviridae, and Retroviridae were identified in the oral-pharyngeal swab samples. Infectious bronchitis virus and rotavirus were chickens' most prevalent coinfections associated with the Newcastle disease virus. The detection of these coinfections suggests that these viruses are significant threats to the control of Newcastle disease as the Newcastle disease virus vaccines are known to fail because of these coinfections. Therefore, this study provides important information that will help improve disease diagnosis and vaccine development for coinfections associated with the Newcastle disease virus.


Asunto(s)
Coinfección , Enfermedad de Newcastle , Enfermedades de las Aves de Corral , Animales , Virus de la Enfermedad de Newcastle/genética , Enfermedad de Newcastle/diagnóstico , Enfermedad de Newcastle/epidemiología , Enfermedad de Newcastle/prevención & control , Aves de Corral , Pollos , Coinfección/epidemiología , Coinfección/veterinaria , Kenia/epidemiología , Estudios Transversales , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/prevención & control
12.
PLoS Pathog ; 16(6): e1008514, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32479542

RESUMEN

Deoxyribonucleic acid (DNA) damage response (DDR) is the fundamental cellular response for maintaining genomic integrity and suppressing tumorigenesis. The activation of ataxia telangiectasia-mutated (ATM) kinase is central to DNA double-strand break (DSB) for maintaining host-genome integrity in mammalian cells. Oncolytic Newcastle disease virus (NDV) can selectively replicate in tumor cells; however, its influence on the genome integrity of tumor cells is not well-elucidated. Here, we found that membrane fusion and NDV infection triggered DSBs in tumor cells. The late replication and membrane fusion of NDV mechanistically activated the ATM-mediated DSB pathway via the ATM-Chk2 axis, as evidenced by the hallmarks of DSBs, i.e., auto-phosphorylated ATM and phosphorylated H2AX and Chk2. Immunofluorescence data showed that multifaceted ATM-controlled phosphorylation markedly induced the formation of pan-nuclear punctum foci in response to NDV infection and F-HN co-expression. Specific drug-inhibitory experiments on ATM kinase activity further suggested that ATM-mediated DSBs facilitated NDV replication and membrane fusion. We confirmed that the Mre11-RAD50-NBS1 (MRN) complex sensed the DSB signal activation triggered by NDV infection and membrane fusion. The pharmacological inhibition of MRN activity also significantly inhibited intracellular and extracellular NDV replication and syncytia formation. Collectively, these data identified for the first time a direct link between the membrane fusion induced by virus infection and DDR pathways, thereby providing new insights into the efficient replication of oncolytic NDV in tumor cells.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Roturas del ADN de Doble Cadena , Células Gigantes , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Virus de la Enfermedad de Newcastle/fisiología , Virus Oncolíticos/fisiología , Replicación Viral , Células A549 , Ácido Anhídrido Hidrolasas/genética , Ácido Anhídrido Hidrolasas/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Embrión de Pollo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células Gigantes/metabolismo , Células Gigantes/virología , Células HEK293 , Humanos , Proteína Homóloga de MRE11/genética , Proteína Homóloga de MRE11/metabolismo , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/virología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transducción de Señal/genética
13.
Int J Mol Sci ; 23(19)2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36232572

RESUMEN

Avian leukosis virus (ALV) induces B-cell lymphomas and other malignancies in chickens through insertional activation of oncogenes, and c-myc activation has been commonly identified in ALV-induced tumors. Using ALV-transformed B-lymphoma-derived HP45 cell line, we applied in situ CRISPR-Cas9 editing of integrated proviral long terminal repeat (LTR) to examine the effects on gene expression and cell proliferation. Targeted deletion of LTR resulted in significant reduction in expression of a number of LTR-regulated genes including c-myc. LTR deletion also induced apoptosis of HP45 cells, affecting their proliferation, demonstrating the significance of LTR-mediated regulation of critical genes. Compared to the global effects on expression and functions of multiple genes in LTR-deleted cells, deletion of c-myc had a major effect on the HP45 cells proliferation with the phenotype similar to the LTR deletion, demonstrating the significance of c-myc expression in ALV-induced lymphomagenesis. Overall, our studies have not only shown the potential of targeted editing of the LTR for the global inhibition of retrovirus-induced transformation, but also have provided insights into the roles of LTR-regulated genes in ALV-induced neoplastic transformation.


Asunto(s)
Virus de la Leucosis Aviar , Animales , Virus de la Leucosis Aviar/genética , Línea Celular , Proliferación Celular/genética , Pollos/genética , Provirus/genética , Secuencias Repetidas Terminales/genética
14.
J Virol ; 94(10)2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32161176

RESUMEN

The Bcl-2 (B cell lymphoma 2)-related protein Nr-13 plays a major role in the regulation of cell death in developing avian B cells. With over 65% sequence similarity to the chicken Nr-13, herpesvirus of turkeys (HVT) vNr-13, encoded by the HVT079 and HVT096 genes, is the first known alphaherpesvirus-encoded Bcl-2 homolog. HVT-infected cells were reported to be relatively more resistant to serum starvation, suggested that vNr-13 could be involved in protecting the cells. Here, we describe CRISPR/Cas9-based editing of exon 1 of the HVT079 and HVT096 genes from the HVT genome to generate the mutant HVT-ΔvNr-13 to gain insights into its functional roles. Overall, wild-type HVT and HVT-ΔvNr-13 showed similar growth kinetics; however, at early time points, HVT-ΔvNr-13 showed 1.3- to 1.7-fold-lower growth of cell-associated virus and 3- to 6.2-fold-lower growth of cell-free virus. In transfected cells, HVT vNr-13 showed a mainly diffuse cytoplasmic distribution with faint nuclear staining. Further, vNr-13 localized to the mitochondria and endoplasmic reticulum (ER) and disrupted mitochondrial network morphology in the transfected cells. In the wild-type HVT-infected cells, vNr-13 expression appeared to be directly involved in the disruption of the mitochondrial network, as the mitochondrial network morphology was substantially restored in the HVT-ΔvNr-13-infected cells. IncuCyte S3 real-time apoptosis monitoring demonstrated that vNr-13 is unequivocally involved in the apoptosis inhibition, and it is associated with an increase of PFU, especially under serum-free conditions in the later stages of the viral replication cycle. Furthermore, HVT blocks apoptosis in infected cells but activates apoptosis in noninfected bystander cells.IMPORTANCE B cell lymphoma 2 (Bcl-2) family proteins play important roles in regulating apoptosis during homeostasis, tissue development, and infectious diseases. Several viruses encode homologs of cellular Bcl-2-proteins (vBcl-2) to inhibit apoptosis, which enable them to replicate and persist in the infected cells and to evade/modulate the immune response of the host. Herpesvirus of turkeys (HVT) is a nonpathogenic alphaherpesvirus of turkeys and chickens that is widely used as a live vaccine against Marek's disease and as recombinant vaccine viral vectors for protecting against multiple avian diseases. Identical copies of the HVT genes HVT079 and HVT096 encode the Bcl-2 homolog vNr-13. While previous studies have identified the potential ability of vNr-13 in inhibiting apoptosis induced by serum deprivation, there have been no detailed investigations on the functions of vNr-13. Using CRISPR/Cas9-based ablation of the vNr-13 gene, we demonstrated the roles of HVT vNr-13 in early stages of the viral replication cycle, mitochondrial morphology disruption, and apoptosis inhibition in later stages of viral replication.


Asunto(s)
Apoptosis/fisiología , Proteínas Aviares/metabolismo , Herpesviridae/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Pavos/virología , Proteínas Virales/metabolismo , Replicación Viral/fisiología , Animales , Proteínas Aviares/genética , Sistemas CRISPR-Cas , Pollos/metabolismo , Retículo Endoplásmico/metabolismo , Infecciones por Herpesviridae/virología , Linfoma de Células B/inmunología , Proteínas de la Membrana/genética , Enfermedades de las Aves de Corral/virología , Alineación de Secuencia , Análisis de Secuencia , Proteínas Virales/genética , Vacunas Virales/inmunología
15.
Vet Res ; 52(1): 20, 2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33579382

RESUMEN

Processing and packaging of herpesvirus genomic DNA is regulated by a packaging-associated terminase complex comprising of viral proteins pUL15, pUL28 and pUL33. Marek's disease virus (MDV) homologs UL28 and UL33 showed conserved functional features with high sequence identity with the corresponding Herpes simplex virus 1 (HSV-1) homologs. As part of the investigations into the role of the UL28 and UL33 homologs of oncogenic MDV for DNA packaging and replication in cultured cells, we generated MDV mutant clones deficient in UL28 or UL33 of full-length MDV genomes. Transfection of UL28- or UL33-deleted BAC DNA into chicken embryo fibroblast (CEF) did not result either in the production of visible virus plaques, or detectable single cell infection after passaging onto fresh CEF cells. However, typical MDV plaques were detectable in CEF transfected with the DNA of revertant mutants where the deleted genes were precisely reinserted. Moreover, the replication defect of the UL28-deficient mutant was completely restored when fragment encoding the full UL28 gene was co-transfected into CEF cells. Viruses recovered from the revertant construct, as well as by the UL28 co-transfection, showed replication ability comparable with parental virus. Furthermore, the transmission electron microscopy study indicated that immature capsids were assembled without the UL28 expression, but with the loss of infectivity. Importantly, predicted three-dimensional structures of UL28 between MDV and HSV-1 suggests conserved function in virus replication. For the first time, these results revealed that both UL28 and UL33 are essential for MDV replication through regulating DNA cleavage and packaging.


Asunto(s)
ADN Viral/química , Endodesoxirribonucleasas/genética , Mardivirus/fisiología , Receptores de Quimiocina/genética , Proteínas Virales/genética , Replicación Viral , Secuencia de Aminoácidos , Animales , Embrión de Pollo , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/metabolismo , Mardivirus/enzimología , Mardivirus/genética , División del ARN , Receptores de Quimiocina/química , Receptores de Quimiocina/metabolismo , Alineación de Secuencia , Organismos Libres de Patógenos Específicos , Proteínas Virales/química , Proteínas Virales/metabolismo
16.
J Virol ; 93(17)2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31189706

RESUMEN

MicroRNAs (miRNAs) are small noncoding RNAs with profound regulatory roles in many areas of biology, including cancer. MicroRNA 155 (miR-155), one of the extensively studied multifunctional miRNAs, is important in several human malignancies such as diffuse large B cell lymphoma and chronic lymphocytic leukemia. Moreover, miR-155 orthologs KSHV-miR-K12-11 and MDV-miR-M4, encoded by Kaposi's sarcoma-associated herpesvirus (KSHV) and Marek's disease virus (MDV), respectively, are also involved in oncogenesis. In MDV-induced T-cell lymphomas and in lymphoblastoid cell lines derived from them, MDV-miR-M4 is highly expressed. Using excellent disease models of infection in natural avian hosts, we showed previously that MDV-miR-M4 is critical for the induction of T-cell lymphomas as mutant viruses with precise deletions were significantly compromised in their oncogenicity. However, those studies did not elucidate whether continued expression of MDV-miR-M4 is essential for maintaining the transformed phenotype of tumor cells. Here using an in situ CRISPR/Cas9 editing approach, we deleted MDV-miR-M4 from the MDV-induced lymphoma-derived lymphoblastoid cell line MDCC-HP8. Precise deletion of MDV-miR-M4 was confirmed by PCR, sequencing, quantitative reverse transcription-PCR (qRT-PCR), and functional analysis. Continued proliferation of the MDV-miR-M4-deleted cell lines demonstrated that MDV-miR-M4 expression is not essential for maintaining the transformed phenotype, despite its initial critical role in the induction of lymphomas. Ability to examine the direct role of oncogenic miRNAs in situ in tumor cell lines is valuable in delineating distinct determinants and pathways associated with the induction or maintenance of transformation in cancer cells and will also contribute significantly to gaining further insights into the biology of oncogenic herpesviruses.IMPORTANCE Marek's disease virus (MDV) is an alphaherpesvirus associated with Marek's disease (MD), a highly contagious neoplastic disease of chickens. MD serves as an excellent model for studying virus-induced T-cell lymphomas in the natural chicken hosts. Among the limited set of genes associated with MD oncogenicity, MDV-miR-M4, a highly expressed viral ortholog of the oncogenic miR-155, has received extensive attention due to its direct role in the induction of lymphomas. Using a targeted CRISPR-Cas9-based gene editing approach in MDV-transformed lymphoblastoid cell lines, we show that MDV-miR-M4, despite its critical role in the induction of tumors, is not essential for maintaining the transformed phenotype and continuous proliferation. As far as we know, this was the first study in which precise editing of an oncogenic miRNA was carried out in situ in MD lymphoma-derived cell lines to demonstrate that it is not essential in maintaining the transformed phenotype.


Asunto(s)
Transformación Celular Viral/genética , Linfoma/virología , Mardivirus/patogenicidad , MicroARNs/genética , Animales , Sistemas CRISPR-Cas , Línea Celular Transformada , Línea Celular Tumoral , Proliferación Celular , Humanos , Mardivirus/genética , ARN Viral/genética
17.
Avian Pathol ; 49(3): 221-229, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31899951

RESUMEN

Fowl cholera is a highly contagious disease within the global duck farming industry. This study aimed at formulating and evaluating the protective efficacy of a combination vaccine containing a recombinant outer membrane protein H (rOmpH) of Pasteurella multocida strain X-73 with a live attenuated duck plague vaccine into a single dose. Four groups of ducks received different treatments and the groups were labelled as non-vaccinated, combined vaccination, duck plague vaccination and rOmpH vaccination, respectively. The combined vaccination group was comprised of live attenuated duck plague commercial vaccine with 100 µg rOmpH to a total volume of 0.5 ml/duck/intramuscular administration. All groups were challenged with avian P. multocida strain X-73 via intranasal administration. In addition, blood samples were collected monthly over a period of 6 months to determine the appropriate antibody level by indirect ELISA. The indirect ELISA results in the combination vaccine group revealed that the average levels of the serum antibody against the duck enteritis virus (0.477 ± 0.155) and fowl cholera (0.383 ± 0.100) were significantly higher than those values in the non-vaccinated control group (0.080 ± 0.027 and 0.052 ± 0.017), respectively (P < 0.05). Moreover, all vaccinated ducks were effectively protected from fowl cholera. This preliminary study indicated that a combination vaccine did not affect the antibody response in the subjects while protecting the ducks against experimental P. multocida infection. This combination vaccine should be considered part of an alternative pre-treatment strategy that could replace the monovalent vaccine.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/inmunología , Vacunas Bacterianas/inmunología , Patos , Mardivirus , Pasteurella multocida/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Antibacterianos/sangre , Anticuerpos Antivirales/sangre , Infecciones por Pasteurella/prevención & control , Infecciones por Pasteurella/veterinaria , Pasteurella multocida/metabolismo , Proteínas Recombinantes , Vacunas Atenuadas , Vacunas Combinadas , Vacunas Sintéticas/inmunología
18.
BMC Vet Res ; 15(1): 383, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31666067

RESUMEN

BACKGROUND: Avian leukosis (AL), which is caused by avian leukosis virus (ALV), has led to substantial economic losses in the poultry industry. The kit used to detect all ALV-positive chickens in breeder flocks is very important for efficiently controlling AL. However, a new emerging ALV subtype is currently a severe challenge in the poultry industry. RESULTS: In this paper, we compared different enzyme-linked immunosorbent assay (ELISA) kits for detecting p27 of ALV in the same batch of meconium samples. Different positive samples were further analyzed by PCR or virus isolation. The results showed that 36 positive samples among the 1812 chicken meconium samples could be detected by a sandwich ELISA (sELISA) kit, but only 17 positive samples could be identified by a commercial kit. To verify this result, cloacal swabs and viruses isolated from the positive chickens (2 days old) were used to detect the presence of p27. The results showed that the positive rate of p27 was 100% for the swabs and 40% for virus isolation. Surprisingly, PCR and sequence analysis revealed that the env gene of ALV in these positive samples belonged to the novel subgroup K (ALV-K). CONCLUSION: These data not only demonstrate the relatively high sensitivity of the sELISA kit but also highlight the challenge of controlling ALV-K.


Asunto(s)
Virus de la Leucosis Aviar/aislamiento & purificación , Pollos/virología , Cloaca/virología , Antígeno Nuclear de Célula en Proliferación/aislamiento & purificación , Animales , Virus de la Leucosis Aviar/genética , Ensayo de Inmunoadsorción Enzimática/veterinaria , Juego de Reactivos para Diagnóstico , Sensibilidad y Especificidad
19.
Retrovirology ; 15(1): 45, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29970099

RESUMEN

BACKGROUND: Co-infection with avian leukosis virus subgroup J and reticuloendotheliosis virus induces synergistic pathogenic effects and increases mortality. However, the role of exosomal miRNAs in the molecular mechanism of the synergistic infection of the two viruses remains unknown. RESULTS: In this study, exosomal RNAs from CEF cells infected with ALV-J, REV or both at the optimal synergistic infection time were analysed by Illumina RNA deep sequencing. A total of 54 (23 upregulated and 31 downregulated) and 16 (7 upregulated and 9 downregulated) miRNAs were identified by comparing co-infection with two viruses, single-infected ALV-J and REV, respectively. Moreover, five key miRNAs, including miR-184-3p, miR-146a-3p, miR-146a-5p, miR-3538 and miR-155, were validated in both exosomes and CEF cells by qRT-PCR. GO annotation and KEGG pathway analysis of the miRNA target genes showed that the five differentially expressed miRNAs participated in virus-vector interaction, oxidative phosphorylation, energy metabolism and cell growth. CONCLUSIONS: We demonstrated that REV and ALV-J synergistically increased the accumulation of exosomal miRNAs, which sheds light on the synergistic molecular mechanism of ALV-J and REV.


Asunto(s)
Virus de la Leucosis Aviar/fisiología , Coinfección , Exosomas/genética , MicroARNs/genética , Interacciones Microbianas , Virus de la Reticuloendoteliosis/fisiología , Infecciones por Retroviridae/genética , Infecciones por Retroviridae/virología , Animales , Leucosis Aviar/genética , Leucosis Aviar/metabolismo , Leucosis Aviar/virología , Línea Celular , Exosomas/metabolismo , Exosomas/ultraestructura , Regulación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Patógeno , Interferencia de ARN , Reproducibilidad de los Resultados , Infecciones por Retroviridae/metabolismo , Replicación Viral
20.
J Gen Virol ; 99(1): 21-35, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29058656

RESUMEN

Infectious bursal disease is a highly contagious disease in the poultry industry and causes immunosuppression in chickens. Genome-wide regulations of immune response genes of inbred chickens with different genetic backgrounds, following very virulent infectious bursal disease virus (vvIBDV) infection are poorly characterized. Therefore, this study aims to analyse the bursal tissue transcriptome of six inbred chicken lines 6, 7, 15, N, O and P following infection with vvIBDV strain UK661 using strand-specific next-generation sequencing, by highlighting important genes and pathways involved in the infected chicken during peak infection at 3 days post-infection. All infected chickens succumbed to the infection without major variations among the different lines. However, based on the viral loads and bursal lesion scoring, lines P and 6 can be considered as the most susceptible lines, while lines 15 and N were regarded as the least affected lines. Transcriptome profiling of the bursa identified 4588 genes to be differentially expressed, with 2985 upregulated and 1642 downregulated genes, in which these genes were commonly or uniquely detected in all or several infected lines. Genes that were upregulated are primarily pro-inflammatory cytokines, chemokines and IFN-related. Various genes that are associated with B-cell functions and genes related to apoptosis were downregulated, together with the genes involved in p53 signalling. In conclusion, bursal transcriptome profiles of different inbred lines showed differential expressions of pro-inflammatory cytokines and chemokines, Th1 cytokines, JAK-STAT signalling genes, MAPK signalling genes, and their related pathways following vvIBDV infection.


Asunto(s)
Infecciones por Birnaviridae/veterinaria , Regulación de la Expresión Génica , Virus de la Enfermedad Infecciosa de la Bolsa/patogenicidad , Enfermedades de las Aves de Corral/genética , Transcriptoma , Animales , Animales Endogámicos , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/inmunología , Infecciones por Birnaviridae/genética , Infecciones por Birnaviridae/inmunología , Infecciones por Birnaviridae/virología , Bolsa de Fabricio/inmunología , Bolsa de Fabricio/metabolismo , Bolsa de Fabricio/virología , Pollos , Citocinas/genética , Citocinas/inmunología , Susceptibilidad a Enfermedades , Perfilación de la Expresión Génica , Ontología de Genes , Interacciones Huésped-Patógeno , Virus de la Enfermedad Infecciosa de la Bolsa/crecimiento & desarrollo , Anotación de Secuencia Molecular , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/virología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/inmunología , Carga Viral , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA